Valgrind Documentation

Release 3.23.0.RC1 19 Apr 2024
Copyright © 2000-2022 AUTHORS

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the section entitled The GNU Free Documentation License.

Thisis the top level of Valgrind's documentation tree. The documentation is contained in six logically separate
documents, as listed in the following Table of Contents. To get started quickly, read the Valgrind Quick Start
Guide. For full documentation on Valgrind, read the Valgrind User Manual.

Vagrind Documentation

Table of Contents

The Valgrind QUICK STt GUITEuuiiiiiii et e s iii
Valgrind USEr IMANUAL ... oottt e ettt e et et e e et et e e et e bt e e e eebb e e e eeneaeeees iv
VaAlGNNG FAQ i e e ettt et eaaans clxxiv
Valgrind Technical DOCUMENTALIONuuiiietieeieit ettt ettt e e ettt e e et e e e et e e e enb e e eenanaeeeen viii
Valgrind DistribDUtion DOCUMENLSccouuuieiiitieee ettt e et e et e e et eeeeaa s XVii
GINU LICEINSES ..ottt ettt ettt et e e et e ettt e et e b e e et et e e et et e e et e bb e e et et e e e eaaa s cvi

The Valgrind Quick Start Guide

Release 3.23.0.RC1 19 Apr 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

The Valgrind Quick Start Guide

Table of Contents

The Valgrind QUICK SEAIT GUITEuuiieiii e e e e e e 1
O [gL oo [0 1o o EO PSP UPPPPTRPPPPIN 1
2. Preparing YOUE PrOGIAIMcceuu ettt e et e ettt e ettt e e et et e e et et e e et et e e et et e e et e bb e e e e e b e e e enaaas 1
3. Running your program under MemCheCKiiiiiiiiiii e 1
4. Interpreting MemChECK'S OUEPULiieieie ettt e e 1
S O V= £ PP 2
6. MOIE INFOMMEBIION ...ttt ettt ettt e et et e e et e et e e e aaa e e ennas 3

The Valgrind Quick Start Guide

The Valgrind Quick Start Guide

1. Introduction

The Vagrind tool suite provides a number of debugging and profiling tools that help you make your programs
faster and more correct. The most popular of these tools is called Memcheck. It can detect many memory-related
errors that are common in C and C++ programs and that can lead to crashes and unpredictable behaviour.

Therest of this guide gives the minimum information you need to start detecting memory errors in your program
with Memcheck. For full documentation of Memcheck and the other tools, please read the User Manual.

2. Preparing your program

Compile your program with - g to include debugging information so that Memcheck's error messages include
exact line numbers. Using - Q0 is also a good ideg, if you can tolerate the slowdown. With - OL line humbers
in error messages can be inaccurate, although generally speaking running Memcheck on code compiled at - OL
worksfairly well, and the speed improvement compared to running - Q0 isquite significant. Use of - O2 and above
is not recommended as Memcheck occasionally reports uninitialised-value errors which don't really exist.

3. Running your program under Memcheck

If you normally run your program like this:
myprog argl arg2
Use this command line:
val grind --I|eak-check=yes nyprog argl arg2
Memcheck is the default tool. The - - | eak- check option turns on the detailed memory leak detector.

Y our program will run much slower (eg. 20 to 30 times) than normal, and use alot more memory. Memcheck will
issue messages about memory errors and leaksthat it detects.

4. Interpreting Memcheck's output

Here's an example C program, in afile called a.c, with amemory error and a memory leak.

#i ncl ude <stdlib. h>

voi d f(void)
{
int* x = malloc(10 * sizeof (int));
x[10] = O; /1 problem 1: heap bl ock overrun
} /] problem2: menory leak -- x not freed

i nt mai n(voi d)

f();

return O;

}

Most error messages look like the following, which describes problem 1, the heap block overrun:

The Valgrind Quick Start Guide

==19182== Invalid wite of size 4

==19182== at 0x804838F: f (exanple.c:6)

==19182== by 0x80483AB: main (exanple.c:11)

==19182== Address 0x1BA45050 is O bytes after a block of size 40 alloc'd
==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)

==19182== by 0x8048385: f (exanple.c:5)

==19182== by 0x80483AB: main (exanple.c:11)

Thingsto notice:
e Thereisalot of information in each error message; read it carefully.
» The 19182 isthe process ID; it's usually unimportant.

» Thefirst line ("Invalid write...") tells you what kind of error it is. Here, the program wrote to some memory it
should not have due to a heap block overrun.

» Below thefirst lineisastack trace telling you where the problem occurred. Stack traces can get quite large, and
be confusing, especidly if you are using the C++ STL. Reading them from the bottom up can help. If the stack
trace is not big enough, usethe - - num cal | er s option to make it bigger.

» Thecode addresses (eg. 0x804838F) are usually unimportant, but occasionally crucia for tracking down weirder
bugs.

» Some error messages have a second component which describes the memory address involved. This one shows
that the written memory isjust past the end of a block allocated with malloc() on line 5 of example.c.

It's worth fixing errors in the order they are reported, as later errors can be caused by earlier errors. Failing to do
thisis a common cause of difficulty with Memcheck.

Memory leak messages |ook like this;

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

The stack trace tells you where the leaked memory was allocated. Memcheck cannot tell you why the memory
leaked, unfortunately. (Ignorethe "vg_replace malloc.c", that's an implementation detail .)

There are several kinds of leaks; the two most important categories are;
 "definitely lost": your program is leaking memory -- fix it!

» "probably lost": your program is leaking memory, unless you're doing funny things with pointers (such as
moving them to point to the middle of a heap block).

Memcheck also reports uses of uninitialised values, most commonly with the message " Conditional jump or move
depends on uninitialised value(s)". It can be difficult to determine the root cause of these errors. Try using the - -
track- ori gi ns=yes to get extrainformation. This makes Memcheck run slower, but the extra information
you get often saves alot of time figuring out where the uninitialised values are coming from.

If you don't understand an error message, please consult Explanation of error messages from Memcheck in the
Valgrind User Manual which has examples of al the error messages Memcheck produces.

5. Caveats

Memcheck is not perfect; it occasionally produces false positives, and there are mechanisms for suppressing these
(see Suppressing errorsinthe Valgrind User Manual). However, it istypically right 99% of thetime, so you should

The Valgrind Quick Start Guide

be wary of ignoring its error messages. After all, you wouldn't ignore warning messages produced by a compiler,
right? The suppression mechanism is also useful if Memcheck is reporting errorsin library code that you cannot
change. The default suppression set hides alot of these, but you may come across more.

Memcheck cannot detect every memory error your program has. For example, it can't detect out-of-range reads
or writes to arrays that are allocated statically or on the stack. But it should detect many errors that could crash
your program (eg. cause a segmentation fault).

Try to make your program so clean that Memcheck reports no errors. Once you achieve this state, it is much
easier to see when changes to the program cause Memcheck to report new errors. Experience from several years
of Memcheck use shows that it is possible to make even huge programs run Memcheck-clean. For example, large
parts of KDE, OpenOffice.org and Firefox are Memcheck-clean, or very closeto it.

6. More information

Please consult the Valgrind FAQ and the Valgrind User Manual, which have much more information. Note that
the other toolsin the Valgrind distribution can be invoked with the - - t ool option.

Valgrind User Manual

Release 3.23.0.RC1 19 Apr 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind User Manual

Table of Contents

O [gL oo (0 1o o RO OO PP PO UOUPPTRUPPPPIN 1
1.1 AN OVEVIEW OF ValGNNG ...uiiiiiie ettt e 1
1.2. HOw tO navigate thiS ManUalcoouuuniiiiiiii i 1

2. Using and understanding the Valgring COMEcoouuuuiiiiiiie e 3
2.1. What Valgrind does With YOUr PrOgrameeeeeuuieiiiie et 3
2.2, GEIING SEAMTEA ... ettt ettt 4
2.3. THE COMIMENTAIY ...eeeeneeieii ettt ettt et e et e et et e et et e e e et e e e eba s 4
2.4, REPOIING OF BITOIS ...ttt ettt ettt ettt e ettt e ettt e e ettt r e e e eabreeeeabaeeeentnaeeees 5
2.5, SUPPIESSING EITOFS ... ettt eeeeeti e e ettt e e ettt e et eeta e e e ettt e et es bt e et eebet e et esbareeeeabe s e e eesbn s eeeentnnaaeees 6
2.6. DEDUGINTOM ...ttt ettt ettt ettt e et et e e et et e et e e e e e e eeee 9
2.7. Core CommaNd-liNE OPLIONSeieerieeeiii ettt e e ettt e e et e e e e et e e eeaa e eeees 9

2.7.1. TOOI-SEIECHION OPLION ...ceetieiiit et e s 9
2.7.2. BASIC OPUIONS ...ttt ettt sttt ettt ettt ettt et et e e e et e enaan 9
2.7.3. Error-related OPLiONSuiiiiiiieiiiii ettt 12
2.7.4, MallOC-related OPLIONSuiiiiiiiee et e 19
2.7.5. UNCOMMON OPLIONS ..ottt ettt e e et e et et e e e e e era s 20
2.7.6. DEDUGGING OPLIONSvueeeiiie ettt et e ettt e et et e e e et e e e e et e e e eebanaeeens 27
2.7.7. Setting Default OPLiONSuiieiiieeiii ettt eeaaas 27
2.7.8. Dynamically Changing OptiONScccuuueiieuuieeieiii et e et e et e e et eeeeni e eeees 28
2.8. SUPPOIT FOF TRMEAASceeeie ettt e e et e e 29
2.8.1. Scheduling and Multi-Thread Performancecc.uveiiiiiiieieiiieece e 29
2.9. Handling Of SIGNaISccuuuiiiiiiei ittt e et et e e e et e e eera e aees 30
2.10. EXECULION TIEES ... eeitie ettt ettt ettt ettt et e et et e et et e et et e e e e e r e e e eab e e eenanns 30
2.11. Building and INstalling Valgringdcoouuuiiiiiiiaiei e 33
212, 1f YOU HAVE ProDIEMS ... ittt e e e e et e eeees 33
P R I 0] = o PP PP PP TUPPPTN 34
214, AN EXGMPIE RUN ..ottt e e 36
2.15. Warning Messages YOU Might SEE ... 36

3. Using and understanding the Valgrind core: Advanced TOPICScvvunieeneiiiieiieei e 38
3.1. The Client ReqUESE MECNANISITceeiii it 38
3.2. Debugging your program using Valgrind gdbserver and GDBccccoiviiiiiiiiiiiiiieie 40

3.2.1. Quick Start: debugging iN 3 SEEPSuuiiiiie e 40
3.2.2. Valgrind gdbserver overall organiSationcceeruieeiiriieeiii e 41
3.2.3. Connecting GDB t0 a Valgrind gabhSerVercc.uuiiiiiiiiiiiiiie e 41
3.2.4. Connecting to an ANdroid gaDSEIVEYcoeiiiiiiiii e 43
3.2.5. Monitor command handling by the Valgrind gdbservercccoooeviiiiiiiiiiiceeees 44
3.2.6. GDB front end commands for Valgrind gdbserver monitor commandscccuuen... 45
3.2.7. Valgrind gdbserver thread informationocoeuiiiiiiiiiiieeii e 46
3.2.8. Examining and modifying Valgrind shadow registersooovvveiieeiiiiinneiiiiineeceiiee 47
3.2.9. Limitations of the Valgrind gdsarver ... 47
3.2.10. vgdb command [iN€ OPLIONSuiiiiiieeieii e 50
3.2.11. Valgrind mONitor COMMENGSccuuuneieriieteti et e et e et e e et e et eeeenaes 52
3.3, FUNCLION WIBDPING ..ttt ettt ettt e et e et et e e et et e e et e b e e et e b neeeena s 56
331 A SIMPIE EXAMPIE ... 56
3.3.2. Wrapping SPECITICALIONSccuuuieiitiieee ettt ettt e e 57
3.3.3. WIrapping SEMANTICSceeitieeeiit et ettt ettt e e et e e e et e e e e nt e e e enba e aeees 58
334, DEDUGING . eeeetneeeett ettt ettt ettt e e et e ettt e ettt et n e e e a b et et et eaa e eee 59
3.3.5. Limitations - CONrol FIOWiiiiiiiiiiii e 59
3.3.6. Limitations - original funCtion SIgNaUIESccceuuuiiiiiiieieii e 59
337 EXAMPIES ..o 60

4. Memcheck: & MeMOrY ITOr JELECTONcieeiiieeeit ettt ettt e e et e e et e e e s 61
A1, OVEIVIBIW ...ttt ettt ettt ettt e e ettt e et e et et e e b e e et e e et e et e e e et s 61
4.2. Explanation of error messages from Memchecko.oiiiiiiiiiiiiiii e 61

4.2.1. lllegal read / 111@gal WITE EITOISuuiiiiiiie e 61
4.2.2. Use of UninitialiSed VBIUESccoeiiiiiiiiii e 62

Valgrind User Manual

4.2.3. Use of uninitialised or unaddressable valuesin system callsccooveviiciiiniiieennnnn, 63
R 1= o= | (== 63
4.2.5. When a heap block is freed with an inappropriate deallocation function 64
4.2.6. Overlapping source and destination BlOCKScooiiiiiiiiiiii e 64
4.2.7. Fishy argumENt VBIUBSciiiiiiii e e e e e e e e e e e e e et e e e e aaes 65
4.2.8. REAIOC SIZE ZENO ...eeeei ettt e e e aae 65
e R AN [Te 10001 o] £ 65
4.2.10. MemOry 168K dELECIONu.iiii e e eae s 66

4.3. Memcheck Command-Ling OPtiONScvuuiiiiiiiiii e e e e e e e e e e eens 69
4.4, Writing SUPPIESSION FIlES ..ouuiii i e e 74
4.5, Details of Memcheck's checking Machinerycoooviiiii i 75
A5. 1. Vaid-value (V) DItS ..uuniiiiii i 75
4.5.2. Valid-address (A) DITS ..oeeueniiiiiii e 76
4.5.3. Putting it all tOgEtNEroeiii i 77

4.6. Memcheck MONItOr COMMENGSccuuuiiiiiiiieieiie e e e et e e et e e e e e eran s 78
B O T o\ Q= (U1 P 84
4.8. Memory Pools. describing and working with custom allocatorsccccvvveiiiiiiiiieiiiieeieeeis 85
4.9. Debugging MPI Paralldl Programs with Valgrindcccooiiiiiiiiiieee e 87
4.9.1. Building and installing the WIapPeErSooiiiiiiiiiecie e 87
4.9.2. GELING SAMEieeicei e 88
4.9.3. Controlling the Wrapper lHDraryooovuiiiiii e 88
e B T 1 o] PR 89
e T 1Y/ o= P 89
4.9.6. WIItING NEW WIBPPETS ..vuuiiiteiiiee it e e et e e e e e e e et e e st e e et e e et e et e e et e e et e e e ta e eaneeannns 90
4.9.7. What to expect when using the WIaPPErScooviiiiici e e 90

5. Cachegrind: a high-precision tracing pProfileroociiiiiii e e 91
LI O = a7 1 PP 91
5.2. Using Cachegrind and CQ_annOtateuiiiuiieiiii e e e e e e e et e e e e e e aeaas 91
5.2.1. RUNNING CaChegrindiiii i e e e e e e 91
I © 0 1 o 10| T = T PP 92
5.2.3. RUNNING CO_ANMNOLAEEuiiiiii i e e e e e e e e e e e e e e et e e et e eeanaaees 92
5.2.4, The Metadata SECHONcccuvtiiiiiii et e et e e et e e e ert e eeees 92
5.2.5. Global, File, and Function-level COUNLSoviiiiiiiieeiiiine e 93
5.2.6. PEr-1INE COUMLS ... ittt eeii ettt e et e et e e ettt s e e e ettt e e e et e e e eettaeeeentnaeeaees 95
5.2.7. FOTKING PrOgraMS ...uuiiiie e e e e e e e e et e et e e e e e eanns 96
5.2.8. CO_aNNOtate WaIMINGScvvuiiiiii e e e e e e e e e e e e e e et e e e e e e e et e e ean e e eanaas 97
5.2.9. Merging Cachegrind OULPUL FIlESuiiiiiiii e 97
5.2.10. Differencing Cachegrind oUtput fil€Scocoiiiiiii i, 97
5.2.11. Cache and Branch SIMUIGLIONoviiiiiiiiiiiie e 98

5.3. Cachegrind Command-lin€ OPLiONSciuuiiiiiieiii e e e e e e e e 98
5.4. cg_annotate Command-ling OPLIONSccuuiiiiiiiiiii e e e e e e e e e e eeanns 99
5.5. cg_merge Command-lin€ OPLiONSoiiuiiiiiii e e e e e e 100
5.6. cg_diff Command-line OPLIONSuiiiiiiiiii e 100
5.7. Cachegrind CHEnt REGUESESoiiuueiiiei e e e e e e e e e e e e e e e e et e eaaeees 100
5.8, SIMUIBLION DELAIS ...ttt e e e e e et e e e et e e e e e 101
5.8.1. Cache SImulation SPECITICSuiiiniiii e e e 101
5.8.2. Branch Simulation SPECIfiCScvuviiiiie e 101

Lo R oo U = os Y PPN 102

5.9. Implementation DEtailSiiiiiiieii e 103
5.9.1. HOW Cachegrind WOTKScouuiiiiiiiii e e e e e e e e e e aens 103
5.9.2. Cachegrind Output File FOrMEEcoviiiiiiii i e e e 103

6. Callgrind: a call-graph generating cache and branch prediction profilerco.ooiiiiiiiiiiin s 105
L3 @ = o= 1 PP 105
300 0 O g Tox 05 7= YN 105
B.1.2. BASIC USAJE ..evvuiiiiiiiiieeiiii ettt e ettt ettt e et e e et e e et e e et e e e et e e et e aee 106

LS N0 V7 g o= o U o T 107
6.2.1. Multiple profiling dumps from one Program FUNccueeiiiieiiiieei e e eaenn 107
6.2.2. Limiting the range of collected eVentsSccoovuiiiiii i 107

Vi

Valgrind User Manual

6.2.3. Counting global BUS BVENLSccuuiiiii i 108
6.2.4. AVOIAING CYCIES ..uniiiiii et e e e e e e e e et e e et e e e eaaaees 108
O o T o 0 = 1 P 109

6.3. Calgrind Command-1ing OPLiONScccuiiiiiiiiie e e eaa s 110
6.3.1. DUMP Creation OPLIONSciuiciiie e ee e e e e e e e e et e e e e e e e e et e e st e e et e eanaees 110
6.3.2. ACHIVILY OPLIONS . .ovuiiiii et e e e e e e e e e e e et e e et e e e e eaes 110
(SRCRCHN DT - Weoio) 1= vt 1o o] o 1 o o0 111
6.3.4. Cost entity Separation OPLIONSviiuuieiiii e e e e e e e e aen 112
6.3.5. SIMUIBEION OPLIONS .. cevuiiiiiieiie e e e e e e e e e e e e e e s e e et e e et e e et e eeaneas 113
6.3.6. Cache SIMUIGioN OPLIONSciveieiii eaneees 113

6.4. Calgrind Monitor COMMANGSccuuiiiiiieiiiiee e e e e e e e e e e et e e et e e e e s e eaanas 114
6.5. Callgrind SPECIfiC Client FEOUESESivve e e e e e e 114
6.6. callgrind_annotate Command-line OPLIONSccovuiiiiiii i 115
6.7. callgrind_control Command-1ing OPLiONSccvuuiiiiiiiiiie e 116
7. Helgrind: athread error dELECLONciiiiii e e e e e e e e e aaaas 118
45 T O = T 1 PP 118
7.2. Detected errors: Misuses of the POSIX pthreadS API ..o, 118
7.3. Detected errors: Inconsistent LOCK Orderingsccvvuieiiiiieiiiiiiii e e e e e e e 119
7.4. Detected erors: Dat@ RACESivvvii ettt e et e e e e aaeas 121
741 A SIMPIE DA RACEuuciitiiiiii e e e e e e e 121
7.4.2. Helgrind's Race Detection Algorithm ..o, 122
7.4.3. Interpreting RaCe ErrOr MESSAgESuuiiii i i e ee et e e e e e e e et e e e e e e aaaas 124

7.5. Hints and Tips for Effective Use of HElIGrindccoooiiiiiiiiiii e 126
7.6. Helgrind Command-ling OPLioNSciuiiiiiiiiii e e e e e e 129
7.7. Helgrind Monitor COMMEANASuuiiineiiieiie e ee e e e e e e e e e et e e et e et e e e et e eeaneeeens 131
7.8. HElgrind CHENt REGUESESuueiiiieiiii et e e e e e e e e et e e e eaaas 133
7.9. A TO-DO List fOr HEIGING ..o e e e eaa s 133
8. DRD: @ thread error GELECLOTiiiiiiiiieee e e e e et e et e e e ere s 134
ST O Y= oY= 1 PP 134
8.1.1. Multithreaded Programming Paradigmsccooiviiiiiiiii e 134
8.1.2. POSIX Threads Programming MOdelcciiiiiiiiiiii e, 134
8.1.3. Multithreaded Programming Problemscoooviiiiii i, 135
8.1.4. Data RACE DELECHION ... iiiiii ettt e e e e e e e e e et 135

S22 U L= oo I I PP 136
8.2.1. DRD Command-1ing OPLIONSceuuuiiiiiieiiieeiiee e e e e e e et e et e e e e e et e e e eaneees 136
8.2.2. Detected Errors: Data RACESuuiiiiiiiieeiiii et e e e eeees 138
8.2.3. Detected Errors: LOCK CONLENLIONc.uuiiiiiiiiieeiiii e e e e 139
8.2.4. Detected Errors. Misuse of the POSIX threadS APlcooovviiiiiiiiiiiiiieee e, 140
8.2.5, ClIENT REGUESES ...evviieiiiiiie ettt ettt ettt e e e e e e et e e e et n e e e et e e e eanen s 141
8.2.6. DEbUQQING CH+1L ProgramsScvuuuieiieeiiieeie e e e e e e e e e e s e e et e e e satnaesaneeennnes 143
8.2.7. Debugging GNOME Programsceeiuuieiiiiieiie e e e e e e e e et e e e eees 143
8.2.8. Debugging Boost. Thread Programscvuuieiieeiii e eeee e e e e e e e e e e aanes 143
8.2.9. Debugging OPenMP Programsuuiiiii e e e e e e e e e e e e e et e e e e eaneees 144
8.2.10. DRD and Custom Memory AlIOCEIOIScvvuniiiiiiiiii e 145
8.2.11. DRD Versus MEMCHECKcccvuiiiiiiiiiieiiiii et e e e e e eeees 145
8.2.12. RESOUICE REQUITEMENTSeetieiii et e et e e et e e e e e e e e e e e et e e et eeaan e eean s 145
8.2.13. Hints and Tips for Effective Use 0f DRDcccoiiiiiiiiiiiiii e, 146

8.3. Using the POSIX Threads APl EffeCtiVElYoiiiiiiii e 146
8.3, L. MULEX DY IBS vttt ettt e e e 146
8.3.2. ConditioN VATADIES ... 146
8.3.3. pthread _cond _timedwait and tiMEOULSoeviiiiiiiiiiii e 147

S S I 411 = o] PPN 147
8.5, FEEUDACKeiieii e aaan 147
9. MasSif: @hEaD PrOfIlEr . .oeee i e 148
LN O = T T PP 148
9.2. UsiNg MasSIT and MS PriNt ... couuiiiiieiiii e e e e e e e e s e e e et e e et e e aane e et 148
9.2.1. AN EXaMPIE PrOgram .. .couuiii i cee e e e e e e e e e e e e e e e e e e 148
LS {0 g 1 o = P 149

vii

Valgrind User Manual

9.2.3. RUNNING MS _PIINE .etuiiiiiii e e e e e e e e e e e e e et e et e e et e e eanaeeees 149
9.2.4. The OUPUL Preamblecoiiniiii e e ean s 149
LS I S X @ U1 o 10 =" o P 149
9.2.6. The SNapShOt DELAIISuuiiiiiiii e e e e e e e e e aaeees 152
S A o] o 0 = 0 PP 154
9.2.8. Measuring All MemOry iN @ PrOCESSccuuuiiiiieiiie e e e e e e e e e e e 154
9.2.9. Acting on Massif's INfOrMaionooiuuiiiiiiiii e e 155

9.3. USING MASSIT-VISUAIIZENovuiiiiieii e e e e e e e e e e eaaas 155
9.4. Massif Command-liNe OPLiONSciiuiiiii e e e e e aes 155
9.5. Ma@sSif MONItOr COMMENGSeieiiiieeiiiis et e et e et e e e et s e e e et reeeettreeeertaeeeerenaeaees 157
9.6. MESSIT ClIENT REGUESES ...evvtieeiiiii ettt e et e et e e et e e e et e e e eaan e eeennnns 157
9.7. ms_print Command-line OPLIONSceiuiiiiiii e e 158
9.8. Massif's OULPUL FIlE FOIMELoveiiiii e e e e e 158
10. DHAT: adynamic heap analySIS tOO0]cciuuiiiiiiiii e e e e 159
FO. L. OVEIVIBIW ettt e e e e e e e et e e e e ettt e e e et b e e e et ete s e e e eeta e e e enttnaeeeetnaeaenes 159
02 U £ T oo] 1N OSSP 159
10.2.1. RUNNING DHAT Lot e et e e et e e et e e e era s 159
10.2.2. OUIPUL FITE .ottt e e e e et a e e e et e e e eaaaaeeees 160

10.3. DHAT'S VIBWET ...ttt e ettt e e e et e e e et e e e e et e e e e et e e e eett e e e eeteaeeaatnaeaees 160
10.3.1. The OULPUE HEBAENcceeviieeiiii e e e et a e e eea e eees 160

L0 o I T e I (= PP 161
10.3.3. The OULPUL FOOLENiiiicii e e e e e e e e e e e an s 164
10.3.4, SO MELTICS ..eevtieieite ettt e et e et e e e et e e e et e e e e et naeeeaen s 164

10.4. Treatment OF FEAIIOCiiieii e e e e e e e eeeat e eeees 166
O @0 o) VA o 1011 111 [166
10.6. Ad NOC PrOfIING .ovvniiiiei e e e e e e e e e e e 167
10.7. DHAT Command-lin€ OPLIONSccuuiiiiieiiiieiieee et e e e e e e e et e e e eeanas 167
11. Lackey: an example tO0]coouiiiiiii e e 168
0 @ = 4T PN 168
11.2. Lackey Command-ling OPLiONSccuuiiiiiiiiiieeiie e ee e e e e e e e e e e e e e e et e e et e e eanaeees 168
12. Nulgrind: the minimal Valgrind tO0lco.iiiiiiiii e e e e 169
@ = 4T T PPN 169
13. BBV: an experimental basic block vector generation toolcooeviiiiiii i 170
T @ = 4T T PN 170
13.2. Using Basic Block Vectors to create SIMPOINESccuuiiiiieiiiiieii e 170
13.3. BBV Command-ling€ OPtioNSiiiiiiiiiiiiii e e e e e e e e e e e e aens 171
13.4. BasiC BIOCK VECtOr Fil@ FOMMELccvvuiieiiiie et e e e e e 171
TR 1ol = 4= 1 1 o 172
13.6. Threaded EXeCUtable SUPPOITccuuiiii e e e e e e e e e e e e eanees 172
G A £ T 7 (o] o PP 172
13,8, PEITOIMMANCE ...ttt ettt et e e e 173

viii

1. Introduction
1.1. An Overview of Valgrind

Vagrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools each
of which performs some kind of debugging, profiling, or similar task that helps you improve your programs.
Vagrind's architectureis modular, so new tools can be created easily and without disturbing the existing structure.

A number of useful tools are supplied as standard.

1. Memcheck isamemory error detector. It helps you make your programs, particularly those written in C and
C++, more correct.

2. Cachegrind is acache and branch-prediction profiler. It helps you make your programs run faster.

3. Callgrind isacall-graph generating cache profiler. It has some overlap with Cachegrind, but also gathers some
information that Cachegrind does not.

4. Helgrind isathread error detector. It helps you make your multi-threaded programs more correct.

5. DRD isaso athread error detector. It issimilar to Helgrind but uses different analysis techniques and so may
find different problems.

6. Massif isaheap profiler. It helps you make your programs use less memory.

7. DHAT isadifferent kind of heap profiler. It helps you understand issues of block lifetimes, block utilisation,
and layout inefficiencies.

8. BBV is an experimental SimPoint basic block vector generator. It is useful to people doing computer
architecture research and development.

There are also a couple of minor tools that aren't useful to most users: Lackey is an example tool that illustrates
some instrumentation basics; and Nulgrind isthe minimal Valgrind tool that does no analysis or instrumentation,
and is only useful for testing purposes.

Valgrind is closely tied to details of the CPU and operating system, and to a lesser extent, the compiler and basic
Clibraries. Nonetheless, it supports a number of widely-used platforms, listed in full at http://www.valgrind.org/.

Vagrind is built viathe standard Unix . / conf i gur e, make, make i nst al | process; full details are given
in the README file in the distribution.

Valgrind is licensed under the The GNU General Public License, version 2. Theval gri nd/ *. h headers that
you may wish to include in your code (eg. val gri nd. h, nencheck. h, hel gri nd. h, etc.) are distributed
under aBSD-stylelicense, so you may include them in your code without worrying about license conflicts. Some
of the PThreadstest cases, pt h_*. ¢, aretaken from " Pthreads Programming" by Bradford Nichols, Dick Buittlar
& Jacqueline Proulx Farrell, ISBN 1-56592-115-1, published by O'Reilly & Associates, Inc.

If you contribute codeto Valgrind, please ensure your contributionsarelicensed as"GPLV2, or (at your option) any
later version." Thisisso asto alow the possibility of easily upgrading the licenseto GPLv3 in future. If you want
to modify codein the VEX subdirectory, please aso see the file VEX/HACKING.README in the distribution.

1.2. How to navigate this manual

This manual's structure reflects the structure of Valgrind itself. First, we describe the Valgrind core, how to use
it, and the options it supports. Then, each tool has its own chapter in this manual. You only need to read the
documentation for the core and for the tool(s) you actually use, although you may find it helpful to be at least a
little bit familiar with what all tools do. If you're new to al this, you probably want to run the Memcheck tool and
you might find the The Valgrind Quick Start Guide useful.

http://www.valgrind.org/

Introduction

Be aware that the core understands some command line options, and the tools have their own options which they
know about. This means there is no central place describing all the options that are accepted -- you have to read
the options documentation both for Valgrind's core and for the tool you want to use.

2. Using and understanding the
Valgrind core

This chapter describesthe Valgrind core services, command-line options and behaviours. That meansit isrelevant
regardless of what particular tool you areusing. Theinformation should be sufficient for you to make effective day-
to-day use of Valgrind. Advanced topics related to the Valgrind core are described in Valgrind's core: advanced
topics.

A point of terminology: most referencesto "Valgrind” in this chapter refer to the Valgrind core services.

2.1. What Valgrind does with your program

Vagrind isdesigned to be as non-intrusive as possible. It works directly with existing executables. Y ou don't need
to recompile, relink, or otherwise modify the program to be checked.

You invoke Valgrind like this:

val grind [val grind-options] your-prog [your-prog-options]

The most important optionis- - t ool which dictates which Valgrind tool to run. For example, if want to run the
command| s -1 using the memory-checking tool Memcheck, issue this command:

val grind --tool =nentheck |s -I
However, Memcheck isthe default, so if you want to use it you can omit the - - t ool option.

Regardless of which tool isin use, Valgrind takes control of your program beforeit starts. Debugging information
is read from the executable and associated libraries, so that error messages and other outputs can be phrased in
terms of source code locations, when appropriate.

Y our program is then run on a synthetic CPU provided by the Vagrind core. Asnew code is executed for the first
time, the core hands the code to the selected tool. The tool addsits own instrumentation code to this and hands the
result back to the core, which coordinates the continued execution of this instrumented code.

The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck adds
code to check every memory access and every value computed, making it run 10-50 times slower than natively.
At the other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causesin
total "only" about a 4 times slowdown.

Vagrind simulates every single instruction your program executes. Because of this, the active tool checks, or
profiles, not only the code in your application but also in al supporting dynamically-linked libraries, including
the C library, graphical libraries, and so on.

If you're using an error-detection tool, Valgrind may detect errors in system libraries, for example the GNU C
or X11 libraries, which you have to use. You might not be interested in these errors, since you probably have
no control over that code. Therefore, Valgrind allows you to selectively suppress errors, by recording them in
a suppressions file which is read when Valgrind starts up. The build mechanism selects default suppressions
which give reasonable behaviour for the OS and libraries detected on your machine. To make it easier to
write suppressions, you can use the - - gen- suppr essi ons=yes option. This tells Valgrind to print out a
suppression for each reported error, which you can then copy into a suppressions file.

Valgrind will try to match the behaviour of applications compiled to run on the same OS and librariesthat Valgrind
was built with. If you use different libraries or a different OS version there may be some small differences in
behaviour.

Different error-checking tools report different kinds of errors. The suppression mechanism therefore allows you
to say which tool or tool(s) each suppression applies to.

Using and understanding the Valgrind core

2.2. Getting started

First off, consider whether it might be beneficial to recompile your application and supporting libraries with
debugging info enabled (the - g option). Without debugging info, the best Valgrind toolswill be ableto do isguess
which function a particular piece of code belongs to, which makes both error messages and profiling output nearly
useless. With - g, you'll get messages which point directly to the relevant source code lines.

Another option you might like to consider, if you are working with C++, is- f no-i nl i ne. That makesit easier
to see the function-call chain, which can help reduce confusion when navigating around large C++ apps. For
example, debugging OpenOffice.org with Memcheck is a bit easier when using this option. Y ou don't have to do
this, but doing so helps Valgrind produce more accurate and |ess confusing error reports. Chances are you're set up
like this already, if you intended to debug your program with GNU GDB, or some other debugger. Alternatively,
theValgrind option - - r ead- i nl i ne-i nf o=yes instructs Valgrind to read the debug information describing
inlining information. With this, function call chain will be properly shown, even when your applicationiscompiled
with inlining.

If you are planning to use Memcheck: On rare occasions, compiler optimisations (at - O2 and above, and sometimes
- O1) have been observed to generate code which fools Memcheck into wrongly reporting uninitialised value
errors, or missing uninitialised value errors. We have looked in detail into fixing this, and unfortunately the result
isthat doing so would give afurther significant slowdown in what is already a slow tool. So the best solution isto
turn off optimisation altogether. Since this often makes things unmanageably slow, areasonable compromiseisto
use - O. This gets you the majority of the benefits of higher optimisation levels whilst keeping relatively small the
chances of false positives or false negatives from Memcheck. Also, you should compile your code with - Wl |
because it can identify some or al of the problemsthat Vagrind can miss at the higher optimisation levels. (Using
-\Wal | isalso agood ideain general.) All other tools (as far as we know) are unaffected by optimisation level,
and for profiling tools like Cachegrind it is better to compile your program at its normal optimisation level.

Vagrind understands the DWARF2/3/4 formats used by GCC 3.1 and later. The reader for "stabs" debugging
format (used by GCC versions prior to 3.1) has been disabled in Valgrind 3.9.0.

When you're ready to roll, run Valgrind as described above. Note that you should run the real (machine-code)
executable here. If your application is started by, for example, a shell or Perl script, you'll need to modify it to
invoke Valgrind on the real executables. Running such scripts directly under Valgrind will result in you getting
error reports pertaining to / bi n/ sh, / usr/ bi n/ per |, or whatever interpreter you're using. This may not be
what you want and can be confusing. Y ou can force the issue by giving theoption- -t r ace- chi | dr en=yes,
but confusion is till likely.

2.3. The Commentary

Valgrind tools write acommentary, a stream of text, detailing error reports and other significant events. All lines
in the commentary have following form:

==12345== sone- nessage-from Val gri nd

The12345 istheprocess|D. Thisschememakesit easy to distinguish program output from Valgrind commentary,
and also easy to differentiate commentaries from different processes which have become merged together, for
whatever reason.

By default, Valgrind tools write only essential messages to the commentary, so as to avoid flooding you with
information of secondary importance. If you want more information about what is happening, re-run, passing the
- v option to Valgrind. A second - v gives yet more detail.

Y ou can direct the commentary to three different places:

1. Thedefault: send it to afile descriptor, which isby default 2 (stderr). So, if you give the core no options, it will
write commentary to the standard error stream. If you want to send it to some other file descriptor, for example
number 9, you can specify - - | og- f d=9.

Using and understanding the Valgrind core

Thisisthe ssimplest and most common arrangement, but can cause problems when Valgrinding entire trees of
processes which expect specific file descriptors, particularly stdin/stdout/stderr, to be available for their own
use.

2. A lessintrusive option isto write the commentary to afile, which you specify by - - 1 og-fi | e=fi | enane.
There are special format specifiers that can be used to use a process ID or an environment variable name in
the log file name. These are useful/necessary if your program invokes multiple processes (especialy for MPI
programs). See the basic options section for more details.

3. The least intrusive option is to send the commentary to a network socket. The socket is specified as an IP
address and port number pair, like this: - - | 0g- socket =192. 168. 0. 1: 12345 if you want to send the
output to host 1P 192.168.0.1 port 12345 (note: we have no ideaif 12345 isaport of pre-existing significance).
Y ou can also omit the port number: - - | 0og- socket =192. 168. 0. 1, in which case a default port of 1500
isused. This default is defined by the constant VG_CLO_DEFAULT_LOGPORT in the sources.

Note, unfortunately, that you have to use an IP address here, rather than a hostname.

Writing to a network socket is pointless if you don't have something listening at the other end. We provide a
simplelistener program, val gri nd- 1 i st ener , which accepts connections on the specified port and copies
whatever it is sent to stdout. Probably someone will tell us thisis ahorrible security risk. It seems likely that
people will write more sophisticated listenersin the fullness of time.

val grind-1i st ener canaccept simultaneous connections from up to 50 Valgrinded processes. In front of
each line of output it prints the current number of active connections in round brackets.

val gri nd-1i st ener acceptsthree command-line options:
-e --exit-at-zero

When the number of connected processes falls back to zero, exit. Without this, it will run forever, that is,
until you send it Control-C.

- - max- connect =I NTEGER

By default, the listener can connect to up to 50 processes. Occasionally, that number istoo small. Usethis
option to provide a different limit. E.g. - - max- connect =100.

port number

Changes the port it listens on from the default (1500). The specified port must be in the range 1024 to
65535. The same restriction applies to port numbers specified by a- - | 0g- socket to Valgrind itself.

If aValgrinded process fails to connect to a listener, for whatever reason (the listener isn't running, invalid or
unreachable host or port, etc), Valgrind switches back to writing the commentary to stderr. The same goes for
any process which loses an established connection to alistener. In other words, killing the listener doesn't kill
the processes sending data to it.

Here is an important point about the relationship between the commentary and profiling output from tools. The
commentary contains a mix of messages from the VValgrind core and the selected tool. If the tool reports errors, it
will report them to the commentary. However, if the tool does profiling, the profile data will be written to afile
of some kind, depending on the tool, and independent of what - - | 0g- * optionsarein force. The commentary is
intended to be alow-bandwidth, human-readable channel. Profiling data, on the other hand, is usually voluminous
and not meaningful without further processing, which is why we have chosen this arrangement.

2.4. Reporting of errors

When an error-checking tool detects something bad happening in the program, an error message is written to the
commentary. Here's an example from Memcheck:

Using and understanding the Valgrind core

==25832== I nvalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize(int, int, int) (bogon.cpp:45)
==25832== by 0x80487AF: mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, malloc'd or free'd

This message saysthat the program did an illegal 4-byte read of address OXBFFFF74C, which, asfar as Memcheck
can tell, is not a valid stack address, nor corresponds to any current heap blocks or recently freed heap blocks.
Theread is happening at line 45 of bogon. cpp, called from line 66 of the samefile, etc. For errors associated
with anidentified (current or freed) heap block, for example reading freed memory, Vagrind reports not only the
location where the error happened, but also where the associated heap block was allocated/freed.

Valgrind remembers all error reports. When an error is detected, it is compared against old reports, to seeif it is
aduplicate. If so, the error is noted, but no further commentary is emitted. This avoids you being swamped with
bazillions of duplicate error reports.

If you want to know how many times each error occurred, run with the - v option. When execution finishes, all
the reports are printed out, along with, and sorted by, their occurrence counts. This makes it easy to see which
errors have occurred most frequently.

Errors are reported before the associated operation actually happens. For example, if you're using Memcheck and
your program attempts to read from address zero, Memcheck will emit a message to this effect, and your program
will then likely die with a segmentation fault.

In general, you should try and fix errors in the order that they are reported. Not doing so can be confusing. For
example, a program which copies uninitialised values to several memory locations, and later uses them, will
generate severa error messages, when run on Memcheck. The first such error message may well give the most
direct clue to the root cause of the problem.

The process of detecting duplicate errors is quite an expensive one and can become a significant performance
overhead if your program generates huge quantities of errors. To avoid serious problems, Valgrind will simply
stop collecting errors after 1,000 different errors have been seen, or 10,000,000 errors in total have been seen.
In this situation you might as well stop your program and fix it, because Valgrind won't tell you anything else
useful after this. Note that the 1,000/10,000,000 limits apply after suppressed errors are removed. Theselimitsare
definedinm_er r or mgr . ¢ and can be increased if necessary.

To avoid this cutoff you can usethe --error-1i m t=no option. Then Vagrind will always show errors,
regardless of how many there are. Use this option carefully, since it may have a bad effect on performance.

2.5. Suppressing errors

The error-checking tools detect numerous problems in the system libraries, such as the C library, which come
pre-installed with your OS. You can't easily fix these, but you don't want to see these errors (and yes, there are
many!) So Valgrind reads a list of errors to suppress at startup. A default suppression file is created by the . /
conf i gur e script when the system is built.

Y ou can modify and add to the suppressions file at your leisure, or, better, write your own. Multiple suppression
filesare allowed. Thisisuseful if part of your project contains errors you can't or don't want to fix, yet you don't
want to continuously be reminded of them.

Note: By far the easiest way to add suppressionsisto usethe- - gen- suppr essi ons=yes option described
in Core Command-line Options. This generates suppressions automatically. For best results, though, you may
want to edit the output of - - gen- suppr essi ons=yes by hand, in which case it would be advisable to read
through this section.

Each error to be suppressed is described very specifically, to minimise the possibility that a suppression-directive
inadvertently suppresses a bunch of similar errors which you did want to see. The suppression mechanism is
designed to allow precise yet flexible specification of errors to suppress.

If you usethe- v option, at the end of execution, Valgrind prints out one line for each used suppression, giving the
number of timesit got used, itsname and thefilename and line number where the suppression isdefined. Depending

Using and understanding the Valgrind core

on the suppression kind, the filename and line number are optionally followed by additional information (such as
the number of blocks and bytes suppressed by a Memcheck |eak suppression). Here's the suppressions used by a
runofval grind -v --tool =nencheck Is -1:

--1610-- used_suppression: 2 dl -hack3-cond-1 /usr/lib/val grind/default.supp: 1234
--1610-- used_suppression: 2 glibc-2.5. x-on-SUSE- 10. 2- (PPC) -2a /usr/lib/val grind/ di

Multiple suppressionsfiles are allowed. Valgrind loads suppression patternsfrom $PREFI X/ | i b/ val gri nd/
defaul t.supp unless --defaul t-suppressi ons=no has been specified. You can ask to add
suppressions from additional files by specifying - - suppr essi ons=/ pat h/to/fil e. supp one or more
times.

If you want to understand more about suppressions, look at an existing suppressions file whilst reading the
following documentation. Thefilegl i bc- 2. 3. supp, inthe source distribution, provides some good examples.

Blank and comment linesin asuppression file are ignored. Comment lines are made of 0 or more blanks followed
by a# character followed by some text.

Each suppression has the following components:;

* Firstline: itsname. Thismerely gives ahandy nameto the suppression, by whichit isreferred to in the summary
of used suppressions printed out when a program finishes. It's not important what the name is; any identifying
string will do.

» Second line: name of the tool(s) that the suppression is for (if more than one, comma-separated), and the name
of the suppression itself, separated by a colon (n.b.: no spaces are allowed), eg:

t ool _nanel, t ool _name2: suppr essi on_nane

Recall that Valgrind is a modular system, in which different instrumentation tools can observe your program
whilst it is running. Since different tools detect different kinds of errors, it is necessary to say which tool(s) the
suppression is meaningful to.

Tools will complain, at startup, if a tool does not understand any suppression directed to it. Tools ignore
suppressions which are not directed to them. As aresult, it is quite practical to put suppressions for all tools
into the same suppression file.

* Next line: a small number of suppression types have extra information after the second line (eg. the Par am
suppression for Memcheck)

* Remaining lines: Thisis the calling context for the error -- the chain of function calls that led to it. There can
be up to 24 of these lines.

L ocations may be names of either shared objects, functions, or source lines. They begin with obj : ,fun: , or
src: respectively. Function, object, and file names to match against may use the wildcard characters* and ?.
Source lines are specified using theform f i | enane[: | i neNunber] .

Important note: C++ function names must be mangled. If you are writing suppressions by hand, use the - -
demangl e=no option to get the mangled namesin your error messages. An example of amangled C++ name
is_ZNOQLi st Vi ewdshowEv. Thisisthe form that the GNU C++ compiler usesinternally, and the form that
must be used in suppression files. The equivalent demangled name, QLi st Vi ew. : show() , iswhat you see
at the C++ source code level.

A location line may aso be simply ". . . " (three dots). This is a frame-level wildcard, which matches zero
or more frames. Frame level wildcards are useful because they make it easy to ignore varying numbers of
uninteresting frames in between frames of interest. That is often important when writing suppressions which
are intended to be robust against variations in the amount of function inlining done by compilers.

* Finaly, the entire suppression must be between curly braces. Each brace must be the first character on its own
line.

Using and understanding the Valgrind core

A suppression only suppresses an error when the error matchesall the detailsin the suppression. Here'san example:

{
__gconv_transform ascii_internal/__nbrtowc/ nmbt owc
Mentheck: Val ue4d
fun: __gconv_transform ascii _internal

fun: __nbr*toc
fun: nbt owc

}

What it meansis: for Memcheck only, suppress a use-of-uninitialised-value error, when the data size is 4, when it
occursin the function __gconv_transform ascii _i nt ernal , when that is called from any function of
name matching __ nbr *t oc, when that is called from nbt owc. It doesn't apply under any other circumstances.
The string by which this suppressionisidentified totheuseris__gconv_t ransform ascii _i nternal /
___nbrtowc/ nbt ownc.

(See Writing suppression files for more details on the specifics of Memcheck's suppression kinds.)

Another example, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/]ibXaw.so.7.0

Mentheck: Val ue4d

obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/libXaw. so. 7.0

}

This suppresses any size 4 uninitialised-value error which occurs anywherein| i bX11. so. 6. 2, when caled
from anywhere in the same library, when called from anywherein| i bXaw. so. 7. 0. Theinexact specification
of locations is regrettable, but is about all you can hope for, given that the X11 libraries shipped on the Linux
distro on which this example was made have had their symbol tables removed.

An example of the src: specification, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/1ibXaw.so.7.0

Menctheck: Val ue4
src:valid.c:321

}

This suppresses any size-4 uninitialised-value error which occursat line321inval i d. c.

Although the above two examples do not make this clear, you can freely mix obj : , fun: ,and src: linesin
asuppression.

Finally, here's an example using three frame-level wildcards:

a-contrived- exanpl e
Mencheck: Leak
fun: mal | oc

fun: ddd

fun: ccc

Using and understanding the Valgrind core

fun: mai n
}

This suppresses Memcheck memory-leak errors, in the case where the alocation was done by nmai n calling
(though any number of intermediaries, including zero) ccc, calling onwardsviaddd and eventually tomal | oc. .

2.6. Debuginfod

Vagrind supports the downloading of debuginfo files via debuginfod, an HTTP server for distributing ELF/
DWARF debugging information. When a debuginfo file cannot be found locally, Valgrind is able to query
debuginfod servers for the file using the file's build-id.

In order to use this feature debugi nfod-find must be installed and the $DEBUG NFOD_URLS
environment variable must contain space-separated URLs of debuginfod servers. Valgrind does not support
debugi nfod-fi nd verbose output that is normally enabled with $DEBUG NFOD_PROGRESS and
$DEBUG NFCD_VERBGCSE. These environment variables will be ignored. This feature is supported on Linux
only.

For more information regarding debuginfod, see Elfutils Debuginfod .

2.7. Core Command-line Options

As mentioned above, Valgrind's core accepts acommon set of options. Thetools also accept tool-specific options,
which are documented separately for each tool.

Valgrind's default settings succeed in giving reasonable behaviour in most cases. We group the available options
by rough categories.

2.7.1. Tool-selection Option

The single most important option.
--t ool =<t ool nane> [defaul t: nentheck]

Run the Valgrind tool called t ool nane, e.g. memcheck, cachegrind, callgrind, helgrind, drd, massif, dhat,
lackey, none, exp-bbv, etc.

2.7.2. Basic Options

These options work with all tools.
-h --help

Show help for all options, both for the core and for the selected tool. If the option is repeated it is equivalent
togiving - - hel p- debug.

- - hel p- debug

Sameas- - hel p, but also lists debugging options which usually are only of use to Valgrind's devel opers.
--version

Show the version number of the VValgrind core. Tools can have their own version numbers. Thereis ascheme

in place to ensure that tools only execute when the core version is one they are known to work with. Thiswas
done to minimise the chances of strange problems arising from tool-vs-core version incompatibilities.

https://sourceware.org/elfutils/Debuginfod.html

Using and understanding the Valgrind core

-q,--qui et

Run silently, and only print error messages. Useful if you are running regression tests or have some other
automated test machinery.

-V, --verbose

Be more verbose. Gives extra information on various aspects of your program, such as: the shared objects
loaded, the suppressions used, the progress of the instrumentation and execution engines, and warnings about
unusual behaviour. Repeating the option increases the verbosity level.

--trace-chil dren=<yes| no> [defaul t: no]

When enabled, Valgrind will trace into sub-processes initiated via the exec system call. This is necessary
for multi-process programs.

Note that Valgrind does trace into the child of af or k (it would be difficult not to, since f or k makes an
identical copy of a process), so this option is arguably badly named. However, most children of f or k calls
immediately call exec anyway.

--trace-chil dren-ski p=pattl, patt2,...

This option only has an effect when - - t r ace- chi | dr en=yes is specified. It alows for some children
to be skipped. The option takes a comma separated list of patterns for the names of child executables that
Vagrind should not trace into. Patterns may include the metacharacters ? and *, which have the usual
meaning.

This can be useful for pruning uninteresting branches from atree of processes being run on Valgrind. But you
should be careful when using it. When Valgrind skips tracing into an executable, it doesn't just skip tracing
that executable, it also skips tracing any of that executabl€e's child processes. In other words, the flag doesn't
merely cause tracing to stop at the specified executables -- it skips tracing of entire process subtrees rooted
at any of the specified executables.

--trace-chil dren-ski p-by-arg=pattl, patt2,...

Thisisthesameas--trace-chi | dr en- ski p, with one difference: the decision as to whether to trace
into a child process is made by examining the arguments to the child process, rather than the name of its
executable.

--child-silent-after-fork=<yes|no> [default: no]

When enabled, Valgrind will not show any debugging or logging output for the child process resulting from a
f or k call. This can make the output less confusing (although more misleading) when dealing with processes
that create children. It is particularly useful in conjunction with - - t r ace- chi | dr en=. Use of this option
is also strongly recommended if you are requesting XML output (- - xni =yes), since otherwise the XML
from child and parent may become mixed up, which usually makes it useless.

--vgdb=<no| yes|ful | > [default: yes]

Valgrind will provide "gdbserver" functionality when - - vgdb=yes or - - vgdb=f ul | is specified. This
allows an external GNU GDB debugger to control and debug your program when it runs on Valgrind.
--vgdb=ful I incurs significant performance overheads, but provides more precise breakpoints and
watchpoints. See Debugging your program using Valgrind's gdbserver and GDB for a detailed description.

If the embedded gdbserver is enabled but no gdb is currently being used, the vgdb command line utility can
send "monitor commands" to Valgrind from a shell. The Valgrind core provides a set of VValgrind monitor
commands. A tool can optionally provide tool specific monitor commands, which are documented in the tool
specific chapter.

--vgdb- error=<nunber> [default: 999999999]

Use this option when the Valgrind gdbserver is enabled with - - vgdb=yes or - - vgdb=f ul | . Tools that
report errorswill wait for "nunber " errorsto be reported before freezing the program and waiting for you to

10

Using and understanding the Valgrind core

connect with GDB. It follows that a value of zero will cause the gdbserver to be started before your program
is executed. Thisistypically used to insert GDB breakpoints before execution, and al so works with tools that
do not report errors, such as Massif.

--vgdb- st op- at =<set > [defaul t: none]

Usethisoption whenthe VValgrind gdbserver isenabled with - - vgdb=yes or - - vgdb=f ul | . TheVagrind
gdbserver will beinvoked for each error after - - vgdb- er r or have been reported. Y ou can additionally ask
the Valgrind gdbserver to be invoked for other events, specified in one of the following ways:

» acommaseparated list of oneor moreof start up exit abexit val gri ndabexit.

Thevaluesst art up exi t val gri ndabexi t respectively indicate to invoke gdbserver before your
program is executed, after the last instruction of your program, on Valgrind abnormal exit (e.g. internal
error, out of memory, ...).

The option abexi t issimilar to exi t but tells to invoke gdbserver only when your application exits
abnormally (i.e. with an exit code different of 0).

Note: st art up and - - vgdb- er r or =0 will both cause Valgrind gdbserver to be invoked before your
programisexecuted. The- - vgdb- er r or =0 will in addition cause your program to stop on all subsequent
errors.

o all to gpecify the complete set. It is equivalent to --vgdb-stop-
at =startup, exit, abexit, val gri ndabexit.

» none for the empty set.

--track-fds=<yes|no|all> [default: no]

When enabled, Valgrind will print out alist of open file descriptors on exit or on request, via the gdbserver
monitor commandyv. i nf o open_f ds. Alongwith eachfiledescriptor is printed astack backtrace of where
the file was opened and any details relating to the file descriptor such as the file name or socket details. Use
al | toincludereportingonst di n, st dout and st derr.

--tinme-stanmp=<yes| no> [default: no]

When enabled, each message is preceded with an indication of the elapsed wallclock time since startup,
expressed as days, hours, minutes, seconds and milliseconds.

og- fd=<nunber> [default: 2, stderr]

Specifies that Valgrind should send all of its messages to the specified file descriptor. The default, 2, isthe
standard error channel (stderr). Note that this may interfere with the client's own use of stderr, as Valgrind's
output will be interleaved with any output that the client sends to stderr.

og-fil e=<fil enane>

Specifiesthat Valgrind should send all of its messagesto the specified file. If thefile nameis empty, it causes
an abort. There are three special format specifiers that can be used in the file name.

%p is replaced with the current process ID. Thisis very useful for program that invoke multiple processes.
WARNING: If youuse- -t race- chi | dr en=yes and your program invokes multiple processes OR your
program forks without calling exec afterwards, and you don't use this specifier (or the %g specifier below), the
Valgrind output from all those processes will go into one file, possibly jumbled up, and possibly incompl ete.
Note: If the program forks and calls exec afterwards, Valgrind output of the child from the period between
fork and exec will be lost. Fortunately this gap is really tiny for most programs; and modern programs use
posi X_spawn anyway.

% isreplaced with afile sequence number unique for this process. Thisis useful for processes that produces
several files from the same filename template.

11

Using and understanding the Valgrind core

%g{ FOO} is replaced with the contents of the environment variable FOQO. If the { FOO} part is malformed,
it causes an abort. This specifier israrely needed, but very useful in certain circumstances (eg. when running
MPI programs). Theideaisthat you specify avariable which will be set differently for each processin thejob,
for example BPROC_RANK or whatever is applicable in your MPI setup. If the named environment variable
is not set, it causes an abort. Note that in some shells, the { and } characters may need to be escaped with
abackslash.

%®%is replaced with %
If an %is followed by any other character, it causes an abort.

If the file name specifies arelative file name, it is put in the program's initial working directory: thisis the
current directory when the program started its execution after the fork or after the exec. If it specifies an
absolute file name (ie. startswith /") then it is put there.

0g- socket =<i p- addr ess: port - nunber >

Specifies that Valgrind should send all of its messages to the specified port at the specified IP address.
The port may be omitted, in which case port 1500 is used. If a connection cannot be made to the specified
socket, Valgrind falls back to writing output to the standard error (stderr). This option isintended to be used
in conjunction with the val gri nd-1i st ener program. For further details, see the commentary in the
manual.

- - enabl e- debugi nf od=<no| yes> [defaul t: yes]

When enabled Valgrind will attempt to download missing debuginfo from debuginfod servers if space-
separated server URLs are present in the $DEBUG NFOD_URLS environment variable. This option is
supported on Linux only.

2.7.3. Error-related Options

These options are used by all tools that can report errors, e.g. Memcheck, but not Cachegrind.
--xm =<yes| no> [defaul t: no]

When enabled, the important parts of the output (e.g. tool error messages) will bein XML format rather than
plain text. Furthermore, the XML output will be sent to a different output channel than the plain text output.
Therefore, you also must useone of - - xm -fd,--xm -fil e or--xm -socket to specify where the
XML isto be sent.

Less important messages will still be printed in plain text, but because the XML output and plain text output
are sent to different output channels (the destination of the plain text output is still controlled by - - 1 og- f d,
--log-fileand--1og-socket) thisshould not cause problems.

Thisoptionisaimed at making life easier for toolsthat consume Valgrind's output asinput, such as GUI front
ends. Currently this option works with Memcheck, Helgrind and DRD. The output format is specified in the
filedocs/ i nt ernal s/ xm - out put - pr ot ocol 4. t xt inthe sourcetreefor Valgrind 3.5.0 or later.

Therecommended optionsfor aGUI to pass, when requesting XML output, are; - - xm =yes toenable XML
output, - - xm - fi | e to send the XML output to a (presumably GUI-selected) file, - -1 og-fi | e to send
the plain text output to a second GUI-selected file, - - chi | d-sil ent-after-fork=yes, and -q to
restrict the plain text output to critical error messages created by Valgrind itself. For example, failure to read
aspecified suppressionsfile countsas acritical error message. In thisway, for asuccessful run the text output
filewill be empty. But if it isn't empty, then it will contain important information which the GUI user should
be made aware of.

--xm - fd=<nunber> [defaul t: -1, disabled]

Specifies that Valgrind should send its XML output to the specified file descriptor. It must be used in
conjunction with - - xm =yes.

12

Using and understanding the Valgrind core

--xm -file=<fil enane>

Specifies that Valgrind should send its XML output to the specified file. It must be used in conjunction with
--xm =yes. Any % or % sequences appearing in the filename are expanded in exactly the same way as
they arefor - - | og-fi | e. Seethe description of --log-file for details.

--xm - socket =<i p- addr ess: port - nunmber >

Specifies that Valgrind should send its XML output the specified port at the specified |P address. It must
be used in conjunction with - - xm =yes. The form of the argument is the same as that used by - - | og-
socket . Seethedescription of - - | 0g- socket for further details.

--xm - user-comrent =<stri ng>

Embeds an extra user comment string at the start of the XML output. Only works when - - ximi =yes is
specified; ignored otherwise.

- -demangl e=<yes| no> [defaul t: yes]

Enable/disable automatic demangling (decoding) of C++ names. Enabled by default. When enabled, Valgrind
will attempt to trandate encoded C++ names back to something approaching the original. The demangler
handles symbols mangled by g++ versions 2.X, 3.X and 4.X.

An important fact about demangling is that function names mentioned in suppressions files should be in
their mangled form. Val grind does not demangl e function names when searching for applicable suppressions,
because to do otherwise would make suppression file contents dependent on the state of VVal grind'sdemangling
machinery, and also slow down suppression matching.

--numcal | ers=<nunber> [defaul t: 12]

Specifies the maximum number of entries shown in stack traces that identify program locations. Note that
errors are commoned up using only the top four function locations (the place in the current function, and that
of itsthree immediate callers). So this doesn't affect the total number of errors reported.

The maximum value for thisis 500. Note that higher settings will make Valgrind run a bit more slowly and
take a bit more memory, but can be useful when working with programs with deeply-nested call chains.

- -unw- st ack- scan-t hr esh=<nunber > [defaul t: 0] , --unw- st ack-scan-
frames=<nunber> [default: 5]

Stack-scanning support is available only on ARM targets.

These flags enable and control stack unwinding by stack scanning. When the normal stack unwinding
mechanisms -- usage of Dwarf CFI records, and frame-pointer following -- fail, stack scanning may be able
to recover a stack trace.

Note that stack scanning is an imprecise, heuristic mechanism that may give very misleading results, or none
at all. It should be used only in emergencies, when normal unwinding fails, and it isimportant to nevertheless
have stack traces.

Stack scanning is a simple technique: the unwinder reads words from the stack, and tries to guess which of
them might be return addresses, by checking to see if they point just after ARM or Thumb call instructions.
If so, the word is added to the backtrace.

The main danger occurs when afunction call returns, leaving its return address exposed, and a new function
is called, but the new function does not overwrite the old address. The result of thisisthat the backtrace may
contain entries for functions which have already returned, and so be very confusing.

A second limitation of thisimplementation is that it will scan only the page (4KB, normally) containing the
starting stack pointer. If the stack frames are large, this may result in only a few (or not even any) being
present in the trace. Also, if you are unlucky and have an initial stack pointer near the end of its containing
page, the scan may miss al interesting frames.

13

Using and understanding the Valgrind core

By default stack scanning is disabled. The normal use caseisto ask for it when a stack trace would otherwise
bevery short. So, to enableit, use- - unw st ack- scan-t hr esh=nunber . ThisrequestsValgrind to try
using stack scanning to "extend" stack traces which contain fewer than nurrber frames.

If stack scanning does take place, it will only generate at most the number of frames specified by - - unw
st ack- scan- f r anes. Typicaly, stack scanning generates so many garbage entriesthat thisvalueisset to
alow vaue (5) by default. In no case will a stack trace larger than the value specified by - - num cal | er s
be created.

--error-limt=<yes|no> [default: yes]

When enabled, Valgrind stops reporting errors after 10,000,000 in total, or 1,000 different ones, have been
seen. Thisisto stop the error tracking machinery from becoming a huge performance overhead in programs
with many errors.

--error-exitcode=<nunber> [default: O]

Specifies an alternative exit code to return if Valgrind reported any errorsin the run. When set to the default
value (zero), the return value from Valgrind will always be the return value of the process being simulated.
When set to a nonzero value, that value is returned instead, if Valgrind detects any errors. Thisis useful for
using Valgrind as part of an automated test suite, since it makesit easy to detect test cases for which Valgrind
has reported errors, just by inspecting return codes. When set to anonzero value and Valgrind detects no error,
the return value of Valgrind will be the return value of the program being simulated.

--exit-on-first-error=<yes|no> [default: no]

If this option is enabled, Valgrind exits on the first error. A nonzero exit value must be defined using - -
error-exitcode option. Useful if you are running regression tests or have some other automated test
machinery.

--error-markers=<begi n>, <end> [defaul t: none]

When errors are output as plain text (i.e. XML not used), - - er r or - mar ker s instructs to output a line
containing the begi n (end) string before (after) each error.

Such marker linesfacilitate searching for errors and/or extracting errorsin an output file that contain valgrind
errors mixed with the program output.

Note that empty markers are accepted. So, only using a begin (or an end) marker is possible.
--showerror-1list=no|yes|all [default: no]

If this option is yes, for tools that report errors, valgrind will show the list of detected errors and the list of
used suppressions at exit. The value al indicates to also show the list of suppressed errors.

Notethat at verbosity 2 and above, valgrind automatically showsthelist of detected errorsand thelist of used
suppressions at exit, unless - - show error-1i st =no isseected.

Specifying - s isequivalentto- - show error-1i st =yes.
--sigill-diagnostics=<yes|no> [default: yes]

Enable/disable printing of illegal instruction diagnostics. Enabled by default, but defaults to disabled when
- - qui et isgiven. The default can always be explicitly overridden by giving this option.

When enabled, a warning message will be printed, along with some diagnostics, whenever an instruction is
encountered that VValgrind cannot decode or translate, before the program isgiven aSIGILL signal. Often an
illegal instruction indicates a bug in the program or missing support for the particular instruction in Valgrind.
But some programs do deliberately try to execute an instruction that might be missing and trap the SIGILL

14

Using and understanding the Valgrind core

signal to detect processor features. Using this flag makes it possible to avoid the diagnostic output that you
would otherwise get in such cases.

- - keep- debugi nf o=<yes| no> [defaul t: no]

When enabled, keep ("archive") symbols and all other debuginfo for unloaded code. This allows saved stack
traces to include file/line info for code that has been diclose'd (or similar). Be careful with this, since it can
lead to unbounded memory use for programs which repeatedly load and unload shared objects.

Some tools and some functionalities have only limited support for archived debug info. Memcheck fully
supportsit. Generally, tools that report errors can use archived debug info to show the error stack traces. The
known limitations are: Helgrind's past access stack trace of arace condition is does not use archived debug
info. Massif (and more generally the xtree Massif output format) does not make use of archived debug info.
Only Memcheck has been (somewhat) tested with - - keep- debugi nf o=yes, so other tools may have
unknown limitations.

- - show bel ow mai n=<yes| no> [default: no]

By default, stack traces for errors do not show any functions that appear beneath mai n because most
of the time it's uninteresting C library stuff and/or gobbledygook. Alternatively, if mai n is not present
in the stack trace, stack traces will not show any functions below mai n-like functions such as glibc's
__libc_start_main. Furthermore, if mai n-like functions are present in the trace, they are normalised
as(bel ow mai n), in order to make the output more deterministic.

If thisoption isenabled, all stack trace entrieswill be shown and mai n-like functionswill not be normalised.
--full path-after=<string> [default: don't show source paths]

By default Valgrind only shows the filenames in stack traces, but not full paths to source files. When using
Valgrind in large projects where the sources reside in multiple different directories, this can be inconvenient.
--ful | pat h- af t er providesaflexible solution to this problem. When this option is present, the path to
each source file is shown, with the following al-important caveat: if st ri ng isfound in the path, then the
path up to and including st ri ng is omitted, else the path is shown unmodified. Note that st ri ng is not
required to be a prefix of the path.

For example, consider afilenamed/ hore/ j anedoe/ bl ah/ src/ f oo/ bar/ xyzzy. c. Specifying - -
ful | pat h-after=/hone/janedoe/ bl ah/ src/ will cause Vagrind to show the name as f oo/
bar/xyzzy. c.

Because the string is not required to be a prefix, - - f ul | pat h- af t er =sr ¢/ will produce the same
output. This is useful when the path contains arbitrary machine-generated characters. For example, the
path / ny/ bui | d/ di r/ C32A1B47/ bl ah/ src/ f oo/ xyzzy can be pruned to f oo/ xyzzy using - -
ful |l path-after=/blah/src/.

If you simply want to see the full path, just specify an empty string: - - f ul | pat h- aft er =. Thisisn't a
special case, merely alogical consequence of the aboverules.

Finally, you canuse- - f ul | pat h- af t er multiple times. Any appearance of it causes Valgrind to switch
to producing full paths and applying the above filtering rule. Each produced path is compared against all the
--ful | pat h- af t er -specified strings, in the order specified. The first string to match causes the path to
be truncated as described above. If none match, the full path is shown. This facilitates chopping off prefixes
when the sources are drawn from anumber of unrelated directories.

- -extra-debugi nf o- pat h=<pat h> [defaul t: undefined and unused]
By default Valgrind searches in severa well-known paths for debug objects, such as/ usr/ 1 i b/ debug/ .

However, there may be scenarios where you may wish to put debug objects at an arbitrary location, such
as external storage when running Valgrind on a mobile device with limited local storage. Another example
might be a situation where you do not have permission to install debug object packages on the system where
you are running Valgrind.

15

Using and understanding the Valgrind core

In these scenarios, you may provide an absolute path as an extra, final place for Valgrind to search for
debug objects by specifying - - ext r a- debugi nf o- pat h=/ pat h/ t o/ debug/ obj ect s. The given
path will be prepended to the absolute path name of the searched-for object. For example, if Valgrind is
looking for the debuginfo for / W/ x/ y/ zz. so and - - ext r a- debugi nf o- pat h=/ a/ b/ ¢ isspecified,
it will look for adebug object at / a/ b/ ¢/ w x/ y/ zz. so.

This flag should only be specified once. If it is specified multiple times, only the last instance is honoured.
- - debugi nf o- server =i paddr: port [default: undefined and unused]
Thisisanew, experimental, feature introduced in version 3.9.0.

In some scenarios it may be convenient to read debuginfo from objects stored on a different machine. With
thisflag, Vagrind will query adebuginfo server runningoni paddr and listening on port por t , if it cannot
find the debuginfo object in the local filesystem.

The debuginfo server must accept TCP connections on port por t . The debuginfo server is contained in the
source file auxpr ogs/ val gri nd-di - server. c. It will only serve from the directory it is started in.
port defaultsto 1500 in both client and server if not specified.

If Valgrind looks for the debuginfo for / W x/ y/ zz. so by using the debuginfo server, it will strip the
pathname components and merely request zz. so on the server. That in turn will look only in its current
working directory for a matching debuginfo object.

The debuginfo data is transmitted in small fragments (8 KB) as requested by Vagrind. Each block is
compressed using L ZO to reduce transmission time. Theimplementation has been tuned for best performance
over asingle-stage 802.11g (WiFi) network link.

Note that checks for matching primary vs debug objects, using GNU debuglink CRC scheme, are performed
even when using the debuginfo server. To disable such checking, you need to also specify - - al | ow
m smat ched- debugi nf o=yes.

By default the Valgrind build system will build val gri nd- di - ser ver for the target platform, which is
almost certainly not what you want. So far we have been unable to find out how to get automake/autoconf to
build it for the build platform. If you want to useit, you will have to recompileit by hand using the command
shown at thetop of auxpr ogs/ val gri nd-di - server. c.

Vagrind can also download debuginfo viadebuginfod. See the DEBUGINFOD section for moreinformation.
--al | ow m smat ched- debugi nf o=no| yes [no]

When reading debuginfo from separate debuginfo objects, Valgrind will by default check that the main
and debuginfo objects match, using the GNU debuglink mechanism. This guarantees that it does not read
debuginfo from out of date debuginfo objects, and also ensures that Valgrind can't crash as a result of
mismatches.

Thischeck canbeoverriddenusing- - al | ow i srmat ched- debugi nf o=yes. Thismay beuseful when
the debuginfo and main objects have not been split in the proper way. Be careful when using this, though:
it disables all consistency checking, and Valgrind has been observed to crash when the main and debuginfo
objects don't match.

--suppressions=<fil enane> [defaul t: $PREFI X/ |ib/val grind/ defaul t. supp]

Specifies an extra file from which to read descriptions of errors to suppress. You may use up to 100 extra
suppression files.

--gen-suppressi ons=<yes| no|al |l > [default: no]
When set toyes, Valgrind will pause after every error shown and print the line:

---- Print suppression ? --- [Return/Nn/Y/y/Cc] ----

16

Using and understanding the Valgrind core

PressingRet , or N Ret orn Ret, causes Valgrind continue execution without printing a suppression for
thiserror.

PressingY Ret ory Ret causesVagrind to write a suppression for this error. Y ou can then cut and paste
it into a suppression file if you don't want to hear about the error in the future.

When settoal |, Vagrind will print a suppression for every reported error, without querying the user.

This option is particularly useful with C++ programs, as it prints out the suppressions with mangled names,
as required.

Note that the suppressions printed are as specific as possible. Y ou may want to common up similar ones,
by adding wildcards to function names, and by using frame-level wildcards. The wildcarding facilities are
powerful yet flexible, and with abit of careful editing, you may be able to suppress awhole family of related
errors with only afew suppressions.

Sometimes two different errors are suppressed by the same suppression, in which case Valgrind will output
the suppression more than once, but you only need to have one copy in your suppression file (but having
more than one won't cause problems). Also, the suppression nameisgivenas<i nsert a suppr essi on
nane her e>; the name doesn't really matter, it's only used with the - v option which prints out all used
suppression records.

i nput - fd=<nunmber> [default: 0, stdin]

Whenusing - - gen- suppr essi ons=yes, Vagrind will stop so asto read keyboard input from you when
each error occurs. By default it reads from the standard input (stdin), whichis problematic for programswhich
close stdin. This option allows you to specify an alternative file descriptor from which to read input.

--dsymutil =no| yes [yes]
Thisoption is only relevant when running Valgrind on macOS.

macOS uses a deferred debug information (debuginfo) linking scheme. When object files containing
debuginfo arelinked intoa. dyl i b or an executable, the debuginfo is not copied into the final file. Instead,
the debuginfo must be linked manually by running dsynut i | , asystem-provided utility, on the executable
or. dyl i b. Theresulting combined debuginfo is placed in adirectory alongside the executable or . dyl i b,
but with the extension . dSYM

With- - dsynut i | =no, Valgrind will detect caseswherethe. d SYMdirectory iseither missing, or ispresent
but does not appear to match the associated executable or . dyl i b, most likely because it is out of date. In
these cases, Valgrind will print awarning message but take no further action.

With- - dsynuti | =yes, Valgrind will, in such cases, automatically rundsynut i | asnecessary to bring
the debuginfo up to date. For all practical purposes, if you aways use - - dsynut i | =yes, then there is
never any need to run dsynut i | manually or as part of your applications's build system, since Valgrind
will run it as necessary.

Valgrind will not attempt to run dsyrut i | on any executable or library in/ usr/,/bin/,/sbin/,/
opt/,/sw,/System ,/Library/ or/ Applications/ sincedsynuti |l will alwaysfail in such
situations. It fails both because the debuginfo for such pre-installed system components is not available
anywhere, and also because it would require write privilegesin those directories.

Be careful whenusing - - dsynut i | =yes, sinceit will cause pre-existing . dSYMdirectoriesto be silently
deleted and re-created. Also note that dsynut i | isquite slow, sometimes excessively so.

- - max- st ackf rame=<nunber > [defaul t: 2000000]

The maximum size of a stack frame. If the stack pointer moves by more than this amount then Valgrind will
assume that the program is switching to a different stack.

You may need to use this option if your program has large stack-allocated arrays. Valgrind keeps track
of your program's stack pointer. If it changes by more than the threshold amount, Valgrind assumes your

17

Using and understanding the Valgrind core

program is switching to adifferent stack, and Memcheck behaves differently than it would for a stack pointer
change smaller than the threshold. Usually this heuristic workswell. However, if your program allocates large
structures on the stack, this heuristic will be fooled, and Memcheck will subsequently report large numbers
of invalid stack accesses. This option allows you to change the threshold to a different value.

Y ou should only consider use of this option if Valgrind's debug output directs you to do so. In that case it
will tell you the new threshold you should specify.

In general, allocating large structures on the stack is abad idea, because you can easily run out of stack space,
especialy on systems with limited memory or which expect to support large numbers of threads each with a
small stack, and al so because the error checking performed by Memcheck is more effective for heap-allocated
data than for stack-allocated data. If you have to use this option, you may wish to consider rewriting your
code to allocate on the heap rather than on the stack.

--mai n- st acksi ze=<nunber > [default: use current 'ulint' val ue]
Specifies the size of the main thread's stack.

To simplify its memory management, Valgrind reserves al required space for the main thread's stack at
startup. That means it needs to know the required stack size at startup.

By default, Valgrind usesthe current "ulimit" value for the stack size, or 16 MB, whichever islower. In many
cases this gives a stack size in the range 8 to 16 MB, which almost never overflows for most applications.

If you need alarger total stack size, use- - nai n- st acksi ze to specify it. Only set it as high as you need,
since reserving far more space than you need (that is, hundreds of megabytes more than you need) constrains
Vagrind's memory allocators and may reduce the total amount of memory that Valgrind can use. Thisisonly
really of significance on 32-bit machines.

On Linux, you may request a stack of size up to 2GB. Valgrind will stop with a diagnostic message if the
stack cannot be allocated.

- - mai n- st acksi ze only affects the stack size for the program's initial thread. It has no bearing on the
size of thread stacks, as VValgrind does not allocate those.

You may need to use both - - mai n- st acksi ze and - - max- st ackf r ame together. It is important to
understand that - - mai n- st acksi ze sets the maximum total stack size, whilst - - max- st ackf r ane
specifies the largest size of any one stack frame. You will have to work out the - - mai n- st acksi ze
value for yourself (usualy, if your applications segfaults). But Valgrind will tell you the needed - - max-
st ackf r ame size, if necessary.

Asdiscussed further in the description of - - max- st ackf r ane, arequirement for alarge stack isa sign of
potential portability problems. Y ou are best advised to place all large datain heap-allocated memory.

--max-t hreads=<nunber> [defaul t: 500]

By default, Valgrind can handle to up to 500 threads. Occasionally, that number istoo small. Use this option
to provide adifferent limit. E.g. - - max- t hr eads=3000.

--realloc-zero-bytes-frees=yes|no [default: yes for glibc no otherw se]

The behaviour of r eal | oc() isimplementation defined (in C17, in C23 it islikely to become undefined).
Vagrind triesto work in the same way as the underlying system and C runtime library that it was configured
and built on. However, if you use a different C runtime library then this default may be wrong. If the value
isyes thenr eal | oc will deallocate the memory and return NULL. If the valueisno thenr eal | oc will
not deallocate the memory and the size will be handled as though it were one byte.

As an example, if you use Vagrind installed via a package on a Linux distro using GNU libc but link your

test executable with mud libc or the JEMalloc library then consider using - - r eal | oc- zer o- byt es-
frees=no.

18

Using and understanding the Valgrind core

Address Sanitizer has a similar and even wordier option
all ocator_frees_and returns_null _on_realloc_zero.

2.7.4. malloc-related Options

For toolsthat use their own version of mal | oc (e.g. Memcheck, Massif, Helgrind, DRD), the following options
apply.

--al i gnnent =<nunber> [default: 8 or 16, depending on the platforni

By default Valgrind'snal | oc, r eal | oc, etc, return ablock whose starting addressis 8-byte aligned or 16-
byte aligned (the value depends on the platform and matches the platform default). This option alows you
to specify adifferent alignment. The supplied value must be greater than or equal to the default, less than or
equal to 4096, and must be a power of two.

--redzone- si ze=<nunber > [default: depends on the tool]

Vagrind'smal | oc, reall oc, etc, add padding blocks before and after each heap block allocated by the
program being run. Such padding blocks are called redzones. The default value for the redzone size depends
on the tool. For example, Memcheck adds and protects a minimum of 16 bytes before and after each block
allocated by the client. Thisalowsiit to detect block underruns or overruns of up to 16 bytes.

Increasing the redzone size makes it possible to detect overruns of larger distances, but increases the amount
of memory used by Valgrind. Decreasing the redzone size will reduce the memory needed by Valgrind but
also reduces the chances of detecting over/underruns, so is not recommended.

--xtree-menory=none| al |l ocs|full [none]

Tools replacing Vagrind'smal | oc, real |l oc, etc, can optionally produce an execution tree detailing
which piece of code is responsible for heap memory usage. See Execution Trees for a detailed explanation
about execution trees.

When set to none, no memory execution tree is produced.

When setto al | ocs, the memory execution tree gives the current number of allocated bytes and the current
number of allocated blocks.

Whensettof ul | , thememory execution tree gives6 different measurements: the current number of allocated
bytes and blocks (same values as for al | ocs), the total number of alocated bytes and blocks, the total
number of freed bytes and blocks.

Note that the overhead in cpu and memory to produce an xtree depends on the tool. The overhead in cpu is
small for the value al | ocs, as the information needed to produce this report is maintained in any case by
the tool. For massif and helgrind, specifying f ul | implies to capture a stack trace for each free operation,
while normally these tools only capture an allocation stack trace. For Memcheck, the cpu overhead for the
valuef ul | issmall, asthiscan only beused in combinationwith - - keep- st ackt r aces=al | oc- and-

freeor--keep-stacktraces=all oc-t hen-free,whichaready recordsastack tracefor each free
operation. The memory overhead varies between 5 and 10 words per unique stacktrace in the xtree, plus the
memory needed to record the stack trace for the free operations, if needed specifically for the xtree.

--xtree-menory-file=<filenane> [default: xtnenory.kcg. %p]
Specifiesthat Valgrind should produce the xtree memory report in the specified file. Any %p or %g sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.
If the filename contains the extension . s, then the produced file format will be a massif output file format.

If the filename contains the extension . kcg or no extension is provided or recognised, then the produced file
format will be a callgrind output format.

19

Using and understanding the Valgrind core

See Execution Trees for a detailed explanation about execution trees formats.

2.7.5. Uncommon Options

These options apply to all tools, as they affect certain obscure workings of the Valgrind core. Most people won't
need to use them.

--snt- check=<none| stack|all|all-non-file> [default: all-non-file for x86/
and64/ s390x, stack for other archs]

This option controls Valgrind's detection of self-modifying code. If no checking is done, when a program
executes some code, then overwrites it with new code, and executes the new code, Valgrind will continue to
execute the trandations it made for the old code. Thiswill likely lead to incorrect behaviour and/or crashes.

For "modern" architectures -- anything that's not x86, and64 or s390x -- the defaultisst ack. Thisisbecause
a correct program must take explicit action to reestablish D-I cache coherence following code modification.
Valgrind observes and honours such actions, with the result that self-modifying code is transparently handled
with zero extra cost.

For x86, amd64 and s390x, the program is not required to notify the hardware of required D-I coherence
syncing. Hence the default isal | - non-fi | e, which covers the normal case of generating code into an
anonymous (non-file-backed) mmap'd area.

The meanings of the four available settings are as follows. No detection (none), detect self-modifying code
on the stack (which is used by GCC to implement nested functions) (st ack), detect self-modifying code
everywhere (al |), and detect self-modifying code everywhere except in file-backed mappings (al | - non-
file).

Runningwithal | will slow Valgrind down noticeably. Running with none will rarely speed things up, since
very little code getsdynamically generated in most programs. The VALGRI ND_DI SCARD_TRANSLATI ONS
client requestisan alternativeto- - snt- check=al | and- - snt- check=al | - non-fi | e that requires
more programmer effort but allows Valgrind to run your program faster, by telling it precisely when
translations need to be re-made.

--snt-check=al | - non-fi | e providesacheaper but morelimited version of - - sntc- check=al | . It
adds checksto any translationsthat do not originate from file-backed memory mappings. Typical applications
that generate code, for example JITsin web browsers, generate code into anonymous mmaped areas, whereas
the "fixed" code of the browser always lives in file-backed mappings. - - snc- check=al | -non-fil e
takes advantage of this observation, limiting the overhead of checking to code which is likely to be JT
generated.

--read-inline-info=<yes|no> [default: see bel ow

When enabled, Valgrind will read information about inlined function calls from DWARF3 debug info. This
dows Valgrind startup and makes it use more memory (typically for each inlined piece of code, 6 words and
space for the function name), but it results in more descriptive stacktraces. Currently, this functionality is
enabled by default only for Linux, FreeBSD, Android and Solaris targets and only for the tools Memcheck,
Massif, Helgrind and DRD. Here is an example of some stacktraceswith - - r ead- i nl i ne- i nf o=no:

==15380== Condi tional junmp or nobve depends on uninitialised val ue(s)

==15380== at Ox80484EA: main (inlinfo.c:6)

==15380==

==15380== Conditional junmp or nobve depends on uninitialised val ue(s)
==15380== at 0x8048550: fun_noninline (inlinfo.c:6)

==15380== by 0x804850E: main (inlinfo.c:34)

==15380==

==15380== Condi tional junmp or nobve depends on uninitialised val ue(s)

20

Using and understanding the Valgrind core

==15380== at 0x8048520: main (inlinfo.c:6)

And here are the same errors with - - r ead- i nl i ne- i nf o=yes:

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)

==15377== at Ox80484EA: fun_d (inlinfo.c:6)

==15377== by Ox80484EA: fun_c (inlinfo.c:14)

==15377== by Ox80484EA: fun_b (inlinfo.c:20)

==15377== by Ox80484EA: fun_a (inlinfo.c:26)

==15377== by Ox80484EA: main (inlinfo.c:33)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048550: fun_d (inlinfo.c:6)

==15377== by 0x8048550: fun_noninline (inlinfo.c:41)

==15377== by O0x804850E: main (inlinfo.c:34)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048520: fun_d (inlinfo.c:6)

==15377== by 0x8048520: main (inlinfo.c:35)

--read-var-info=<yes| no> [default: no]

When enabled, Valgrind will read information about variable types and locations from DWARF3 debug info.
ThisslowsValgrind startup significantly and makesit use significantly more memory, but for thetool sthat can
take advantage of it (Memcheck, Helgrind, DRD) it can result in more precise error messages. For example,
here are some standard errorsissued by Memcheck:

==15363== Uninitialised byte(s) found during client check request

==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048544: nmmin (varinfol.c:55)

==15363== Address 0x80497f7 is 7 bytes inside data synbol "global i?2"
==15363==

==15363== Uninitialised byte(s) found during client check request
==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048550: nmmin (varinfol.c:56)

==15363== Address OxbeaOdOcc is on thread 1's stack

==15363== in frane #1, created by main (varinfol.c:45)

And here are the same errors with - - r ead- var - i nf o=yes:

==15370== Uninitialised byte(s) found during client check request

==15370== at 0x80484A9: croak (varinfol.c: 28)

==15370== by 0x8048544: nmain (varinfol.c:55)

==15370== Locati on 0x80497f7 is 0 bytes inside global _i2[7],
==15370== a gl obal vari able declared at varinfol.c:41

==15370==

==15370== Uninitialised byte(s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048550: nmin (varinfol.c:56)

==15370== Locati on Oxbeb4aOcc is O bytes inside [ocal var "local"

==15370== declared at varinfol.c:46, in frane #1 of thread 1
- -vgdb- pol | =<nunber > [defaul t: 5000]

As part of its main loop, the Valgrind scheduler will poll to check if some activity (such as an external
command or some input from a gdb) has to be handled by gdbserver. This activity poll will be done after
having run the given number of basic blocks (or dightly more than the given number of basic blocks). This

21

Using and understanding the Valgrind core

poll is quite cheap so the default value is set relatively low. You might further decrease this value if vgdb
cannot use ptrace system call to interrupt Valgrind if all threads are (most of thetime) blocked in asystem call.

- -vgdb- shadow- r egi st ers=no| yes [default: no]

When activated, gdbserver will expose the Valgrind shadow registers to GDB. With this, the value of the
Valgrind shadow registers can be examined or changed using GDB. Exposing shadow registers only works
with GDB version 7.1 or |ater.

--vgdb- prefix=<prefix> [default: /tnp/vgdb-pipe]

To communicate with gdb/vgdb, the Valgrind gdbserver creates 3 files (2 named FIFOs and a mmap shared
memory file). The prefix option controls the directory and prefix for the creation of thesefiles.

--run-libc-freeres=<yes|no> [default: yes]
This option is only relevant when running Valgrind on Linux with GNU libc.

TheGNU Clibrary (I i bc. so), whichisused by all programs, may allocate memory for itsown uses. Usually
it doesn't bother to free that memory when the program ends—there would be no point, since the Linux kernel
reclaims all process resources when a process exits anyway, so it would just slow things down.

The glibc authors realised that this behaviour causes leak checkers, such as Vagrind, to falsely report
leaks in glibc, when a leak check is done at exit. In order to avoid this, they provided a routine called
__libc_freeres specificaly to make glibc release all memory it has allocated. Memcheck thereforetries
torun__libc_freeres atexit.

Unfortunately, in some very old versions of glibc, __ | i bc_freeres is sufficiently buggy to cause
segmentation faults. This was particularly noticeable on Red Hat 7.1. So this option is provided in order to
inhibittherunof __|'i bc_f r eer es. If your program seems to run fine on Valgrind, but segfaults at exit,
youmay findthat - - run- 1 i bc- f r eer es=no fixesthat, although at the cost of possibly falsely reporting
spaceleaksinl i bc. so.

--run-cxx-freeres=<yes| no> [default: yes]

Thisoptionisonly relevant when running Valgrind on Linux, FreeBSD or Solaris C++ programs using libstdc
++.

The GNU Standard C++ library (I i bst dc++. s0), which is used by all C++ programs compiled with g+
+, may alocate memory for its own uses. Usually it doesn't bother to free that memory when the program
ends—there would be no point, since the kernel reclaims all process resources when a process exits anyway,
so it would just slow things down.

The gcc authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report leaks
in libstdc++, when a leak check is done at exit. In order to avoid this, they provided a routine called

__gnu_cxx::__freeres specificaly to make libstdc++ release all memory it has allocated. Memcheck
thereforetriestorun __gnu_cxx:: __ freeres at exit.
For the sake of flexibility and unforeseen problemswith__gnu_cxx: : __freer es,option- - r un- cxx-

f r eer es=no exists, although at the cost of possibly falsely reporting spaceleaksin| i bst dc++. so.
--simhints=hintl, hint2,...

Pass miscellaneous hints to Valgrind which dlightly modify the simulated behaviour in nonstandard or
dangerous ways, possibly to help the simulation of strange features. By default no hints are enabled. Use with
caution! Currently known hints are:

e lax-ioctls: Beverylaxaboutioctl handling; the only assumption isthat the size is correct. Doesn't
require the full buffer to be initialised when writing. Without this, using some device drivers with alarge
number of strange ioctl commands becomes very tiresome.

22

Using and understanding the Valgrind core

« fuse-conpati bl e: Enablespecia handling for certain system calls that may block in a FUSE file-
system. This may be necessary when running Valgrind on a multi-threaded program that uses one thread
to manage a FUSE file-system and another thread to access that file-system.

* enabl e-out er: Enable some special magic needed when the program being run isitself Valgrind.

* no-inner-prefix: Disableprintingaprefix > infront of each stdout or stderr output linein an inner
Valgrind being run by an outer Valgrind. Thisisuseful when running Valgrind regression testsin an outer/
inner setup. Note that the prefix > will always be printed in front of the inner debug logging lines.

e no-nptl - pthread-stackcache: Thishintisonly relevant when running Valgrind on Linux; it
isignored on FreeBSD, Solaris and macOS.

The GNU glibc pthread library (1 i bpt hr ead. so), whichisused by pthread programs, maintainsacache
of pthread stacks. When a pthread terminates, the memory used for the pthread stack and some thread local
storage related data structure are not aways directly released. This memory is kept in a cache (up to a
certain size), and isre-used if a new thread is started.

This cache causes the helgrind tool to report some false positive race condition errors on this cached
memory, as helgrind does not understand the internal glibc cache synchronisation primitives. So, when
using helgrind, disabling the cache helps to avoid false positive race conditions, in particular when using
thread local storage variables (e.g. variablesusing the __t hr ead qualifier).

When using the memcheck tool, disabling the cache ensures the memory used by glibc to handle __thread
variablesis directly released when a thread terminates.

Note: Valgrind disables the cache using some internal knowledge of the glibc stack cache implementation
and by examining the debug information of the pthread library. This technique is thus somewhat fragile
and might not work for all glibc versions. This has been successfully tested with various glibc versions
(eg. 2.11, 2.16, 2.18) on various platforms.

e | ax-doors: (Solaris only) Be very lax about door syscall handling over unrecognised door file
descriptors. Does not require that full buffer is initialised when writing. Without this, programs using
libdoor(3L1B) functionality with completely proprietary semantics may report large number of false
positives.

o fall back-11sc: (MIPSand ARM64 only): Enables an alternative implementation of Load-Linked
(LL) and Store-Conditional (SC) instructions. The standard implementation gives more correct behaviour,
but can cause indefinite looping on certain processor implementations that are intolerant of extra memory
references between LL and SC. So far this is known only to happen on Cavium 3 cores. Y ou should not
need to use this flag, since the relevant cores are detected at startup and the alternative implementation is
automatically enabled if necessary. Thereisno equivalent anti-flag: you cannot force-disablethe aternative
implementation, if it is automatically enabled. The underlying problem exists because the "standard"
implementation of LL and SC is done by copying through LL and SC instructions into the instrumented
code. However, tools may insert extra instrumentation memory references in between the LL and SC
instructions. These memory references are not present in the original uninstrumented code, and their
presence in the instrumented code can cause the SC instructions to persistently fail, leading to indefinite
loopingin LL-SC blocks. The alternativeimplementation gives correct behaviour of LL and SCinstructions
between threadsin aprocess, up to and including the ABA scenario. It also gives correct behaviour between
a Valgrinded thread and a non-Valgrinded thread running in a different process, that communicate via
shared memory, but only up to and including correct CAS behaviour -- in this case the ABA scenario may
not be correctly handled.

- -schedul i ng- quant umr<nunber > [defaul t: 100000]

The - - schedul i ng- quant um option controls the maximum number of basic blocks executed by a
thread before releasing the lock used by Valgrind to serialise thread execution. Smaller values give finer
interleaving but increases the scheduling overhead. Finer interleaving can be useful to reproduce race
conditions with helgrind or DRD. For more details about the Valgrind thread serialisation scheme and its
impact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

23

Using and understanding the Valgrind core

--fair-sched=<no|yes|try> [defaul t: no]

The- - f ai r - sched option controls the locking mechanism used by Valgrind to serialise thread execution.
Thelocking mechanism controlsthe way the threads are scheduled, and different settings give different trade-
offs between fairness and performance. For more details about the Valgrind thread serialisation scheme and
itsimpact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

» Thevaue--f air-sched=yes activatesafar scheduler. In short, if multiple threads are ready to run,
the threads will be scheduled in a round robin fashion. This mechanism is not available on all platforms
or Linux versions. If not available, using - - f ai r - sched=yes will cause Valgrind to terminate with
an error.

Y ou may find this setting improves overall responsivenessif you are running an interactive multithreaded
program, for example aweb browser, on Valgrind.

» Thevalue- -fai r-sched=try activatesfair scheduling if available on the platform. Otherwise, it will
automatically fall back to - - f ai r - sched=no.

e Thevaue- - f ai r - sched=no activates a scheduler which does not guarantee fairness between threads
ready to run, but which in general gives the highest performance.

--kernel -variant=variant1, variant?2,...

Handle system callsand ioctls arising from minor variants of the default kernel for this platform. Thisisuseful
for running on hacked kernels or with kernel modules which support nonstandard ioctls, for example. Use
with caution. If you don't understand what this option does then you almost certainly don't need it. Currently
known variants are:

» bproc: supportthesys_br oc system call onx86. Thisisfor running on BProc, whichisaminor variant
of standard Linux which is sometimes used for building clusters.

e andr oi d- no- hwt | s: someversionsof the Android emulator for ARM do not provideahardware TLS
(thread-local state) register, and Valgrind crashes at startup. Use this variant to select software support for
TLS.

e andr oi d- gpu- sgx5xx: use this to support handling of proprietary ioctls for the PowerVR SGX 5XX
series of GPUs on Android devices. Failure to select this does not cause stability problems, but may cause
Memcheck to report false errors after the program performs GPU-specific ioctls.

e andr oi d- gpu- adr eno3xx: similarly, use this to support handling of proprietary ioctls for the
Qualcomm Adreno 3XX series of GPUs on Android devices.

--nerge-recursive-franmes=<nunber> [defaul t: 0]

Some recursive algorithms, for example balanced binary tree implementations, create many different stack
traces, each containing cycles of calls. A cycleis defined as two identical program counter values separated
by zero or more other program counter values. Valgrind may then use alot of memory to store all these stack
traces. Thisisapoor use of memory considering that such stack traces contain repeated uninteresting recursive
callsinstead of more interesting information such as the function that has initiated the recursive call.

Theoption- - mer ge- r ecur si ve- f rames=<nunber > instructsValgrind to detect and mergerecursive
call cycles having a size of up to <numnber > frames. When such a cycle is detected, Valgrind records the
cyclein the stack trace as a unigque program counter.

The value O (the default) causes no recursive call merging. A value of 1 will cause stack traces of smple
recursive algorithms (for example, a factorial implementation) to be collapsed. A value of 2 will usually be
needed to collapse stack traces produced by recursive algorithms such as binary trees, quick sort, etc. Higher
values might be needed for more complex recursive algorithms.

Note: recursive calls are detected by analysis of program counter values. They are not detected by looking
at function names.

24

Using and understanding the Valgrind core

--numtranst ab- sect ors=<nunber> [default: 6 for Android platforns, 16 for
all others]

Valgrind trandlates and instruments your program’'s machine code in small fragments (basic blocks). The
trandations are stored in a trandation cache that is divided into a number of sections (sectors). If the
cache is full, the sector containing the oldest trandations is emptied and reused. If these old translations
are needed again, Valgrind must re-trandlate and re-instrument the corresponding machine code, which is
expensive. If the "executed instructions" working set of a program is big, increasing the number of sectors
may improve performance by reducing the number of re-translations needed. Sectors are all ocated on demand.
Once allocated, a sector can never be freed, and occupies considerable space, depending on the tool and the
vaue of - - avg-transt ab-entry-si ze (about 40 MB per sector for Memcheck). Use the option - -

st at s=yes to obtain preciseinformation about the memory used by asector and the allocation and recycling
of sectors.

--avg-transtab-entry-si ze=<nunber> [default: 0, neaning use tool provided
defaul t]

Average size of tranglated basic block. This average size is used to dimension the size of a sector. Each tool
providesadefault valueto be used. If thisdefault valueistoo small, the trand ation sectorswill becomefull too
quickly. If thisdefault valueistoo big, asignificant part of the trand ation sector memory will be unused. Note
that the average size of a basic block translation depends on the tool, and might depend on tool options. For
example, the memcheck option - - t r ack- or i gi ns=yes increasesthe size of the basic block trandlations.
Use--avg-transt ab-entry-si ze to tune the size of the sectors, either to gain memory or to avoid
too many retranslations.

- -aspace- m naddr =<addr ess> [defaul t: depends on the platforni

To avoid potential conflicts with some system libraries, Valgrind does not use the address space below - -
aspace- m naddr value, keeping it reserved in case alibrary specifically requests memory in this region.
So, some "pessimistic” valueis guessed by Valgrind depending on the platform. On linux, by default, Vagrind
avoids using the first 64MB even if typicaly there is no conflict in this complete zone. You can use the
option - - aspace- mi naddr to have your memory hungry application benefitting from more of thislower
memory. On the other hand, if you encounter a conflict, increasing aspace-minaddr value might solve it.
Conflicts will typically manifest themselves with mmap failures in the low range of the address space. The
provided addr ess must be page aligned and must be equal or bigger to 0x1000 (4KB). To find the default
value on your platform, do somethingsuchasval grind -d -d date 2>&1 | grep -i m naddr.
Values lower than 0x10000 (64K B) are known to create problems on some distributions.

--val gri nd- st acksi ze=<nunber > [defaul t: 1MB]

For each thread, Valgrind needsitsown ‘private' stack. The default sizefor these stacksislargely dimensioned,
and so should be sufficient in most cases. In case the size is too small, Valgrind will segfault. Before
segfaulting, awarning might be produced by Valgrind when approaching the limit.

Usetheoption- - val gri nd- st acksi ze if suchan (unlikely) warning is produced, or Valgrind diesdueto
asegmentation violation. Such segmentation violations have been seen when demangling huge C++ symbols.

If your application uses many threads and needs a lot of memory, you can gain some memory by reducing
the size of these Valgrind stacks using the option - - val gri nd- st acksi ze.

--show emwar ns=<yes| no> [defaul t: no]

When enabled, Valgrind will emit warnings about its CPU emulation in certain cases. These are usually not
interesting.

--require-text-synbol =: sonanepatt: f nnanepatt

When a shared object whose soname matches sonanepat t isloaded into the process, examine all the text
symbols it exports. If none of those match f nnamepat t, print an error message and abandon the run. This
makes it possible to ensure that the run does not continue unless a given shared object contains a particular
function name.

25

Using and understanding the Valgrind core

Both sonanmepatt and f nnanepatt can be written using the usual ? and * wildcards. For example:
":*libc.so*:foo?bar". You may use characters other than a colon to separate the two patterns. It
is only important that the first character and the separator character are the same. For example, the above
examplecould also bewritten" QI i bc. so* (¥ oo?bar " . Multiple - -require-text-synbol flags
are alowed, in which case shared objects that are loaded into the process will be checked against all of them.

The purpose of this is to support reliable usage of marked-up libraries. For example, suppose we have a
version of GCC's| i bgonp. so which has been marked up with annotations to support Helgrind. It is only
too easy and confusing to load thewrong, un-annotated | i bgonp. so into the application. Sotheideais: add
a text symbol in the marked-up library, for example annot at ed_f or _hel gri nd_3_6, and then give
theflag- -require-text-synbol =: *1 i bgonp*so*: annotated_for_hel gri nd_3 6 sothat
when | i bgonp. so isloaded, Vagrind scans its symbol table, and if the symbol isn't present the run is
aborted, rather than continuing silently with the un-marked-up library. Note that you should put the entire flag
in quotes to stop shells expanding up the* and ? wildcards.

- -soname- synonyns=synl=patternl, syn2=pattern2, ...

When ashared library isloaded, Valgrind checksfor functionsin the library that must be replaced or wrapped.
For example, Memcheck replaces some string and memory functions (strchr, strlen, strepy, memchr, memcpy,
memmove, etc.) with its own versions. Such replacements are normally done only in shared libraries whose
soname matches a predefined soname pattern (e.g. | i bc. so* onlinux). By default, no replacement is done
for astatically linked binary or for alternativelibraries, except for the allocation functions (malloc, free, calloc,
memalign, realloc, operator new, operator delete, etc.) Such allocation functions are intercepted by default in
any shared library or in the executableif they are exported as global symbols. Thismeansthat if areplacement
alocation library such as tcmalloc is found, its functions are also intercepted by default. In some cases, the
replacementsalow - - sonane- synonymns to specify one additional synonym pattern, giving flexibility in
the replacement. Or to prevent interception of al public allocation symbols.

Currently, this flexibility is only allowed for the malloc related functions, using the synonym somal | oc.
This synonym is usable for al tools doing standard replacement of malloc related functions (e.g. memcheck,
helgrind, drd, massif, dhat).

» Alternate malloc library: to replace the malloc related functions in a specific alternate library
with soname mymall oclib.so (and not in any others), give the option --sonane-
synonyns=somal | oc=nmymal | ocl i b. so.A pattern can be used to match multiplelibraries sonames.
For example, - - sonane- synonynms=somal | oc=*t crmal | oc* will match the soname of al variants
of the tcmalloc library (native, debug, profiled, ... tcmalloc variants).

Note: the soname of a elf shared library can be retrieved using the readelf utility.

» Replacementsin a statically linked library are done by using the NONE pattern. For example, if you link
with | i bt cmal | oc. a, and only want to intercept the malloc related functions in the executable (and
standard libraries) themselves, but not any other shared libraries, you can give the option - - sonane-
synonyns=sonmal | oc=NONE. Notethat aNONE pattern will match the main executable and any shared
library having no soname.

» To only intercept allocation symbols in the default system libraries, but not in any other shared library or
the executable defining public malloc or operator new related functions use a hon-existing library name
like - - sonane- synonyns=somnal | oc=nouseri nt er cepts (where nouseri ntercepts can
be any non-existing library name).

* Shared library of the dynamic (runtime) linker is excluded from searching for global public symbols, such
as those for the malloc related functions (identified by somal | oc synonym).

--progress-interval =<nunber> [default: 0, meaning 'disabled']
Thisis an enhancement to Valgrind's debugging output. It is unlikely to be of interest to end users.

When nunber is set to a non-zero value, Vagrind will print a one-line progress summary every nunber
seconds. Valid settings for nunber are between 0 and 3600 inclusive. Here's some example output with
nunber setto 10:

26

Using and understanding the Valgrind core

PROGRESS: U 110s, W 113s, 97.3% CPU, EvC 414.79M TIn 616. 7k, TQut 0.5k, #thr
PROGRESS: U 120s, W 124s, 96.8% CPU, EvC 505.27M TIn 636. 6k, TQut 3.0k, #thr
PROGRESS: U 130s, W 134s, 97.0% CPU, EvC 574.90M TIn 657.5k, TQut 3.0k, #thr

Each line shows:

U: total user time
W total wallclock time
CPU: overall average cpu use

Ev C. number of event checks. An event check is a backwards branch in the simulated program, so thisis
ameasure of forward progress of the program

TI n: number of code blocks instrumented by the JIT
TQut : number of instrumented code blocks that have been thrown away

#t hr : number of threads in the program

From the progress of these, it is possible to observe:

when the program is compute bound (T1 n rises slowly, EvCrises rapidly)

when the program isin aspinloop (T1 n/TQut fixed, EvCrisesrapidly)

when the program is J T-bound (T1 n rises rapidly)

when the program is rapidly discarding code (TQut rises rapidly)

when the program is about to achieve some expected state (Ev C arrives at some value you expect)

when the program isidling (U rises more slowly than W

2.7.6. Debugging Options

There are also some options for debugging Valgrind itself. Y ou shouldn't need to use them in the normal run of
things. If you wish to seethellist, usethe - - hel p- debug option.

If you wish to debug your program rather than debugging Valgrind itself, then you should use the options - -
vgdb=yes or--vgdb=ful | .

2.7.7. Setting Default Options

Note that Valgrind also reads options from three places:

1. Thefile~/ . val grindrc

2. The environment variable $VALGRI ND_OPTS

3. Thefile./.val grindrc

These are processed in the given order, before the command-line options. Options processed later override
those processed earlier; for example, options in . /. val grindrc will take precedence over those in
~/ . val gri ndrec.

Please notethat the. / . val gri ndr c fileisignored if it isnot aregular file, or is marked as world writeable, or
is not owned by the current user. Thisis becausethe. /. val gri ndr ¢ can contain options that are potentially
harmful or can be used by alocal attacker to execute code under your user account.

27

67
64
63

Using and understanding the Valgrind core

Any tool-specific options put in $VALGRI ND_OPTS or the. val gri ndr ¢ filesshould be prefixed with the tool
name and a colon. For example, if you want Memcheck to always do leak checking, you can put the following
entryin~/ . val grindrc:

--mentheck: | eak- check=yes

This will be ignored if any tool other than Memcheck is run. Without the mentheck: part, this will cause
problems if you select other tools that don't understand - - | eak- check=yes.

2.7.8. Dynamically Changing Options

The value of some command line options can be changed dynamically while your program is running under
Valgrind.

The dynamically changeable options of the valgrind core and a given tool can be listed using option - - hel p-
dyn- opt i ons, for example:

$ val grind --tool =nenctheck --hel p-dyn-options
dynam cal | y changeabl e opti ons:
-v -q -d --stats --vgdb=no --vgdb=yes --vgdb=full --vgdb-poll --vgdb-error
--vgdb-stop-at --error-markers --showerror-list -s --show bel ow nmai n
--tinme-stanp --trace-children --child-silent-after-fork --trace-sched

--trace-signals --trace-syntab --trace-cfi --debug-dunp=syms
- - debug- dunp=li ne --debug-dunp=franmes --trace-redir --trace-syscalls
--symoffsets --progress-interval --merge-recursive-frames

--vex-iropt-verbosity --suppressions --trace-flags --trace-not bel ow
--trace-not above --profile-flags --gen-suppressi ons=no

- - gen-suppr essi ons=yes --gen-suppressions=all --errors-for-I|eak-Kkinds
--show | eak- ki nds - -1 eak-check-heuristics --showreachabl e

--show possi bly-lost --freelist-vol --freelist-big-blocks --1eak-check=no
- -| eak- check=sunmary --Ieak-check=yes --1|eak-check=full --ignore-ranges

--ignore-range- bel owsp --show m smat ched-frees
valgrind: Use --help for nore information.
$

The dynamic options can be changed the following ways:

1. From the shell, using vgdb and the monitor command v. cl o:

$ vgdb "v.clo --trace-children=yes --child-silent-after-fork=no"
sendi ng command v.clo --trace-children=yes --child-silent-after-fork=no to pid 4404
$

Note: you must use doubl e quotes around the monitor command to avoid vgdb interpreting the valgrind options
asits own options.

2. From gdb, using the the monitor command v. cl o:
(gdb) nmonitor v.clo --trace-children=yes --child-silent-after-fork=no
(gdb)

3. From your program, using the client request VALGRI ND_CLO_CHANGE(opt i on) :

VALGRI ND_CLO CHANGE ("--trace-chil dren=yes");
VALGRI ND_ CLO CHANGE ("--child-silent-after-fork=no");

28

Using and understanding the Valgrind core

Dynamically changeable options can be used in various circumstances, such as changing the valgrind behaviour
during execution, loading suppression files as part of shared library initialisation, change or set valgrind options
in child processes, ...

2.8. Support for Threads

Threaded programs are fully supported.

The main thing to point out with respect to threaded programsis that your program will use the native threading
library, but Valgrind serialises execution so that only one (kernel) thread isrunning at atime. This approach avoids
the horrible implementation problems of implementing atruly multithreaded version of Valgrind, but it does mean
that threaded apps never use more than one CPU simultaneously, even if you have a multiprocessor or multicore
machine.

Vagrind doesn't schedule the threads itself. It merely ensures that only one thread runs at once, using a simple
locking scheme. The actual thread scheduling remains under control of the OSkernel. What thisdoes mean, though,
isthat your program will see very different scheduling when run on Valgrind than it does when running normally.
Thisis both because Valgrind is serialising the threads, and because the code runs so much slower than normal.

Thisdifferencein scheduling may causeyour program to behave differently, if you have somekind of concurrency,
critical race, locking, or similar, bugs. In that case you might consider using the tools Helgrind and/or DRD to
track them down.

On Linux, Valgrind also supports direct use of the cl one system call, f ut ex and so on. cl one is supported
where either everything is shared (athread) or nothing is shared (fork-like); partial sharing will fail.

2.8.1. Scheduling and Multi-Thread Performance

A thread executes code only when it hol ds the abovementioned lock. After executing some number of instructions,
the running thread will release the lock. All threads ready to run will then compete to acquire the lock.

The- - f ai r - sched option controls the locking mechanism used to serialise thread execution.

The default pipe based locking mechanism (- - f ai r - sched=no) is available on all platforms. Pipe based
locking does not guarantee fairness between threads: it is quite likely that a thread that has just released the lock
reacquires it immediately, even though other threads are ready to run. When using pipe based locking, different
runs of the same multithreaded application might give very different thread scheduling.

An dternative locking mechanism, based on futexes, is available on some platforms. If available, it is
activated by - - f ai r - sched=yes or - -f ai r- sched=t ry. Futex based locking ensures fairness (round-
robin scheduling) between threads: if multiple threads are ready to run, the lock will be given to the thread which
first requested the lock. Note that a thread which is blocked in a system call (e.g. in ablocking read system call)
has not (yet) requested the lock: such athread requests the lock only after the system call is finished.

Thefairnessof the futex based locking produces better reproducibility of thread scheduling for different executions
of amultithreaded application. This better reproducibility is particularly helpful when using Helgrind or DRD.

Valgrind's use of thread serialisation impliesthat only onethread at atime may run. On amultiprocessor/multicore
system, the running thread is assigned to one of the CPUs by the OS kernel scheduler. When athread acquiresthe
lock, sometimes the thread will be assigned to the same CPU as the thread that just released the lock. Sometimes,
the thread will be assigned to another CPU. When using pipe based locking, the thread that just acquired the
lock will usually be scheduled on the same CPU as the thread that just released the lock. With the futex based
mechanism, the thread that just acquired the lock will more often be scheduled on another CPU.

Vagrind's thread seriaisation and CPU assignment by the OS kernel scheduler can interact badly with the CPU
frequency scaling available on many modern CPUs. To decrease power consumption, the frequency of a CPU
or coreis automatically decreased if the CPU/core has not been used recently. If the OS kernel often assigns the
thread which just acquired the lock to another CPU/core, it is quite likely that this CPU/coreis currently at alow
frequency. The frequency of this CPU will be increased after some time. However, during this time, the (only)

29

Using and understanding the Valgrind core

running thread will have run at the low frequency. Once this thread has run for sometime, it will release the lock.
Another thread will acquire this lock, and might be scheduled again on another CPU whose clock frequency was
decreased in the meantime.

The futex based locking causes threads to change CPUs/cores more often. So, if CPU frequency scaling is
activated, the futex based locking might decrease significantly the performance of a multithreaded app running
under Valgrind. Performance losses of up to 50% degradation have been observed, as compared to running on a
machine for which CPU frequency scaling has been disabled. The pipe based | ocking locking scheme a so interacts
badly with CPU frequency scaling, with performance losses in the range 10..20% having been observed.

To avoid such performance degradation, you should indicate to the kernel that all CPUs/cores should always run
at maximum clock speed. Depending on your Linux distribution, CPU frequency scaling may be controlled using
agraphical interface or using command line such ascpuf r eq- sel ect or or cpufreq-set.

An dternative way to avoid these problemsisto tell the OS scheduler to tiea Vagrind process to a specific (fixed)
CPU using thet askset command. This should ensure that the selected CPU does not fall below its maximum
frequency setting so long as any thread of the program has work to do.

2.9. Handling of Signals

Valgrind has a fairly complete signal implementation. It should be able to cope with any POSIX-compliant use
of signals.

If youre using signals in clever ways (for example, catching SIGSEGV, modifying page state and
restarting the instruction), you're probably relying on precise exceptions. In this case, you will
need to use --vex-iropt-register-updates=allregs-at-nemaccess or --vex-iropt-
regi st er-updat es=al | regs- at - each-i nsn.

If your program dies as a result of a fatal core-dumping signal, Valgrind will generate its own core file
(vgcor e. NNNNN) containing your program's state. Y ou may use this core file for post-mortem debugging with
GDB or similar. (Note: it will not generate acoreif your core dump sizelimit is0.) At the time of writing the core
dumps do not include al the floating point register information.

In the unlikely event that VValgrind itself crashes, the operating system will create a core dump in the usua way.

2.10. Execution Trees

An execution tree (xtree) is made of a set of stack traces, each stack trace is associated with some resource
consumptions or event counts. Depending on the xtree, different event counts/resource consumptions can be
recorded in the xtree. Multiple tools can produce memory use xtree. Memcheck can output the leak search results
in an xtree.

A typical usage for an xtree is to show a graphical or textual representation of the heap usage of a program. The
below figure is a heap usage xtree graphical representation produced by kcachegrind. In the kcachegrind output,
you can see that main current heap usage (allocated indirectly) is 528 bytes : 388 bytes allocated indirectly viaa
call tofunctionfland 140 bytesindirectly allocated viaacall to functionf2. f2 hasallocated memory by calling g2,
while f1 has allocated memory by calling g11 and g12. g11, g12 and g1 have directly called amemory alocation
function (malloc), and so have a non zero 'Self' value. Note that when kcachegrind shows an xtree, the 'Called'
column and call nr indicationsin the Call Graph are not significant (always set to 0 or 1, independently of thereal
nr of calls. The kcachegrind versions >= 0.8.0 do not show anymore such irrelevant xtree call number information.

An xtree heap memory report is produced at the end of the execution when required using the option - - xt r ee-
nmenory. It can also be produced on demand using the xt menor y monitor command (see Valgrind monitor
commands). Currently, an xtree heap memory report can be produced by the nencheck, hel gri nd and
massi f tools.

Thextrees produced by the option --xtree-memory or thext menor y monitor command are showing thefollowing
events/resource consumption describing heap usage:

30

Using and understanding the Valgrind core

 cur B current number of Bytes allocated. The number of allocated bytes is added to the cur B value of a stack
trace for each alocation. It is decreased when a block alocated by this stack trace is released (by another
"freeing" stack trace)

» cur Bk current number of Blocks allocated, maintained similary to curB : +1 for each allocation, -1 when the
block isfreed.

* t ot Btotal allocated Bytes. Thisisincreased for each allocation with the number of allocated bytes.
* t ot Bk total allocated Blocks, maintained similary to totB : +1 for each allocation.

» t ot FdB total Freed Bytes, increased each time a block is released by this ("freeing") stack trace : + nr freed
bytes for each free operation.

t ot FdBk total Freed Blocks, maintained similarly to totFdB : +1 for each free operation.

Note that the last 4 counts are produced only when the - - xt r ee- menor y=f ul | was given at startup.
Xtrees can be saved in 2 file formats, the "Callgrind Format" and the "Massif Format”.

» Cdlgrind Format

An xtree file in the Callgrind Format contains a single callgraph, associating each stack trace with the values
recorded in the xtree.

Different Callgrind Format file visualisers are available:

Valgrind distribution includesthe cal | gri nd_annot at e command line utility that reads in the xtree data,
and prints a sorted lists of functions, optionally with source annotation. Note that due to xtree specificities, you
must givetheoption - - i ncl usi ve=yes to callgrind_annotate.

For graphical visualization of the data, you can use KCachegrind, which is a KDE/Qt based GUI that makes it
easy to navigate the large amount of data that an xtree can contain.

Note that xtree Callgrind Format does not make use of the inline information even when specifying - - r ead-
i nline-info=yes.

* Massif Format

An xtree file in the Massif Format contains one detailed tree callgraph data for each type of event recorded
in the xtree. So, for - - xt r ee- menor y=al | oc, the output file will contain 2 detailed trees (for the counts
cur Band cur BKk), while- - xt r ee- menor y=f ul | will give afilewith 6 detailed trees.

Different Massif Format file visualisers are available. Valgrind distribution includesthe ms_pr i nt command
line utility that produces an easy to read reprentation of a massif output file. See Using Massif and ms_print
and Using massif-visualizer for more details about visualising Massif Format output files.

Note that xtree Massif Format makes use of the inline information when specifying - - r ead-i nl i ne-
i nf o=yes.

Note that for equivalent information, the Callgrind Format is more compact than the Massif Format. However, the
Callgrind Format always contains the full data: there is no filtering done during file production, filtering is done
by visualisers such as kcachegrind. kcachegrind is particularly easy to use to analyse big xtree data containing
multiple events counts or resources consumption. The Massif Format (optionally) only contains a part of the data.
For example, the Massif tool might filter some of the data, according to the - - t hr eshol d option.

To clarify the xtree concept, the below gives several extracts of the output produced by the following commands:

val grind --xtree-menory=full --xtree-nenory-file=xtmenory.kcg nfg
cal l grind_annotate --auto=yes --inclusive=yes --sort=curB: 100, cur Bk: 100, t ot B: 100, t ot BK: .

31

https://kcachegrind.github.io/html/Home.html

Using and understanding the Valgrind core

The below extract shows that the program mfg has allocated in total 770 bytes in 60 different blocks. Of these 60
blocks, 19 were freed, releasing atotal of 242 bytes. The heap currently contains 528 bytesin 41 blocks.

528 41 770 60 242 19 PROGRAM TOTALS
The below gives more details about which functions have allocated or released memory. As an example, we see
that main has (directly or indirectly) allocated 770 bytes of memory and freed (directly or indirectly) 242 bytes

of memory. The function f1 has (directly or indirectly) allocated 570 bytes of memory, and has not (directly or
indirectly) freed memory. Of the 570 bytes allocated by function f1, 388 bytes (34 blocks) have not been rel eased.

528 41 770 60 242 19 nfg.c:nmain
388 34 570 50 0 0 nfg.c:f1l
220 20 330 30 0 0 nfg.c:gll
168 14 240 20 0 0 nfg.c:gl2
140 7 200 10 0 0 nfg.c:g2
140 7 200 10 0 0 nfg.c:f2

0 0 0 0 131 10 nfg.c:freeY

0 0 0 0 111 9 nfg.c:freeX

The below gives a more detailed information about the callgraph and which source lines/calls have (directly
or indirectly) allocated or released memory. The below shows that the 770 bytes alocated by main have been
indirectly allocated by callsto f1 and f2. Similarly, we see that the 570 bytes allocated by f1 have been indirectly
allocated by callsto g11 and g12. Of the 330 bytes allocated by the 30 callsto g11, 168 bytes have not been freed.
The function freeY (called once by main) has released in total 10 blocks and 131 bytes.

-- Aut o-annot at ed source: /hone/philippe/valgrind/littleprogs/ + nfg.c

curB curBk totB totBk totFdB tot FdBk

static void freeY(void)

{ . .
int i;
for (i = 0; i < next_ptr; i++)
. if(i %5 ==0 && ptrs[i] != NULL)
0 0 0 0 131 10 free(ptrs[i]);
: }
static void f1(void)
{ . .
int i;
. for (i =0; i < 30; i++)
220 20 330 30 0 0 gl1();
. for (i = 0; i < 20; i++)
168 14 240 20 0 0 gl12();
int main()
. N |
388 34 570 50 0 0 f1();
140 7 200 10 0 0 f2(0);
0 0 0 0 111 9 freeX();

32

Using and understanding the Valgrind core

0 0 0 0 131 10 freeY();
return O;

}

Heap memory xtrees are helping to understand how your (big) program is using the heap. A full heap memory
xtree helps to pin point some code that allocates a lot of small objects : allocating such small objects might be
replaced by more efficient technique, such as allocating a big block using malloc, and then diviving thisblock into
smaller blocks in order to decrease the cpu and/or memory overhead of allocating alot of small blocks. Such full
xtree information complements e.g. what callgrind can show: callgrind can show the number of callsto afunction
(such as malloc) but does not indicate the volume of memory allocated (or freed).

A full heap memory xtree also can identify the code that allocates and frees alot of blocks : the total foot print of
the program might not reflect the fact that the same memory was over and over allocated then released.

Finally, Xtree visualisers such as kcachegrind are hel ping to identify big memory consumers, in order to possibly
optimise the amount of memory needed by your program.

2.11. Building and Installing Valgrind

Weusethestandard Unix . / conf i gur e, nmake, make i nst al | mechanism. Onceyou have completed nake
i nstal |l youmay then want to run the regression testswith make r egt est .

In addition to the usua - - prefi x=/path/to/install/tree, there are three options which affect how
Valgrind is built:

e --enabl e-i nner

This builds Valgrind with some special magic hacks which make it possible to run it on a standard build of
Valgrind (what the developers call "self-hosting”). Ordinarily you should not use this option as various kinds
of safety checks are disabled.

* --enabl e-onl y64bi t
--enabl e- onl y32bi t

On 64-bit platforms (amd64-linux, ppc64-linux, andé4-darwin), Valgrind is by default built in such away that
both 32-bit and 64-bit executables can be run. Sometimes this clevernessis a problem for a variety of reasons.
These two options allow for single-target builds in this situation. If you issue both, the configure script will
complain. Note they are ignored on 32-bit-only platforms (x86-linux, ppc32-linux, arm-linux, x86-darwin).

Theconfi gur e script teststhe version of the X server currently indicated by the current $DI SPLAY. Thisisa
known bug. The intention was to detect the version of the current X client libraries, so that correct suppressions
could be selected for them, but instead the test checks the server version. Thisisjust plain wrong.

If you are building a binary package of Valgrind for distribution, please read READNVE PACKAGERS Readme
Packagers. It contains some important information.

Apart from that, there's not much excitement here. Let us know if you have build problems.

2.12. If You Have Problems

Contact us at http://www.valgrind.org/.
See Limitationsfor the known limitationsof Valgrind, and for alist of programswhich are known not to work oniit.

All parts of the system make heavy use of assertions and internal self-checks. They are permanently enabled, and
we have no plansto disable them. If one of them breaks, please mail us!

If you get an assertion failureinm _mal | ocf r ee. ¢, thismay have happened because your program wrote off the
end of aheap block, or before its beginning, thus corrupting heap metadata. Valgrind hopefully will have emitted
amessage to that effect before dying in thisway.

33

http://www.valgrind.org/

Using and understanding the Valgrind core

Read the Valgrind FAQ for more advice about common problems, crashes, etc.

2.13. Limitations

The following list of limitations seems long. However, most programs actually work fine.

Vagrind will run programs on the supported platforms subject to the following constraints:

On Linux, Valgrind determines at startup the size of the 'brk segment’ using the RLIMIT_DATA rlim_cur,
with aminimum of 1 MB and a maximum of 8 MB. Valgrind outputs a message each time a program tries to
extend the brk segment beyond the size determined at startup. Most programswill work properly with thislimit,
typically by switching to the use of mmap to get more memory. If your program really needs a big brk segment,
you must change the 8 MB hardcoded limit and recompile Valgrind.

On x86 and amd64, there is no support for 3DNow! instructions. If the transator encounters these, Valgrind
will generate a SIGILL when the instruction is executed. Apart from that, on x86 and amd64, essentially all
instructions are supported, up to and including AV X and AES in 64-bit mode and SSSE3 in 32-bit mode. 32-
bit mode does in fact support the bare minimum SSE4 instructions needed to run programs on MacOSX 10.6
on 32-hit targets.

On ppc32 and ppc64, aimost all integer, floating point and Altivec instructions are supported. Specifically:
integer and FP insns that are mandatory for PowerPC, the "General-purpose optional” group (fsqrt, fsgrts,
stfiwx), the "Graphics optional” group (fre, fres, frsgrte, frsgrtes), and the Altivec (also known asVMX) SIMD
instruction set, are supported. Also, instructions from the Power 1SA 2.05 specification, as present in POWERG
CPUs, are supported.

On ARM, essentially the entire ARMV7-A instruction set is supported, in both ARM and Thumb mode.
ThumbEE and Jazelle are not supported. NEON, VFPv3 and ARMv6 media support is fairly complete.

If your program does its own memory management, rather than using malloc/new/free/delete, it should
still work, but Memcheck's error checking won't be so effective. If you describe your program’'s memory
management scheme using "client requests’ (see The Client Request mechanism), Memcheck can do better.
Nevertheless, using malloc/new and free/delete is still the best approach.

Valgrind's signal simulation is not as robust asit could be. Basic POSIX-compliant sigaction and sigprocmask
functionality issupplied, but it's conceivable that things could go badly awry if you do weird thingswith signals.
Workaround: don't. Programs that do non-POSIX signal tricks arein any case inherently unportable, so should
be avoided if possible.

Machineinstructions, and system calls, have been implemented on demand. So it's possible, although unlikely,
that a program will fall over with a message to that effect. If this happens, please report all the details printed
out, so we can try and implement the missing feature.

Memory consumption of your program is majorly increased whilst running under Valgrind's Memcheck tool.
This is due to the large amount of administrative information maintained behind the scenes. Another causeis
that Valgrind dynamically translatesthe original executable. Translated, instrumented codeis12-18 timeslarger
than the original so you can easily end up with 150+ MB of translations when running (eg) aweb browser.

Valgrind can handle dynamically-generated code just fine. If you regenerate code over the top of old code (ie.
at the same memory addresses), if the code is on the stack Valgrind will realise the code has changed, and
work correctly. Thisis necessary to handle the trampolines GCC uses to implemented nested functions. If you
regenerate code somewhere other than the stack, and you are running on an 32- or 64-bit x86 CPU, you will
needto usethe - - snt- check=al | option, and Valgrind will run more slowly than normal. Or you can add
client requests that tell Valgrind when your program has overwritten code.

On other platforms (ARM, PowerPC) Valgrind observes and honoursthe cache invalidation hintsthat programs
are obliged to emit to notify new code, and so self-modifying-code support should work automatically, without
the need for - - snt- check=al | .

Valgrind hasthe following limitationsin itsimplementation of x86/AM D64 floating point relative to |EEE754.

34

Using and understanding the Valgrind core

Precision: There is no support for 80 hit arithmetic. Internally, Valgrind represents all such "long double"
numbers in 64 bits, and so there may be some differences in results. Whether or not thisis critical remains to
be seen. Note, the x86/amd64 fldt/fstpt instructions (read/write 80-bit numbers) are correctly simulated, using
conversions to/from 64 bits, so that in-memory images of 80-bit numbers look correct if anyone wants to see.

The impression observed from many FP regression tests is that the accuracy differences aren't significant.
Generally speaking, if aprogram relieson 80-bit precision, there may be difficulties porting it to non x86/amd64
platforms which only support 64-bit FP precision. Even on x86/amd64, the program may get different results
depending on whether it is compiled to use SSE2 instructions (64-hits only), or x87 instructions (80-hit). The
net effect is to make FP programs behave as if they had been run on a machine with 64-bit IEEE floats, for
example PowerPC. On amd64 FP arithmetic is done by default on SSE2, so amd64 |ooks more like PowerPC
than x86 from an FP perspective, and there are far fewer noticeable accuracy differences than with x86.

Rounding: Valgrind does observe the 4 IEEE-mandated rounding modes (to nearest, to +infinity, to -infinity,
to zero) for the following conversions: float to integer, integer to float where there is a possibility of loss of
precision, and float-to-float rounding. For all other FP operations, only the | EEE default mode (round to nearest)
is supported.

Numeric exceptions in FP code: |IEEE754 defines five types of numeric exception that can happen: invalid
operation (sgrt of negative number, etc), division by zero, overflow, underflow, inexact (loss of precision).

For each exception, two courses of action are defined by |IEEE754: either (1) a user-defined exception handler
may be called, or (2) adefault action is defined, which "fixes things up" and allows the computation to proceed
without throwing an exception.

Currently Valgrind only supports the default fixup actions. Again, feedback on the importance of exception
support would be appreciated.

When Valgrind detects that the program istrying to exceed any of these limitations (setting exception handlers,
rounding mode, or precision control), it can print amessage giving atraceback of where this has happened, and
continue execution. This behaviour used to be the default, but the messages are annoying and so showing them
is now disabled by default. Use - - show emwar ns=yes to see them.

The above limitations define precisely the IEEE754 'default’ behaviour: default fixup on al exceptions, round-
to-nearest operations, and 64-bit precision.

Valgrind has the following limitations in its implementation of x86/AMD64 SSE2 FP arithmetic, relative to
|IEEE754.

Essentialy the same: no exceptions, and limited observance of rounding mode. Also, SSE2 has control bits
which make it treat denormalised numbers as zero (DAZ) and arelated action, flush denormals to zero (FTZ).
Both of these cause SSE2 arithmetic to be less accurate than | EEE requires. Valgrind detects, ignores, and can
warn about, attempts to enable either mode.

Valgrind has the following limitations in its implementation of ARM VFPv3 arithmetic, relative to IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, switching the VFP unit
into vector mode will cause Valgrind to abort the program -- it has no way to emulate vector uses of VFP at
a reasonable performance level. Thisis no big deal given that non-scalar uses of VFP instructions are in any
case deprecated.

Valgrind has the following limitations in its implementation of PPC32 and PPC64 floating point arithmetic,
relative to IEEE754.

Scalar (non-Altivec): Valgrind provides a bit-exact emulation of all floating point instructions, except for "fre"
and "fres', which are done more precisely than required by the PowerPC architecture specification. All floating
point operations observe the current rounding mode.

However, fpscr[FPRF] is not set after each operation. That could be done but would give measurable
performance overheads, and so far no need for it has been found.

35

Using and understanding the Valgrind core

Ason x86/AMD64, |IEEE754 exceptions are not supported: all floating point exceptions are handled using the
default |EEE fixup actions. Valgrind detects, ignores, and can warn about, attempts to unmask the 5 IEEE FP
exception kinds by writing to the floating-point status and control register (fpscr).

Vector (Altivec, VMX): essentially as with x86/AMD64 SSE/SSE2: no exceptions, and limited observance of
rounding mode. For Altivec, FP arithmetic is done in | EEE/Java mode, which is more accurate than the Linux
default setting. "More accurate” means that denormals are handled properly, rather than simply being flushed
to zero.

Programs which are known not to work are:

» emacs starts up but immediately concludes it is out of memory and aborts. It may be that Memcheck does
not provide a good enough emulation of the mal | i nf o function. Emacs works fine if you build it to use the
standard malloc/free routines.

2.14. An Example Run

Thisisthelog for arun of asmall program using Memcheck. The programisin fact correct, and the reported error
is astheresult of a potentially serious code generation bug in GNU g++ (snapshot 20010527).

sewar dj @hoeni x: ~/ newrat 10$ ~/ Val gri nd-6/val grind -v ./bogon
==25832== Val grind 0.10, a nenory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000-2001, and GNU GPL'd, by Julian Seward.
==25832== Startup, with flags:

==25832== - - suppr essi ons=/ hone/ sewar dj / Val gri nd/ redhat 71. supp
==25832== readi ng syns from/lib/ld-Iinux.so.2

==25832== readi ng syns from/lib/libc.so.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libgcc_s.so0.0
==25832== reading syns from/lib/libmso.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libstdc++. so0.3
==25832== readi ng syns from /hone/ sewardj/Val gri nd/ val gri nd. so
==25832== readi ng syns from/proc/sel f/exe

==25832==

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatri x:: ReSize(int,int,int) (bogon.cpp: 45)
==25832== by 0x80487AF:. mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, nalloc'd or free'd
==25832==

==25832== ERROR SUMVARY: 1 errors from1l contexts (suppressed: 0 from 0)
==25832== mall oc/free: in use at exit: 0O bytes in 0 bl ocks.

==25832== mal l oc/free: 0 allocs, O frees, 0 bytes all ocated.

==25832== For a detailed |eak analysis, rerun with: --I|eak-check=yes

The GCC folks fixed this about aweek before GCC 3.0 shipped.

2.15. Warning Messages You Might See

Some of these only appear if you run in verbose mode (enabled by - v):

« More than 100 errors detected. Subsequent errors will still be recorded,
but in | ess detail than before.

After 100 different errors have been shown, Valgrind becomes more conservative about collecting them. It then
requires only the program counters in the top two stack frames to match when deciding whether or not two
errors are really the same one. Prior to this point, the PCs in the top four frames are required to match. This
hack has the effect of slowing down the appearance of new errors after the first 100. The 100 constant can be
changed by recompiling Valgrind.

36

Using and understanding the Valgrind core

More than 1000 errors detected. |'m not reporting any nore. Final error
counts may be inaccurate. Go fix your progran

After 1000 different errors have been detected, Valgrind ignores any more. It seems unlikely that collecting
even more different ones would be of practical help to anybody, and it avoids the danger that Valgrind spends
more and more of itstime comparing new errors against an ever-growing collection. Asabove, the 1000 number
is a compile-time constant.

Warni ng: client swtching stacks?

Valgrind spotted such a large change in the stack pointer that it guesses the client is switching to a different
stack. At this point it makes a kludgey guess where the base of the new stack is, and sets memory permissions
accordingly. At the moment "large change" is defined as a change of more that 2000000 in the value of the
stack pointer register. If Valgrind guesses wrong, you may get many bogus error messages following this and/
or have crashesin the stack trace recording code. Y ou might avoid these problems by informing Valgrind about
the stack bounds using VALGRIND_STACK_REGISTER client request.

Warning: client attenpted to close Valgrind's logfile fd <nunber>

Valgrind doesn't allow the client to close the logfile, because you'd never see any diagnostic information after
that point. If you see this message, you may want to use the - - | og- f d=<nunber > option to specify a
different logfile file-descriptor number.

War ni ng: noted but unhandl ed ioctl <nunber>

Valgrind observed acall to one of thevast family of i oct | system calls, but did not modify its memory status
info (because nobody has yet written a suitable wrapper). The call will still have gone through, but you may get
spurious errors after this as aresult of the non-update of the memory info.

War ni ng: set address range perms: | arge range <number>

Diagnostic message, mostly for benefit of the Valgrind devel opers, to do with memory permissions.

37

3. Using and understanding the
Valgrind core: Advanced Topics

This chapter describes advanced aspects of the Valgrind core services, which are mostly of interest to power users
who wish to customise and modify Valgrind's default behavioursin certain useful ways. The subjects covered are:

e The"Client Request" mechanism
» Debugging your program using Valgrind's gdbserver and GDB

» Function Wrapping

3.1. The Client Request mechanism

Vagrind has a trapdoor mechanism via which the client program can pass all manner of requests and queries to
Vagrind and the current tool. Internally, thisis used extensively to make various things work, although that's not
visible from the outside.

For your convenience, a subset of these so-called client requests is provided to allow you to tell Valgrind facts
about the behaviour of your program, and also to make queries. In particular, your program can tell Valgrind about
things that it otherwise would not know, leading to better results.

Clients need to include a header file to make this work. Which header file depends on which client requests you
use. Some client requests are handled by the core, and are defined in the header fileval gri nd/ val gri nd. h.
Tool-specific header files are named after thetool, e.g. val gri nd/ mencheck. h. Each tool-specific header file
includesval gri nd/ val gri nd. h so you don't need to include it in your client if you include a tool-specific
header. All header files can befoundinthei ncl ude/ val gri nd directory of wherever Vagrind wasinstalled.

The macros in these header files have the magical property that they generate code in-line which Valgrind can
spot. However, the code does nothing when not run on Valgrind, so you are not forced to run your program under
Valgrind just because you use the macros in this file. Also, you are not required to link your program with any
extra supporting libraries.

The code added to your binary has negligible performance impact: on x86, amd64, ppc32, ppc64 and ARM, the
overhead is 6 simpleinteger instructions and is probably undetectable except in tight loops. However, if you really
wish to compile out the client requests, you can compile with - DNVALGRI ND (anal ogous to - DNDEBUGS effect
onassert).

Y ou are encouraged to copy theval gri nd/ *. h headersinto your project's include directory, so your program
doesn't have acompile-time dependency on Valgrind being installed. The Valgrind headers, unlike most of the rest
of thecode, areunder aBSD-stylelicense so you may include them without worrying about licenseincompatibility.

Hereisabrief description of the macrosavailableinval gri nd. h, which work with more than onetool (seethe
tool-specific documentation for explanations of the tool-specific macros).

RUNNI NG_ON_VALGRI ND:

Returns 1 if running on Valgrind, O if running on the real CPU. If you are running Valgrind on itself, returns
the number of layers of Valgrind emulation you're running on.

VALGRI ND_DI SCARD_TRANSLATI ONS:

Discards trandations of code in the specified address range. Useful if you are debugging a JIT compiler
or some other dynamic code generation system. After this call, attempts to execute code in the invalidated
address range will cause Valgrind to make new translations of that code, which is probably the semanticsyou
want. Note that code invalidations are expensive because finding al the relevant translations quickly is very

38

Using and understanding the Valgrind core: Advanced Topics

difficult, so try not to call it often. Note that you can be clever about this: you only need to call it when an
areawhich previously contained code is overwritten with new code. Y ou can choose to write code into fresh
memory, and just call this occasionally to discard large chunks of old code all at once.

Alternatively, for transparent self-modifying-code support, use- - snt- check=al | , or runon ppc32/Linux,
ppc64/Linux or ARM/Linux.

VALGRI ND_COUNT_ERRCRS:

Returns the number of errors found so far by Valgrind. Can be useful in test harness code when combined
with the - - | og- f d=- 1 option; this runs Valgrind silently, but the client program can detect when errors
occur. Only useful for toolsthat report errors, e.g. it'suseful for Memcheck, but for Cachegrind it will always
return zero because Cachegrind doesn't report errors.

VALGRI ND_MALLOCLI KE_BLOCK:

If your program manages its own memory instead of using the standard mal | oc / new/ new], tools that
track information about heap blocks will not do nearly as good a job. For example, Memcheck won't detect
nearly as many errors, and the error messages won't be as informative. To improve this situation, use this
macro just after your custom allocator allocates some new memory. See the commentsinval gri nd. h for
information on how to useit.

VALGRI ND_FREELI| KE_BLOCK:

This should be used in conjunction with VALGRI ND_MALLOCLI KE_BLOCK. Again, seeval gri nd. h for
information on how to useit.

VALGRI ND_RESI ZEI NPLACE_BLOCK:

Informs a Valgrind tool that the size of an alocated block has been modified but not its address. See
val gri nd. h for moreinformation on how to useit.

VALGRI ND_CREATE_MEMPOOL, VALGRI ND_DESTROY_MEMPOOL, VALGRI ND_MEMPOOL_ALLCC,
VALGRI ND_MEMPOOL _FREE, VALGRI ND_MOVE_MEMPOQL, VALGRI ND_MEMPOOL _ CHANGE,
VALGRI ND_MEMPOOL_EXI STS:

These are similar to VALGRI ND_MALLCCLI KE_BLOCK and VALGRI ND_FREEL| KE_BLOCK but are
tailored towards code that uses memory pools. See Memory Pools for a detailed description.

VALGRI ND_NON_SI MD_CALL[0123]:

Executes a function in the client program on the real CPU, not the virtual CPU that VValgrind normally runs
code on. The function must take an integer (holding athread ID) as the first argument and then O, 1, 2 or 3
more arguments (depending on which client request is used). These are used in various ways internally to
Valgrind. They might be useful to client programs.

Warning: Only usethese if you really know what you are doing. They aren't entirely reliable, and can cause
Vagrind to crash. Seeval gri nd. h for more details.

VALGRI ND_PRI NTF(format, ...):

Print a printf-style message to the Valgrind log file. The message is prefixed with the PID between a pair of
** markers. (Like all client requests, nothing is output if the client program is not running under Valgrind.)
Output is not produced until a newline is encountered, or subsequent Valgrind output is printed; this allows
you to build up asingle line of output over multiple calls. Returns the number of characters output, excluding
the PID prefix.

VALGRI ND_PRI NTF_BACKTRACE(f or mat, ...):

Like VALGRI ND_PRI NTF (in particular, the return value is identical), but prints a stack backtrace
immediately afterwards.

39

Using and understanding the Valgrind core: Advanced Topics

VALGRI ND_MONI TOR_COMMAND(conmand) :

Execute the given monitor command (a string). Returns 0 if command is recognised. Returns 1 if command
is not recognised. Note that some monitor commands provide access to a functionality also accessible viaa
specific client request. For example, memcheck leak search can be requested from the client program using
VALGRIND DO _LEAK_CHECK or viathe monitor command "leak_search”. Note that the syntax of the
command string is only verified at run-time. So, if it exists, it is preferable to use a specific client request to
have better compile time verifications of the arguments.

VALGRI ND_CLO_CHANGE(opti on):
Changes the value of a dynamically changeable option (astring). See Dynamically Change Options.
VALGRI ND_STACK_REQ STER(start, end):

Registers a new stack. Informs Valgrind that the memory range between start and end is a unique stack.
Returns a stack identifier that can be used with other VALGRI ND_STACK_* calls.

Valgrind will use this information to determine if a change to the stack pointer is an item pushed onto the
stack or a change over to a new stack. Use this if you're using a user-level thread package and are noticing
crashes in stack trace recording or spurious errors from Valgrind about uninitialized memory reads.

Warning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_DEREQ STER(i d) :

Deregisters a previously registered stack. Informs Valgrind that previously registered memory range with
stack idi d isno longer a stack.

War ning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_CHANGE(i d, start, end):

Changes apreviously registered stack. Informs Valgrind that the previously registered stack with stack id i d
has changed its start and end values. Use this if your user-level thread package implements stack growth.

War ning: Unfortunately, this client request is unreliable and best avoided.

3.2. Debugging your program using Valgrind
gdbserver and GDB

A program running under Valgrind is not executed directly by the CPU. Instead it runs on asynthetic CPU provided
by Valgrind. Thisiswhy adebugger cannot natively debug your program when it runs on Valgrind.

This section describes how GDB can interact with the Valgrind gdbserver to provide afully debuggable program
under Valgrind. Used in thisway, GDB a so provides an interactive usage of VValgrind core or tool functionalities,
including incremental leak search under Memcheck and on-demand Massif snapshot production.

3.2.1. Quick Start: debugging in 3 steps

The simplest way to get started isto run Valgrind with the flag - - vgdb- er r or =0. Then follow the on-screen
directions, which give you the precise commands needed to start GDB and connect it to your program.

Otherwise, here's a dlightly more verbose overview.

If you want to debug a program with GDB when using the Memcheck tool, start Vagrind like this:

val grind --vgdb=yes --vgdb-error=0 prog

In another shell, start GDB:

Using and understanding the Valgrind core: Advanced Topics

gdb prog

Then give the following command to GDB:

(gdb) target renote | vgdb
Y ou can now debug your program e.g. by inserting a breakpoint and then using the GDB cont i nue command.

This quick start information is enough for basic usage of the Valgrind gdbserver. The sections below describe
more advanced functionality provided by the combination of Vagrind and GDB. Note that the command line flag
- - vgdb=yes can be omitted, as thisis the default value.

3.2.2. Valgrind gdbserver overall organisation

The GNU GDB debugger is typically used to debug a process running on the same machine. In this mode, GDB
uses system calls to control and query the program being debugged. This works well, but only alows GDB to
debug a program running on the same computer.

GDB can also debug processes running on a different computer. To achieve this, GDB defines a protocol (that
is, aset of query and reply packets) that facilitates fetching the value of memory or registers, setting breakpoints,
etc. A gdbserver is an implementation of this"GDB remote debugging" protocol. To debug a process running on
aremote computer, a gdbserver (sometimes called a GDB stub) must run at the remote computer side.

The Valgrind core provides a built-in gdbserver implementation, which is activated using - - vgdb=yes or - -

vgdb=f ul | . This gdbserver allows the process running on Valgrind's synthetic CPU to be debugged remotely.
GDB sends protocol query packets (such as "get register contents") to the Valgrind embedded gdbserver. The
gdbserver executes the queries (for example, it will get the register values of the synthetic CPU) and gives the
results back to GDB.

GDB can use various kinds of channels (TCP/IP, seria line, etc) to communicate with the gdbserver. In the case
of Valgrind's gdbserver, communication is done via a pipe and a small helper program called vgdb, which acts as
anintermediary. If no GDB isin use, vgdb can also be used to send monitor commands to the Valgrind gdbserver
from ashell command line.

3.2.3. Connecting GDB to a Valgrind gdbserver

To debug a program "prog" running under Valgrind, you must ensure that the Valgrind gdbserver is
activated by specifying either - - vgdb=yes or - - vgdb=f ul | . A secondary command line option, - - vgdb-
err or =number , can be used to tell the gdbserver only to become active once the specified number of errors
have been shown. A value of zero will therefore cause the gdbserver to become active at startup, which allows
you to insert breakpoints before starting the run. For example:

val grind --tool =nentheck --vgdb=yes --vgdb-error=0 ./prog

The Valgrind gdbserver isinvoked at startup and indicatesit is waiting for a connection from a GDB:

==2418== Mentheck, a nmenory error detector

==2418== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2418== Using Valgrind-3.14.0.A T and Li bVEX; rerun with -h for copyright info
==2418== Command: ./prog

==2418==

==2418== (action at startup) vgdb nme ...

GDB (in another shell) can then be connected to the Valgrind gdbserver. For this, GDB must be started on the
program pr og:

41

Using and understanding the Valgrind core: Advanced Topics

gdb ./ prog

Y ou then indicate to GDB that you want to debug a remote target:

(gdb) target renote | vgdb

GDB then starts a vgdb relay application to communicate with the Valgrind embedded gdbserver:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

rel ayi ng data between gdb and process 2418

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so.debug...done.
Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2418]

0x001f 2850 in _start () from/lib/ld-1inux.so.2

(gdb)
Note that vgdb is provided as part of the Valgrind distribution. Y ou do not need to install it separately.

If vgdb detects that there are multiple Valgrind gdbservers that can be connected to, it will list al such servers
and their PIDs, and then exit. You can then reissue the GDB "target" command, but specifying the PID of the
process you want to debug:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

no --pid= arg given and nultiple valgrind pids found:

use --pid=2479 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2481 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2483 for valgrind --vgdb=yes --vgdb-error=0 ./another_prog

Renot e communi cati on error: Resource tenporarily unavail abl e.

(gdb) target renmpote | vgdb --pid=2479

Renot e debuggi ng using | vgdb --pid=2479

rel ayi ng data between gdb and process 2479

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so0.debug...done.

Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2479]

0x001f2850 in _start () from/lib/ld-1inux.so.2

(gdb)

If you want to use the - - mul t i mode which makes vgdb start in extended-remote mode, set the following in
GDB:

gdb prog

(gdb) set renote exec-file prog

(gdb) set sysroot /

(gdb) target extended-renmpte | vgdb --multi --vargs -¢
(gdb) start

Tenporary breakpoint 1 at 0x24e0

Starting program prog

rel ayi ng data between gdb and process 2999348

Tenporary breakpoint 1, 0x000000000010a4a0 in main ()
(gdb)

42

Using and understanding the Valgrind core: Advanced Topics

Note that in - - mul ti mode you don't have to start valgrind separately. vgdb will start valgrind for you. vgdb
--mul ti modeisexperimental and currently has some limitations like not being able to see program stdin and
stdout. Also you have to explicitly set the remote exec-file and sysroot to tell GDB the "remote” and local files
are the same.

Once GDB is connected to the Vagrind gdbserver, it can be used in the same way asif you were debugging the
program natively:

» Breakpoints can be inserted or deleted.

» Variables and register values can be examined or modified.
 Signal handling can be configured (printing, ignoring).

» Execution can be controlled (continue, step, next, stepi, etc).
* Program execution can be interrupted using Control-C.

And so on. Refer to the GDB user manual for a complete description of GDB's functionality.

3.2.4. Connecting to an Android gdbserver

When devel opping applications for Android, you will typically use a development system (on which the Android
NDK isinstaled) to compile your application. An Android target system or emulator will be used to run the
application. In this setup, Valgrind and vgdb will run on the Android system, while GDB will run on the
development system. GDB will connect to the vgdb running on the Android system using the Android NDK 'adb
forward' application.

Example: on the Android system, execute the following:

val grind --vgdb-error=0 --vgdb=yes prog
and then in another shell, run:
vgdb --port=1234

On the devel opment system, execute the following commands:

adb forward tcp: 1234 tcp: 1234
gdb prog
(gdb) target renote :1234

GDB will use a local tcpl/ip connection to connect to the Android adb forwarder. Adb will establish a relay
connection between the host system and the Android target system. Be sure to use the GDB delivered in the
Android NDK system (typically, arm-linux-androideabi-gdb), as the host GDB is probably not able to debug
Android arm applications. Note that the local port nr (used by GDB) must not necessarily be equal to the port
number used by vgdb: adb can forward tcp/ip between different port numbers.

In the current release, the GDB server is not enabled by default for Android, due to problems in establishing a
suitable directory in which Valgrind can create the necessary FIFOs (named pipes) for communication purposes.
You can stil try to use the GDB server, but you will need to explicitly enable it using the flag - - vgdb=yes or
--vgdb=fulI.

Additionally, you will need to select a temporary directory which is (a) writable by Valgrind, and (b) supports
FIFOs. Thisis the main difficult point. Often, / sdcar d satisfies requirement (a), but fails for (b) because it is
aVFAT file system and VFAT does not support pipes. Possibilities you could try are/ dat a/ | ocal ,/ dat a/

I ocal /I nst (if you installed Valgrind there), or / dat a/ dat a/ nane. of . my. app, if you are running a
specific application and it hasits own directory of that form. Thislast possibility may have the highest probability
of success.

You can specify the temporary directory to use either via the - - wi t h- t npdi r = configure time flag, or by
setting environment variable TMPDIR when running Valgrind (on the Android device, not on the Android NDK

43

Using and understanding the Valgrind core: Advanced Topics

development host). Another aternative is to specify the directory for the FIFOs using the - - vgdb- pr ef i x=
Vagrind command line option.

We hope to have a better story for temporary directory handling on Android in the future. The difficulty is that,
unlike in standard Unixes, there is no single temporary file directory that reliably works across al devices and
scenarios.

3.2.5. Monitor command handling by the Valgrind
gdbserver

The Valgrind gdbserver provides additional Valgrind-specific functionality via "monitor commands'. Such
monitor commands can be sent from the GDB command line or from the shell command line or requested by the
client program using the VALGRIND_MONITOR_COMMAND client request. See VValgrind monitor commands
for the list of the Valgrind core monitor commands available regardless of the Valgrind tool selected.

The following tools provide tool-specific monitor commands:
* Memcheck Monitor Commands

 Callgrind Monitor Commands

* Massif Monitor Commands

» Helgrind Monitor Commands

An example of atool specific monitor command is the Memcheck monitor command | eak_check full
reachabl e any. This requests a full reporting of the alocated memory blocks. To have this leak check
executed, use the GDB command:

(gdb) nonitor |eak _check full reachabl e any

GDB sends asasingle string al what follows 'monitor’ to the Valgrind gdbserver. The Valgrind gdbserver parses
the string and will execute the monitor command itself, if it recognisesit to be aValgrind core monitor command.
If it isnot recognised as such, it isassumed to be tool-specific and is handed to the tool for execution. For example:

(gdb) nonitor |eak check full reachabl e any

==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1
==2418== at Ox4006E9E: mal |l oc (vg _replace nall oc. c: 236)
==2418== by 0x804884F. main (prog.c: 88)

==2418==

==2418== LEAK SUMVARY

==2418== definitely lost: 0O bytes in O bl ocks

==2418== indirectly lost: 0 bytes in O bl ocks

==2418== possibly lost: 0 bytes in O bl ocks

==2418== still reachable: 100 bytes in 1 bl ocks
==2418== suppressed: 0 bytes in 0 bl ocks

==2418==

(gdb)

Similarly to GDB, the Valgrind gdbserver will accept abbreviated monitor command names and arguments, aslong
asthe given abbreviation is unambiguous. For example, the abovel eak _check command can also be typed as:

(gdb) mo | f r a

The letters no are recognised by GDB as being an abbreviation for noni t or . So GDB sends the string | f

r a tothe Vagrind gdbserver. The letters provided in this string are unambiguous for the Valgrind gdbserver.
This therefore gives the same output as the unabbreviated command and arguments. If the provided abbreviation
isambiguous, the Valgrind gdbserver will report the list of commands (or argument values) that can match:

Using and understanding the Valgrind core: Advanced Topics

(gdb) mo v. n

v. can match v.set v.info v.wait v.kill v.translate v.do
(gdb) mo v.i n

n_errs _found 0 n_errs_shown O (vgdb-error 0)

(gdb)

Instead of sending a monitor command from GDB, you can aso send these from a shell command line. For
example, the following command lines, when given in a shell, will cause the same leak search to be executed by
the process 3145:

vgdb --pi d=3145 | eak_check full reachabl e any
vgdb --pid=31451 f r a

Note that the Valgrind gdbserver automatically continues the execution of the program after a standalone
invocation of vgdb. Monitor commands sent from GDB do not cause the program to continue: the program
execution is controlled explicitly using GDB commands such as "continue" or "next".

Many monitor commands (e.g. v.info location, memcheck who_points at, ...) require an address argument and
an optional length: <addr > [<l en>] . The arguments can also be provided by using a'C array like syntax' by
providing the address followed by the length between square brackets.

For example, the following two monitor commands provide the same information:

(gdb) nmo xb 0x804a2f0 10

(gdb) o xb 0x804a2f 0[10]

3.2.6. GDB front end commands for Valgrind
gdbserver monitor commands

As explained in Monitor command handling by the Valgrind gdbserver, valgrind monitor commands consist in
strings that are not interpreted by GDB. GDB has no knowledge of these valgrind monitor commands. The GDB
‘command lineinterface' infrastructure however providesinteresting functionalitiesto help typing commands such
as auto-completion, command specific help, searching for acommand or command help matching a regexp, ...

To have a better integration of the valgrind monitor commands in the GDB command line interface, Valgrind
provides python code defining a GDB front end command for each valgrind monitor command. Similarly, for
each tool specific monitor command, the python code provides a matching GDB front end command.

Like other GDB commands, the GDB front end Valgrind monitor commands are hierarchically structured starting
from 5 "top" GDB commands. Subcommands are defined below these "top" commands. To ease typing, shorter
aliases are also provided.

» val gri nd (aliased by vg and v) is the top GDB command providing front end commands to the Valgrind
general monitor commands.

» nentheck (aliased by nt) isthe top GDB command providing the front end commands corresponding to the
memcheck specific monitor commands.

e cal I gri nd (aliased by cq) is the top GDB command providing the front end commands corresponding to
the callgrind specific monitor commands.

» massif (aliased by ns) is the top GDB command providing the front end commands corresponding to the
massif specific monitor commands.

« hel gri nd (aliased by hg) isthe top GDB command providing the front end commands corresponding to the
helgrind specific monitor commands.

Using and understanding the Valgrind core: Advanced Topics

The usage of aGDB front end command is compatible with adirect usage of the Valgrind monitor command. The
below example shows a direct usage of the Memcheck monitor command xb to examine the definedness status
of the some_mem array and equivalent usages based on the GDB front end commands.

(gdb) list
1 int main()
2 {

3 char sone_neni 5] ;
4 return O;
5}
(gdb) p &some_nmem
$2 = (char (*)[5]) Oxlffefffebb
(gdb) p sizeof (some_nem
$3 =5
(gdb) monitor xb Ox1ffefffebb 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) menctheck xb Ox1ffefffeb5b 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) nt xb &sone_nem si zeof (sone_nen)
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00

(gdb)

Itisworth noting down that the third command usesthe aliasnt. Thiscommand also showsasignificant advantage
of using the GDB front end commands: as GDB "understands" the structure of these front end commands, where
relevant, these front end commands will evaluate their arguments. In the case of the xb command, the GDB xb
command evaluates its second argument (which must be an address expression) and its optional second argument
(which must be an integer expression).

GDB will auto-load the python code defining the Valgrind front end commands as soon as GDB detects that
the executable being debugged is running under valgrind. This detection is based on observing that the Valgrind
process has loaded a specific Valgrind shared library. The loading of this library is done by the dynamic loader
very early oninthe execution of the process. If GDB isused to connect to aValgrind processthat hasnot yet started
its execution (such as when Valgrind was started with the option - - vgdb- st op- at =st art up or - - vgdb-
er r or =0), then the GDB front end commandswill not yet be auto-loaded. To havethe GDB front end commands
auto-loaded, you can put a breakpoint e.g. in main and use the GDB command cont i nue. Alternatively, you
can add in your .gdbinit aline that loads the python code at GDB startup such as:

source /path/to/val grind/pyt hon/ code/ val gri nd-noni tor. py

The exact path to use in the source command depends on your Valgrind installation. The output of the shell
command vgdb - - hel p contains the absolute path name for the python file you can source in your .gdbinit to
define the GDB valgrind front end monitor commands.

3.2.7. Valgrind gdbserver thread information

Vagrind's gdbserver enriches the output of the GDB i nfo threads command with Valgrind-specific
information. The operating system's thread number is followed by Vagrind'sinternal index for that thread ("tid")
and by the Valgrind scheduler thread state:

(gdb) info threads
4 Thread 6239 (tid 4 VgTs_Yielding) 0x001f2832 in _dl _sysinfo int80 () from/lib/ld-
* 3 Thread 6238 (tid 3 VgTs_Runnable) make error (s=0x8048b76 "called from London") at
2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001f2832 in _dl_sysinfo int80 () from/lib/ld-I]i

46

Using and understanding the Valgrind core: Advanced Topics

1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1, argv=0xbedcc274) at prog.c: 105
(gdb)

3.2.8. Examining and modifying Valgrind shadow
registers

When the option - - vgdb- shadow- r egi st er s=yes isgiven, the Valgrind gdbserver will let GDB examine
and/or modify Valgrind's shadow registers. GDB version 7.1 or later isneeded for thisto work. For x86 and amd64,
GDB version 7.2 or later is needed.

For each CPU register, the Valgrind core maintains two shadow register sets. These shadow registers can be
accessed from GDB by giving apostfix s 1 or s 2 for respectively thefirst and second shadow register. For example,
the x86 register eax and its two shadows can be examined using the following commands:

(gdb) p $eax
$1 =0

(gdb) p $eaxsl
$2 =0

(gdb) p $eaxs2
$3 =0

(gdb)

Float shadow registers are shown by GDB as unsigned integer values instead of float values, asit is expected that
these shadow values are mostly used for memcheck validity bits.

Intel/amd64 AV X registersy nm0 to y nriL5 have also their shadow registers. However, GDB presentsthe shadow
values using two "half" registers. For example, the half shadow registers for ynm® are xnmBs1 (lower half for
set 1), yymBhs 1 (upper half for set 1), xnmBs2 (lower half for set 2), ymmBhs2 (upper half for set 2). Note the
inconsistent notation for the names of the half registers: the lower part starts with an x, the upper part starts with
any and has an h before the shadow postfix.

The specia presentation of the AV X shadow registers is due to the fact that GDB independently retrieves the
lower and upper half of the ymmregisters. GDB does not however know that the shadow half registers have to
be shown combined.

3.2.9. Limitations of the Valgrind gdbserver

Debugging with the Valgrind gdbserver isvery similar to native debugging. Va grind's gdbserver implementation
is quite complete, and so provides most of the GDB debugging functionality. There are however some limitations
and peculiarities:

 Precision of "stop-at" commands.

GDB commands such as "step”, "next", "stepi, breakpoints and watchpoints, will stop the execution of the
process. With the option - - vgdb=yes, the process might not stop at the exact requested instruction. Instead, it
might continue execution of the current basic block and stop at one of the following basic blocks. Thisislinked
to thefact that VValgrind gdbserver hasto instrument a block to allow stopping at the exact instruction requested.
Currently, re-instrumentation of the block currently being executed is not supported. So, if the action requested
by GDB (e.g. single stepping or inserting abreakpoint) impliesre-instrumentation of the current block, the GDB
action may not be executed precisely.

This limitation applies when the basic block currently being executed has not yet been instrumented for
debugging. This typically happens when the gdbserver is activated due to the tool reporting an error or to a
watchpoint. If the gdbserver block has been activated following abreakpoint, or if abreakpoint has been inserted
in the block before its execution, then the block has already been instrumented for debugging.

If you use the option - - vgdb=f ul | , then GDB "stop-at" commands will be obeyed precisely. The downside
is that this requires each instruction to be instrumented with an additional call to a gdbserver helper function,

47

Using and understanding the Valgrind core: Advanced Topics

which gives considerable overhead (+500% for memcheck) compared to - - vgdb=no. Option - - vgdb=yes
has neglectible overhead compared to - - vgdb=no.

Processor registers and flags values.

When Valgrind gdbserver stops on an error, on a breakpoint or when single stepping, registers and flags values
might not be always up to date due to the optimisations done by the Valgrind core. The default value - -
vex-iropt-register-updat es=unwi ndregs-at - mem access ensures that the registers needed
to make a stack trace (typically PC/SP/FP) are up to date at each memory access (i.e. memory exception points).
Disabling some optimisations using the following valueswill increase the precision of registers and flags values
(atypical performance impact for memcheck is given for each option).

e --vex-iropt-regi ster-updates=allregs-at-nmemaccess (+10%) ensuresthat all registers
and flags are up to date at each memory access.

e --vex-iropt-regi ster-updates=allregs-at-each-insn (+25%) ensures that all registers
and flags are up to date at each instruction.

Note that - - vgdb=f ul | (+500%, see above Precision of "stop-at" commands) automatically activates - -

vex-iropt-regi ster-updates=allregs-at-each-insn.

Hardware watchpoint support by the Valgrind gdbserver.

The Valgrind gdbserver can smulate hardware watchpoints if the selected tool provides support for it.
Currently, only Memcheck provides hardware watchpoint simulation. The hardware watchpoint simulation
provided by Memcheck is much faster that GDB software watchpoints, which are implemented by GDB
checking the value of the watched zone(s) after each instruction. Hardware watchpoint simulation also provides
read watchpoints. The hardware watchpoint simulation by Memcheck has some limitations compared to real
hardware watchpoints. However, the number and length of simulated watchpoints are not limited.

Typically, the number of (real) hardware watchpointsis limited. For example, the x86 architecture supports a
maximum of 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 bytes. The Vagrind gdbserver
does not have any limitation on the number of simulated hardware watchpoints. It also has no limitation on the
length of the memory zone being watched. Using GDB version 7.4 or later allow full use of the flexibility of the
Valgrind gdbserver's simulated hardware watchpoints. Previous GDB versions do not understand that VValgrind
gdbserver watchpoints have no length limit.

Memcheck implements hardware watchpoint simulation by marking the watched address ranges as being
unaddressable. When a hardware watchpoint is removed, the range is marked as addressable and defined.
Hardware watchpoint simulation of addressable-but-undefined memory zones works properly, but has the
undesirable side effect of marking the zone as defined when the watchpoint is removed.

Write watchpoints might not be reported at the exact instruction that writes the monitored area, unless option
- -vgdb=f ul | isgiven. Read watchpointswill always be reported at the exact instruction reading the watched
memory.

It is better to avoid using hardware watchpoint of not addressable (yet) memory: in such a case, GDB will fall
back to extremely slow software watchpoints. Also, if you do not quit GDB between two debugging sessions,
the hardware watchpoints of the previous sessions will be re-inserted as software watchpoints if the watched
memory zone is not addressable at program startup.

Stepping inside shared libraries on ARM.

For unknown reasons, stepping inside shared libraries on ARM may fail. A workaround is to use the | dd
command to find the list of shared libraries and their loading address and inform GDB of the loading address
using the GDB command "add-symbol-file". Example:

(gdb) shell |dd ./prog
libc.so.6 => /lib/libc.so.6 (0x4002c000)
/1ib/ld-1inux.so.3 (0x40000000)

Using and understanding the Valgrind core: Advanced Topics

(gdb) add-synbol-file /lib/libc.so.6 0x4002c000
add synbol table fromfile "/lib/libc.so.6" at
.text _addr = 0x4002c000

(y or n) y
Readi ng synbols from/lib/libc.so.6...(no debuggi ng synbols found)...done.

(gdb)
GDB version needed for ARM and PPC32/64.

You must use a GDB version which is able to read XML target description sent by a gdbserver. This is the
standard setup if GDB was configured and built with the "expat" library. If your GDB was not configured with
XML support, it will report an error message when using the "target” command. Debugging will not work
because GDB will then not be ableto fetch the registers from the VValgrind gdbserver. For ARM programs using
the Thumb instruction set, you must use a GDB version of 7.1 or later, as earlier versions have problems with
next/step/breakpoints in Thumb code.

Stack unwinding on PPC32/PPC64.

On PPC32/PPC64, stack unwinding for leaf functions (functions that do not call any other functions) works
properly only when you give the option - - vex-i ropt -regi st er - updat es=al | r egs- at - nem
accessor--vex-iropt-register-updates=al |l regs-at-each-insn.Youmustaso passthis
option in order to get a precise stack when a signal is trapped by GDB.

Breakpoints encountered multiple times.

Some instructions (e.g. x86 "rep movsh") are trandated by Vagrind using a loop. If a breakpoint is placed on
such an instruction, the breakpoint will be encountered multiple times -- once for each step of the "implicit"
loop implementing the instruction.

Execution of Inferior function calls by the Valgrind gdbserver.

GDB alowsthe user to "call" functionsinside the process being debugged. Such callsare named "inferior calls"
in the GDB terminology. A typical use of an inferior call is to execute afunction that prints a human-readable
version of a complex data structure. To make an inferior cal, use the GDB "print" command followed by the
function to call and its arguments. As an example, the following GDB command causes an inferior call to the
libc "printf" function to be executed by the process being debugged:

(gdb) p printf("process being debugged has pid %\ n", getpid())
$5 = 36
(gdb)

The Valgrind gdbserver supports inferior function calls. Whilst an inferior call is running, the Valgrind tool
will report errors as usual. If you do not want to have such errors stop the execution of the inferior call, you
canusev. set vgdb-error toset ahig vaue before the cal, then manually reset it to its original value
when the call is complete.

To executeinferior calls, GDB changes registers such as the program counter, and then continues the execution
of the program. In a multithreaded program, all threads are continued, not just the thread instructed to make
theinferior call. If another thread reports an error or encounters a breakpoint, the evaluation of the inferior call
is abandoned.

Note that inferior function calls are a powerful GDB feature, but should be used with caution. For example,
if the program being debugged is stopped inside the function "printf”, forcing a recursive call to printf viaan
inferior call will very probably create problems. The Valgrind tool might also add another level of complexity
toinferior cals, e.g. by reporting tool errors during the Inferior call or due to the instrumentation done.

Connecting to or interrupting a Valgrind process blocked in a system call.

Connecting to or interrupting a Valgrind process blocked in a system call requires the "ptrace” system call to
be usable. This may be disabled in your kernel for security reasons.

49

Using and understanding the Valgrind core: Advanced Topics

When running your program, Valgrind's scheduler periodically checks whether thereis any work to be handled
by the gdbserver. Unfortunately this check isonly doneif at least one thread of the processisrunnable. If al the
threads of the process are blocked in a system call, then the checks do not happen, and the Valgrind scheduler
will not invoke the gdbserver. In such acase, thevgdb relay application will "force" the gdbserver to beinvoked,
without the intervention of the Valgrind scheduler.

Such forced invocation of the Valgrind gdbserver is implemented by vgdb using ptrace system calls. On a
properly implemented kernel, the ptrace calls done by vgdb will not influence the behaviour of the program
running under Valgrind. If however they do, giving the option - - max-i nvoke- ns=0 to the vgdb relay
application will disable the usage of ptrace calls. The consequence of disabling ptrace usage in vgdb is that a
Valgrind process blocked in asystem call cannot be woken up or interrupted from GDB until it executes enough
basic blocksto let the Valgrind scheduler's normal checking take effect.

When ptrace is disabled in vgdb, you can increase the responsiveness of the Valgrind gdbserver to commands
or interrupts by giving a lower value to the option - - vgdb- pol | . If your application is blocked in system
calls most of the time, using a very low value for - - vgdb- pol | will cause a the gdbserver to be invoked
sooner. The gdbserver polling done by Vagrind's scheduler is very efficient, so the increased polling frequency
should not cause significant performance degradation.

When ptrace is disabled in vgdb, a query packet sent by GDB may take significant time to be handled by the
Valgrind gdbserver. In such cases, GDB might encounter a protocol timeout. To avoid this, you can increase
the value of the timeout by using the GDB command "set remotetimeout”.

Ubuntu versions 10.10 and later may restrict the scope of ptrace to the children of the process calling ptrace. As
the Valgrind processis not achild of vgdb, such restricted scoping causes the ptrace callsto fail. To avoid that,
Valgrind will automatically allow al processes belonging to the same userid to "ptrace” a Valgrind process,
by using PR_SET_PTRACER.

Unblocking processes blocked in system callsis not currently implemented on Mac OS X and Android. So you
cannot connect to or interrupt a process blocked in a system call on Mac OS X or Android.

Unblocking processesblocked in system callsisimplemented viaagent thread on Solaris. Thisisquiteadifferent
approach than using ptrace on Linux, but leads to equivalent result - Valgrind gdbserver is invoked. Note that
agent thread is a Solaris OS feature and cannot be disabl ed.

» Changing register values.

TheValgrind gdbserver will only modify thevalues of thethread'sregisterswhen thethread isin status Runnable
or Yielding. In other states (typically, WaitSys), attempts to change register values will fail. Amongst other
things, this means that inferior calls are not executed for a thread which isin a system call, since the Valgrind
gdbserver does not implement system call restart.

» Unsupported GDB functionality.

GDB providesalot of debugging functionality and not all of it is supported. Specifically, the following are not
supported: reversible debugging and tracepoints.

» Unknown limitations or problems.

The combination of GDB, Valgrind and the Valgrind gdbserver probably has unknown other limitations and
problems. If you encounter strange or unexpected behaviour, feel free to report a bug. But first please verify
that the limitation or problem is not inherent to GDB or the GDB remote protocol. You may be able to do so
by checking the behaviour when using standard gdbserver part of the GDB package.

3.2.10. vgdb command line options
Usage:vgdb [OPTION] ... [[-c] COWAND] ...

vgdb ("Valgrind to GDB") is a small program that is used as an intermediary between Valgrind and GDB or a
shell. It has three usage modes:

50

Using and understanding the Valgrind core: Advanced Topics

1. Asastandalone utility, it is used from a shell command line to send monitor commands to a process running
under Valgrind. For this usage, the vgdb OPTION(s) must be followed by the monitor command to send. To
send more than one command, separate them with the - ¢ option.

2. In combination with GDB "target remote [command, it is used as the relay application between GDB and the
Valgrind gdbserver. For this usage, only OPTION(s) can be given, but no COMMAND can be given.

3. Inthe- - mul ti mode, vgdb uses the extended remote protocol to communicate with GDB. Thisallowsyouto
view output from both valgrind and GDB in the GDB session. This is accomplished via the "target extended-
remote | vgdb --multi”. In this mode you no longer need to start valgrind yourself. vgdb will start up valgrind
when gdb tellsit to run a new program. For this usage, the vgdb OPTIONS(s) can alsoinclude - - val gri nd
and - - var gs to describe how valgrind should be started.

vgdb accepts the following options:
- - pi d=<nunber >

Specifies the PID of the process to which vgdb must connect to. This option is useful in case more than one
Vagrind gdbserver can be connected to. If the- - pi d argument is not given and multiple Va grind gdbserver
processes are running, vgdb will report the list of such processes and then exit.

--vgdb- prefix

Must be given to both VValgrind and vgdb if you want to change the default prefix for the FIFOs (named pipes)
used for communication between the VValgrind gdbserver and vgdb.

--wai t =<nunber >

Instructs vgdb to search for available Valgrind gdbservers for the specified number of seconds. This makes
it possible start a vgdb process before starting the Valgrind gdbserver with which you intend the vgdb to
communicate. This option is useful when used in conjunction with a- - vgdb- pr ef i x that isunique to the
process you want to wait for. Also, if you usethe - - wai t argument in the GDB "target remote" command,
you must set the GDB remotetimeout to a value bigger than the --wait argument value. See option - - max-

i nvoke- ns (just below) for an example of setting the remotetimeout value.

- - max- i nvoke- ne=<nunber >

Gives the number of milliseconds after which vgdb will force the invocation of gdbserver embedded in
Vagrind. Thedefault valueis 100 milliseconds. A valueof 0 disablesforced invocation. Theforced invocation
is used when vgdb is connected to a Valgrind gdbserver, and the Vagrind process has al its threads blocked
inasystem call.

If you specify alarge value, you might need to increase the GDB "remotetimeout” value from its default value
of 2 seconds. Y ou should ensure that the timeout (in seconds) is bigger than the - - max- i nvoke- s value.
For example, for - - max- i nvoke- ns=5000, the following GDB command is suitable:

(gdb) set renotetineout 6

--cmd-ti me- out =<nunber >

Instructs a standalone vgdb to exit if the Valgrind gdbserver it is connected to does not process a command
in the specified number of seconds. The default value isto never time out.

- - port=<portnr>

Instructsvgdb to usetcp/ip and listen for GDB on the specified port nr rather than to use a pipeto communicate
with GDB. Using tcp/ip allows to have GDB running on one computer and debugging a Valgrind process
running on another target computer. Example:

51

Using and understanding the Valgrind core: Advanced Topics

On the target conputer, start your program under val grind using

val grind --vgdb-error=0 prog

and then in another shell, run:

vgdb --port=1234

On the computer which hosts GDB, execute the command:

gdb prog

(gdb) target renote targetip: 1234

where targetip is the ip address or hostname of the target computer.
--vgdb-nul ti

Makes vgdb start in extended-remote mode and to wait for gdb to tell us what to run.
--valgrind

The path to valgrind to use, in extended-remote mode. If not specified, the system valgrind will be launched.

--vargs

Options to run valgrind with, in extended-remote mode. For example - q. Everything following - - var gs
will be provided as argumentsto valgrind asis.

To give more than one command to a standal one vgdb, separate the commands by an option - ¢c. Example:

vgdb v.set log output -c |eak _check any
Instructs a standal one vgdb to report the list of the Valgrind gdbserver processes running and then exit.
Instructs vgdb to add timestamps to vgdb information messages.

Instructs a standal one vgdb to show the state of the shared memory used by the VValgrind gdbserver. vgdb will
exit after having shown the Valgrind gdbserver shared memory state.

Instructs vgdb to produce debugging output. Give multiple - d args to increase the verbosity. When giving -
d to arelay vgdb, you better redirect the standard error (stderr) of vgdb to afile to avoid interaction between
GDB and vgdb debugging output.

3.2.11. Valgrind monitor commands

This section describes the Valgrind monitor commands, available regardless of the Valgrind tool selected. For
the tool specific commands, refer to Memcheck Monitor Commands, Helgrind Monitor Commands, Callgrind
Monitor Commands and Massif Monitor Commands.

The monitor commands can be sent either from a shell command line, by using a standalone vgdb, or from GDB,
by using GDB's "monitor" command (see Monitor command handling by the Valgrind gdbserver) or by GDB's
"valgrind" front end commands (see GDB front end commands for Valgrind gdbserver monitor commands). They
can also be launched by the client program, using the VALGRIND_MONITOR_COMMAND client request.

52

Using and understanding the Valgrind core: Advanced Topics

Whatever the way the monitor command is launched, it will behave the same way. However, using the GDB's
valgrind front end commands allows to benefit from the GDB infrastructure, such as expression evaluation. When

relevant, the description of a monitor command below describes the additional flexibility provided by the GDB

valgrind front end command. To launch a valgrind monitor command via its GDB front end command, instead

of prefixing the command with "monitor", you must use the GDB val gri nd command (or the shorter aliases

vg orv). In GDB, you can use hel p val gri nd to get help about the valgrind front end monitor commands

and you can use apr opos val gri nd to get al the commands mentionning the word "valgrind” in their name
or on-line help.

e hel p [debug] instructs Vagrind's gdbserver to give the list of all monitor commands of the Valgrind core
and of the tool. The optiona "debug" argument tells to also give help for the monitor commands aimed at
Valgrind internals debugging.

Note that this monitor command produces the help information as provided by valgrind gdbserver. The GDB
help givene.g. by hel p val gri nd orhel p val grind v. i nf o providesthe help of the GDB front end
command for the equivalent valgrind gdbserver monitor command. This"GDB help" describes the additional
flexibility provided by the GDB front end command.

v.info all _errors [al so_suppressed] showsall errorsfound so far.
The optional "also_suppressed” argument indicates to also output the suppressed errors.
v.info |last_error showsthelast error found.

v.info location <addr> outputsinformation about the location <addr>. Possibly, the following are
described: global variables, local (stack) variables, allocated or freed blocks, ... The information produced
depends on the tool and on the options given to valgrind. Some tools (e.g. memcheck and helgrind) produce
more detailed information for client heap blocks. For example, these tools show the stacktrace where the heap
block was allocated. If atool does not replace the malloc/fredl... functions, then client heap blocks will not
be described. Use the option - - r ead- var - i nf o=yes to obtain more detailed information about global or
local (stack) variables.

(gdb) nonitor v.info | ocation 0x1130a0
Location 0x1130a0 is O bytes inside global var
decl ared at tcl19 shadowrem c: 19

(gdb) nmo v.in loc Ox1ffefffelO
Location Ox1lffefffelO is O bytes inside info.child,
decl ared at tcl1l9 shadowremc: 139, in frane #1 of thread 1

(gdb)

The GDB valgrind front end command val grind v.info |ocation ADDR accepts any address
expression for its ADDR argument. In the below examples, mx is a global struct and info is a pointer to a
structure. Instead of having to print the addresses of the structure and printing the pointer variable, you can
directly use the expressions in the GDB valgrind front end command argument.

nx

(gdb) valgrind v.info | ocation &rx

Location 0x1130a0 is O bytes inside global var "nx"
declared at tcl1l9 shadowrem c: 19
(gdb) v v.i lo info

Location Ox1ffefffelO is O bytes inside info.child,
declared at tcl9 shadowmremc: 139, in frame #1 of thread 1

(gdb)

v.info n_errs_found [nsg] showsthe number of errors found so far, the nr of errors shown so far
and the current value of the - - vgdb- er r or argument. The optional nsg (one or more words) is appended.
Typically, this can be used to insert markersin a process output file between several tests executed in sequence
by a process started only once. This allows to associate the errors reported by Valgrind with the specific test
that produced these errors.

53

Using and understanding the Valgrind core: Advanced Topics

e v.info open_fds shows the list of open file descriptors and details related to the file descriptor. This
only worksif - -t rack-fds=yesor--track-fds=al |l (toincludest di n,st dout andst derr)was
given at Valgrind startup.

e v.clo <cl o_option>. .. changesoneor moredynamic command line options. If no clo_optionisgiven,
lists the dynamically changeable options. See Dynamically Change Options. The below shows example of
changing the value of - - vgdb- er r or using directly the valgrind monitor command, using the equivalent
GDB valgrind front end command. It also shows how a more flexible setting can be done using the GDB eval
command.

(gdb) nmo v.clo --vgdb-error=10

==2808839== Handl i ng new val ue --vgdb-error=10 for option --vgdb-error
(gdb) v v.clo --vgdb-error=11

==2808839== Handl i ng new val ue --vgdb-error=11 for option --vgdb-error
(gdb) set var $nnn = 15

(gdb) eval "v v.clo --vgdb-error=%", $nnn + 1

==2808839== Handl i ng new val ue --vgdb-error=16 for option --vgdb-error

(gdb)

 v.set {gdb_output | |og_output | mn xed_output} alowsredirection of the Valgrind output
(e.0. the errors detected by the tool). The default settingismi xed_out put .

With m xed_out put , the Valgrind output goes to the Valgrind log (typically stderr) while the output of the
interactive GDB monitor commands (e.g.v. i nfo | ast _error) isdisplayed by GDB.

Withgdb_out put , both theVValgrind output and theinteractive GDB monitor commands output are displayed
by GDB.

With | og_out put, both the Valgrind output and the interactive GDB monitor commands output go to the
Valgrind log.

e v.wait [ns (default 0)] instructsValgrind gdbserver to sleep "ms"' milli-seconds and then continue.
When sent from a standalone vgdb, if thisisthelast command, the Valgrind processwill continue the execution
of the guest process. Thetypical usage of thisisto use vgdb to send a"no-op" command to aValgrind gdbserver
S0 asto continue the execution of the guest process.

The GDB valgrind front end command val gri nd v.wait MS acceptsany integer expression for its MS
argument, while the monitor command accepts only integer numbers.

* v. ki || requeststhe gdbserver to kill the process. This can be used from a standalone vgdb to properly kill a
Valgrind process which is currently expecting a vgdb connection.

 v.set vgdb-error <errornr> dynamicaly changes the value of the - - vgdb- err or valgrind
command line argument. A typical usage of thisisto start with - - vgdb- er r or =0 on the command line, then
set afew breakpoints, set the vgdb-error value to a huge value and continue execution. Note that you can also
changethisvalueusingeg.v. cl o --vgdb-error=12

The GDB valgrind front end command val grind v.set vgdb-error NUM accepts any integer
expression for its ERRORNR argument, while the monitor command accepts only integer numbers.

* v.set nerge-recursive-frames <nune dynamicaly changes the value of the - - ner ge-
recur si ve-frames valgrind command line argument. Note that you can also change this value using e.g.
v.clo --merge-recursive-franmes=5

The GDB valgrind front end command val gri nd v.set nerge-recursive-franes NUMaccepts
any integer expression for its NUM argument, while the monitor command accepts only integer numbers.

o xtmenory [<filenane> default xtmenory.kcg. %. %] requeststhetool (Memcheck, Massif,
Helgrind) to produce an xtree heap memory report. See Execution Trees for a detailed explanation about
execution trees.

Using and understanding the Valgrind core: Advanced Topics

Thefollowing Valgrind monitor commands are useful for investigating the behaviour of Valgrind or its gdbserver
in case of problems or bugs.

e v.do expensive_sanity check _general executes various sanity checks. In particular, the sanity
of the Valgrind heap is verified. This can be useful if you suspect that your program and/or Valgrind has a
bug corrupting Valgrind data structure. It can also be used when a Valgrind tool reports a client error to the
connected GDB, in order to verify the sanity of Valgrind before continuing the execution.

e v.info gdbserver_stat us showsthe gdbserver status. In case of problems (e.g. of communications),
this shows the values of some relevant Valgrind gdbserver internal variables. Note that the variables related to
breakpoints and watchpoints (e.g. the number of breakpoint addresses and the number of watchpoints) will be
zero, as GDB by default removes all watchpoints and breakpoints when execution stops, and re-inserts them
when resuming the execution of the debugged process. Y ou can change this GDB behaviour by using the GDB
command set breakpoi nt al ways-inserted on.

« v.info nenory [aspacengr] showsthestatistics of Valgrind'sinternal heap management. If option - -
profi | e- heap=yes wasgiven, detailed statistics will be output. With the optional argument aspacenyr .
the segment list maintained by valgrind address space manager will be output. Note that this list of segments
is always output on the Valgrind log.

 v.info exectxt shows information about the "executable contexts' (i.e. the stack traces) recorded by
Valgrind. For some programs, Valgrind can record a very high number of such stack traces, causing a high
memory usage. This monitor command shows all the recorded stack traces, followed by some statistics. This
can be used to analyse the reason for having abig number of stack traces. Typically, you will use this command
if v. i nfo menory hasshown significant memory usage by the "exectxt" arena.

» v.info schedul er showsvariousinformation about threads. First, it outputs the host stack trace, i.e. the
Valgrind code being executed. Then, for each thread, it outputs the thread state. For non terminated threads, the
state is followed by the guest (client) stack trace. Finally, for each active thread or for each terminated thread
slot not yet re-used, it shows the max usage of the valgrind stack.

Showing the client stack traces allows to compare the stack traces produced by the Vagrind unwinder with the
stack traces produced by GDB+Va grind gdbserver. Pay attention that GDB and Valgrind scheduler status have
their own thread numbering scheme. To make the link between the GDB thread number and the corresponding
Valgrind scheduler thread number, use the GDB command i nf o t hr eads. The output of this command
shows the GDB thread number and the valgrind 'tid'. The 'tid' is the thread number output by v. i nfo
schedul er . Whenusingthecallgrind tool, the callgrind monitor command st at us outputsinternal callgrind
information about the stack/call graph it maintains.

* v.info stats showsvariousvalgrind core and tool statistics. With this, Valgrind and tool statistics can be
examined while running, even without option - - st at s=yes.

e v.info unwi nd <addr> [<l en>] showsthe CFl unwind debug info for the address range [addr, addr
+len-1]. The default value of <len> is 1, giving the unwind information for the instruction at <addr>.

The GDB valgrind front end command val gri nd v.info unwi nd ADDR [LEN] acceptsany address
expression for its first ADDR argument, such as $pc. The second optional argument is any integer expression.
Note that these 2 arguments must be separated by a space.

* v.set debugl og <i nt val ue> setstheValgrind debugloglevel to <intvalue>. Thisallowsto dynamically
change the log level of Valgrind e.g. when a problem is detected.

The GDB valgrind front end command val grind v.set debuglog LEVEL accepts any address
expression for its LEVEL argument.

e v.set hostvisibility [yes*|no] Thevaue"yes" indicatesto gdbserver that GDB can look at the
Valgrind 'host' (internal) statusmemory. "no" disables this access. When hostvisibility is activated, GDB can
e.g. look at Valgrind global variables. As an example, to examine aValgrind global variable of the memcheck
tool on an x86, do the following setup:

55

Using and understanding the Valgrind core: Advanced Topics

(gdb) nonitor v.set hostvisibility yes

Enabl ed access to Val grind menory/status by GDB

If not yet done, tell GDB which valgrind file(s) to use, typically:

add- synbol -file /hone/philippe/val grind/git/inprove/lnst/l|ibexec/val grind/ nmencheck-an

(gdb) add-synbol -file /hone/philippe/val grind/git/inprove/lnst/|ibexec/val grind/ nmenche

add synbol table fromfile "/home/philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/
.text_addr = 0x58001000

(y or n) y
Readi ng synbol s from /home/ philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/ menchec

(gdb)

After that, variables defined in memcheck-x86-linux can be accessed, e.g.

(gdb) p /x vgPlain_threads[1].o0s_state
$3 = {Iwpid = 0x4688, threadgroup = 0x4688, parent = 0xO0,
val gri nd_stack_base = 0x62e78000, val grind_stack_ init_SP = 0x62f 79f e0,
exi tcode = 0x0, fatal sig = 0x0}
(gdb) p vex_control
$5 = {iropt_verbosity = 0, iropt_level = 2,
i ropt _regi ster_updates = VexRegUpdUnwi ndr egsAt MemAccess,
iropt _unroll _thresh = 120, guest_nax_insns = 60, guest_chase_thresh = 10}

(gdb)

e« v.transl ate <address> [<tracefl ags>] showsthetrandation of the block containing addr ess
withthegiventraceflags. Thet r acef | ags vauebit patterns have similar meaningto Valgrind's- -t r ace-
f 1 ags option. It can be given in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1s and Os bit (e.g.
0b00100000). Thedefault value of thetraceflagsis 0b00100000, corresponding to "show after instrumentation”.
The output of this command always goesto the Valgrind log.

The additional bit flag Ob100000000 (bit 8) has no equivalent in the - -t r ace- f | ags option. It enables
tracing of the gdbserver specific instrumentation. Note that this bit 8 can only enable the addition of gdbserver
instrumentation in the trace. Setting it to 0 will not disable the tracing of the gdbserver instrumentation if it is
active for some other reason, for example because there is a breakpoint at this address or because gdbserver
isin single stepping mode.

The GDB valgrind front end command val grind v.transl ate ADDR [TRACEFLAG accepts any
address expression for its first ADDR argument, such as $pc. The second optional argument is any integer
expression. Note that these 2 arguments must be separated by a space.

3.3. Function wrapping

Vagrind allows calls to some specified functions to be intercepted and rerouted to a different, user-supplied
function. This can do whatever it likes, typically examining the arguments, calling onwards to the original, and
possibly examining the result. Any number of functions may be wrapped.

Function wrapping is useful for instrumenting an APl in some way. For example, Helgrind wraps functions in
the POSIX pthreads API so it can know about thread status changes, and the core is able to wrap functionsin the
MPI (message-passing) APl so it can know of memory status changes associated with message arrival/departure.

Such information is usually passed to Valgrind by using client requests in the wrapper functions, although the
exact mechanism may vary.

3.3.1. A Simple Example

Supposing we want to wrap some function
int foo (int x, int y) { returnx +vy; }

56

Using and understanding the Valgrind core: Advanced Topics

A wrapper is a function of identical type, but with a special name which identifies it as the wrapper for f 0o.
Wrappers need to include supporting macros from val gri nd. h. Here is a simple wrapper which prints the
arguments and return value:

#i ncl ude <stdio. h>
#i ncl ude "val grind. h"
int | _WRAP_SONAME_FNNAME_ZU(NONE, foo) (int x, int y)
{
i nt result;
OigFn fn;
VALGRI ND_GET_ORI G FN(fn);
printf("foo's wapper: args % %\n", X, y);
CALL_FN WWN(result, fn, x,vy);
printf("foo's wapper: result %\n", result);
return result;

}

To become active, the wrapper merely needsto be present in atext section somewherein the same process' address
space as the function it wraps, and for its ELF symbol name to be visible to Valgrind. In practice, this means
either compilingto a. o and linking it in, or compilingto a. so and LD_PRELQADIng it in. The latter is more
convenient in that it doesn't require relinking.

All wrappers have approximately the above form. There are three crucial macros:

| VWRAP_SONAME_FNNANME ZU: this generates the real name of the wrapper. This is an encoded name which
Va grind notices when reading symbol tableinformation. What it saysis: | am the wrapper for any function named
f oo whichisfound in an ELF shared object with an empty ("NONE") soname field. The specification mechanism
is powerful in that wildcards are allowed for both sonames and function names. The details are discussed below.

VALGRI ND_GET_ORI G_FN: once in the wrapper, the first priority isto get hold of the address of the original
(and any other supporting information needed). Thisis stored in avalue of opaquetype Or i gFn. Theinformation
is acquired using VALGRI ND_GET_CORI G_FN. It is crucia to make this macro call before caling any other
wrapped function in the same thread.

CALL_FN_W WN eventually we will want to call the function being wrapped. Calling it directly does not work,
since that just gets us back to the wrapper and leads to an infinite loop. Instead, the result Ivalue, Or i gFn and
arguments are handed to one of a family of macros of the form CALL_FN_*. These cause Valgrind to call the
origina and avoid recursion back to the wrapper.

3.3.2. Wrapping Specifications

This scheme has the advantage of being self-contained. A library of wrappers can be compiled to object codein
the normal way, and does not rely on an external script telling Valgrind which wrappers pertain to which originals.

Each wrapper has a name which, in the most general case says. | am the wrapper for any function whose name
matches FNPATT and whose ELF "soname" matches SOPATT. Both FNPATT and SOPATT may contain
wildcards (asterisks) and other characters (spaces, dots, @, etc) which are not generally regarded as valid C
identifier names.

This flexibility is needed to write robust wrappers for POSIX pthread functions, where typically we are not
completely sureof either the function name or the soname, or alternatively wewant to wrap awhole set of functions
at once.

For example, pt hr ead_cr eat e in GNU libpthread is usually a versioned symbol - one whose name endsiin,

eg, @=L1 BC 2. 3. Hence we are not sure what its real name is. We also want to cover any soname of the form
['i bpt hr ead. so*. So the header of the wrapper will be

57

Using and understanding the Valgrind core: Advanced Topics

int | _WRAP_SONAME FNNAME ZZ(| i bpt hr eadZdsoZdO, pt hr eadZucr eat eZAZa)
(... formals ...)

{ ... body ...}

In order to write unusual characters as valid C function names, a Z-encoding scheme is used. Names are written
literally, except that a capital Z acts as an escape character, with the following encoding:

Za encodes *

Zp i

Zc :

Zd

Zu _

Zh -

Zs (space)

ZA @

7z z

ZL (# only in valgrind 3.3.0 and | ater

ZR) # only in valgrind 3.3.0 and | ater
Hence |i bpthreadZdsoZd0 is an encoding of the soname |ibpthread.so.0 and

pt hr eadZucr eat eZAZa is an encoding of the function name pt hread_create@.

The macro | _WRAP_SONAME_FNNAME _ZZ constructs a wrapper name in which both the soname (first
component) and function name (second component) are Z-encoded. Encoding the function name can be tiresome
and is often unnecessary, so a second macro, | _WWRAP_SONAME_FNNAME_ZU, can be used instead. The _ZU
variantisalso useful for writing wrappersfor C++ functions, in which thefunction nameisusually aready mangled
using some other convention in which Z plays an important role. Having to encode a second time quickly becomes
confusing.

Since the function name field may contain wildcards, it can be anything, including just * . The same is true for
the soname. However, some ELF objects - specifically, main executables - do not have sonames. Any object
lacking a soname is treated as if its soname was NONE, which is why the original example above had a name
| _V\RAP_SONAME_FNNAME_ZU(NONE, f 00) .

Note that the soname of an ELF object is not the same as its file name, although it is often similar. You can find
the soname of an object | i bf 0o. so usingthecommandr eadel f -a |i bfoo.so | grep sonane.

3.3.3. Wrapping Semantics

Theability for awrapper to replace an infinitefamily of functionsispowerful but brings complicationsin situations
where ELF objects appear and disappear (are dlopen'd and diclose'd) on thefly. Vagrind triesto maintain sensible
behaviour in such situations.

For example, suppose a process has dlopened (an ELF object with soname) obj ect 1. so, which contains
functionl. It startstousef uncti onl immediately.

After awhileit dlopenswr apper s. so, which containsawrapper for f unct i onl in(soname) obj ect 1. so.
All subsequent callsto f unct i onl arererouted to the wrapper.

If w apper s. so islater diclose'd, callstof unct i onl are naturally routed back to the original.

Alternatively, if obj ect 1. so is diclosed but wr appers. so remains, then the wrapper exported by
wWr apper s. so becomesinactive, sincethereisnoway to gettoit - thereisno original to call any more. However,
Vagrind remembers that the wrapper is still present. If obj ect 1. so iseventually dlopen'd again, the wrapper
will become active again.

In short, valgrind inspects all code loading/unloading events to ensure that the set of currently active wrappers
remains consistent.

58

Using and understanding the Valgrind core: Advanced Topics

A second possible problem isthat of conflicting wrappers. It is easily possible to load two or more wrappers, both
of which claim to be wrappers for some third function. In such cases Valgrind will complain about conflicting
wrappers when the second one appears, and will honour only the first one.

3.3.4. Debugging

Figuring out what's going on given the dynamic nature of wrapping can bedifficult. The- -t race-redi r =yes
option makes this possible by showing the compl ete state of the redirection subsystem after every mmap/nunnap
event affecting code (text).

There are two central concepts:

» A "redirection specification” is a binding of a (soname pattern, fnname pattern) pair to a code address. These
bindings are created by writing functionswith namesmadewiththel _WRAP_SONAME_FNNAMVE {ZZ, ZU}
macros.

* An"activeredirection" is acode-address to code-address binding currently in effect.

The state of the wrapping-and-redirection subsystem comprises a set of specifications and a set of active bindings.
The specifications are acquired/discarded by watching all nmap/nmunmap events on code (text) sections. The
active binding set is (conceptually) recomputed from the specifications, and all known symbol names, following
any change to the specification set.

--trace-redir =yes showsthe contents of both sets following any such event.
- v prints aline of text each time an active specification is used for the first time.
Hence for maximum debugging effectiveness you will need to use both options.

One final comment. The function-wrapping facility is closely tied to Valgrind's ability to replace (redirect)
specified functions, for example to redirect calls to mal | oc to its own implementation. Indeed, a replacement
function can be regarded as a wrapper function which does not call the original. However, to make the
implementation more robust, the two kinds of interception (wrapping vs replacement) are treated differently.

--trace-redir=yes shows specifications and bindings for both replacement and wrapper functions. To
differentiate the two, replacement bindings are printed using R- > whereas wraps are printed using W >.

3.3.5. Limitations - control flow

For the most part, the function wrapping implementation isrobust. The only important caveat is: in awrapper, get
hold of the Or i gFn information using VALGRI ND_GET_ORI G_FN before calling any other wrapped function.
Once you have the Or i gFn, arbitrary calls between, recursion between, and longjumps out of wrappers should
work correctly. There is never any interaction between wrapped functions and merely replaced functions (eg
mal | oc), soyou cancall mal | oc etc safely from within wrappers.

The above comments are true for { x86,amd64,ppc32,arm,mips32,s390} -linux. On ppc64-linux function wrapping
is more fragile due to the (arguably poorly designed) ppc64-linux ABI. This mandates the use of a shadow
stack which tracks entries/exits of both wrapper and replacement functions. This gives two limitations: firstly,
longjumping out of wrappers will rapidly lead to disaster, since the shadow stack will not get correctly cleared.
Secondly, sincethe shadow stack hasfinite size, recursion between wrapper/replacement functionsisonly possible
to alimited depth, beyond which Valgrind has to abort the run. This depth is currently 16 calls.

For all platforms ({x86,amd64,ppc32,ppc64,arm,mips32,s390} -linux) all the above comments apply on a per-
thread basis. In other words, wrapping isthread-safe: each thread must individually observe the above restrictions,
but there is no need for any kind of inter-thread cooperation.

3.3.6. Limitations - original function signatures

As shown in the above example, to call the original you must use amacro of theform CALL_FN_* . For technical
reasonsit isimpossibleto create asingle macro to deal with all argument types and numbers, so afamily of macros

59

Using and understanding the Valgrind core: Advanced Topics

covering the most common casesis supplied. In what follows, "W' denotes a machine-word-typed value (a pointer
oraCl ong), and 'v' denotes C'svoi d type. The currently available macros are;

CALL_FN v_v -- call an original of type void fn (void)
CALL_FN WV -- call an original of type long fn (void)
CALL_FN v_W -- call an original of type void fn (long)
CALL_FN W W -- call an original of type long fn (long)
CALL FN v.WW -- call an original of type void fn (long, long)
CALL_ FN WWWV -- call an original of type long fn (long, long)

CALL_ FN v.WMWV -- call an original of type void fn (long, long, long)
CALL_ FN WWMWV -- call an original of type long fn (long, long, long)

CALL_FN W WMWYV -- call an original of type long fn (long, long, long, long)

CALL_FN W5W -- call an original of type long fn (long, long, |long, |ong,
CALL_FN W6W -- call an original of type long fn (long, long, |long, |ong,
and so on, up to

CALL_FN W 12w

The set of supported types can be expanded as needed. It is regrettable that this limitation exists. Function
wrapping has proven difficult to implement, with a certain apparently unavoidable level of ickiness. After several
implementation attempts, the present arrangement appears to be the least-worst tradeoff. At least it works reliably
in the presence of dynamic linking and dynamic code |oading/unloading.

Y ou should not attempt to wrap a function of one type signature with a wrapper of a different type signature.
Such trickery will surely lead to crashes or strange behaviour. Thisis not a limitation of the function wrapping
implementation, merely areflection of the fact that it gives you sweeping powers to shoot yourself in the foot if
you are not careful. Imagine the instant havoc you could wreak by writing awrapper which matched any function
name in any soname - in effect, one which claimed to be awrapper for all functionsin the process.

3.3.7. Examples

In the sourcetree, nentheck/ t est s/ wr ap[1- 8] . ¢ provide a series of examples, ranging from very simple
to quite advanced.

npi /i bnpi wr ap. ¢ is an example of wrapping a big, complex API (the MPI-2 interface). This file defines
almost 300 different wrappers.

60

| ong)
| ong,

| on

4. Memcheck: a memory error
detector

To usethistool, youmay specify - - t ool =nentheck ontheVagrind command line. Y ou don't haveto, though,
since Memcheck is the default tool.

4.1. Overview

Memcheck is a memory error detector. It can detect the following problems that are common in C and C++
programs.

» Accessing memory you shouldn't, e.g. overrunning and underrunning heap blocks, overrunning the top of the
stack, and accessing memory after it has been freed.

» Using undefined values, i.e. valuesthat have not been initialised, or that have been derived from other undefined
values.

* Incorrect freeing of heap memory, such as double-freeing heap blocks, or mismatched use of mal | oc/new/
new] versusfree/del et e/del et e[]

Mismatches will also be reported for si zed and al i gned allocation and dealocation functions if the
deallocation value does not match the allocation value.

» Overlapping sr ¢ and dst pointersin mentpy and related functions.

» Passing afishy (presumably negative) value to the si ze parameter of a memory allocation function.
» Using asi ze vaue of O with realloc.

» Usinganal i gnment value that is not a power of two.

* Memory lesks.

Problems like these can be difficult to find by other means, often remaining undetected for long periods, then
causing occasional, difficult-to-diagnose crashes.

Memcheck also provides Execution Trees memory profiling using the command line option - - xt r ee- nenory
and the monitor command xt nenory.

4.2. Explanation of error messages from
Memcheck

Memcheck issues arange of error messages. This section presents aquick summary of what error messages mean.
The precise behaviour of the error-checking machinery isdescribed in Detail s of Memcheck's checking machinery.

4.2.1. lllegal read / lllegal write errors

For example:

Invalid read of size 4
at Ox40F6BBCC. (within /usr/lib/libpng.so.2.1.0.9)
by Ox40F6B804: (within /usr/lib/libpng.so.2.1.0.9)
by Ox40BO7FF4: read_png_i mage(Q nagel O *) (kernel/gpngi 0. cpp: 326)
by Ox40AC751B: Q magel O :read() (kernel/qi mage. cpp: 3621)

61

Memcheck: amemory error detector

Addr ess OxBFFFFOEO is not stack'd, nalloc'd or free'd

This happens when your program reads or writes memory at a place which Memcheck reckons it shouldn't. In
this example, the program did a 4-byte read at address OxBFFFFOEO, somewhere within the system-supplied
library libpng.s0.2.1.0.9, which was called from somewhere else in the same library, called from line 326 of
gpngi o. cpp, and so on.

Memcheck tries to establish what the illegal address might relate to, since that's often useful. So, if it pointsinto
ablock of memory which has already been freed, you'll be informed of this, and also where the block was freed.
Likewise, if it should turn out to be just off the end of a heap block, acommon result of off-by-one-errorsin array
subscripting, you'll beinformed of thisfact, and al so where the block was allocated. If you usethe- - r ead- var -
i nf o option Memcheck will run more slowly but may give amore detailed description of any illegal address.

In this example, Memcheck can't identify the address. Actually the address is on the stack, but, for some reason,
thisis not a valid stack address -- it is below the stack pointer and that isn't allowed. In this particular case it's
probably caused by GCC generating invalid code, a known bug in some ancient versions of GCC.

Note that Memcheck only tells you that your program is about to access memory at anillegal address. It can't stop
the access from happening. So, if your program makes an access which normally would result in a segmentation
fault, you program will still suffer the same fate -- but you will get a message from Memcheck immediately prior
to this. In this particular example, reading junk on the stack is non-fatal, and the program stays alive.

4.2.2. Use of uninitialised values

For example:

Condi tional junp or nobve depends on uninitialised value(s)
at 0x402DFA94: 1O vfprintf (_itoa.h:49)
by 0x402E8476: _10O printf (printf.c:36)
by 0x8048472: main (tests/manuel 1.c: 8)

An uninitialised-value use error is reported when your program uses a value which hasn't been initialised -- in
other words, is undefined. Here, the undefined value is used somewhere inside the pr i nt f machinery of the C
library. This error was reported when running the following small program:

int main()
{

int Xx;

printf ("x = %\n", x);
}

It is important to understand that your program can copy around junk (uninitialised) data as much as it likes.
Memcheck observes this and keepstrack of the data, but does not complain. A complaint isissued only when your
program attempts to make use of uninitialised datain a way that might affect your program's externally-visible
behaviour. In this example, x is uninitialised. Memcheck observes the value being passedto _1 O pri ntf and
thenceto _I O _vf pri nt f, but makes no comment. However, _| O vf pri nt f hasto examine the value of x
so it can turn it into the corresponding ASCII string, and it is at this point that Memcheck complains.

Sources of uninitialised data tend to be:
» Local variablesin procedures which have not been initialised, as in the example above.

» The contents of heap blocks (allocated with mal | oc, new, or asimilar function) before you (or a constructor)
write something there.

To see information on the sources of uninitialised data in your program, use the - -t rack- ori gi ns=yes
option. This makes Memcheck run more slowly, but can make it much easier to track down the root causes of
uninitialised value errors.

62

Memcheck: amemory error detector

4.2.3. Use of uninitialised or unaddressable values in
system calls

Memcheck checks all parametersto system calls:
* It checks all the direct parameters themselves, whether they are initialised.

» Also, if asystem call needs to read from a buffer provided by your program, Memcheck checks that the entire
buffer is addressable and its contents are initialised.

» Also, if the system call needsto writeto auser-supplied buffer, Memcheck checksthat the buffer isaddressable.

After the system call, Memcheck updates its tracked information to precisely reflect any changesin memory state
caused by the system call.

Here's an example of two system calls with invalid parameters:

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(void)

{
char* arr mal | oc(10);
int* arr2 mal | oc(si zeof (int));
wite(1 /* stdout */, arr, 10);
exit(arr2[0]);

}

Y ou get these complaints ...

Syscall paramwite(buf) points to uninitialised byte(s)
at 0x25A48723: _ wite _nocancel (in /lib/tls/libc-2.3.3.5s0)
by Ox259AFAD3: _ libc_start _main (in /lib/tls/libc-2.3.3.5s0)
by 0x8048348: (within /auto/honmes/njn25/grind/ head4/ a. out)
Addr ess 0x25AB8028 is 0 bytes inside a block of size 10 alloc'd
at 0x259852B0: nall oc (vg_replace nalloc.c: 130)
by 0x80483F1: main (a.c:5)

Syscal |l paramexit(error_code) contains uninitialised byte(s)
at 0x25A21B44: QA __exit (in /lib/tls/libc-2.3.3.5s0)
by 0x8048426: main (a.c:8)

... because the program has (a) written uninitialised junk from the heap block to the standard output, and (b) passed
an uninitialised value to exi t . Note that the first error refers to the memory pointed to by buf (not buf itself),
but the second error refers directly to exi t 'sargument ar r 2[0] .

4.2.4. lllegal frees

For example:

Invalid free()
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)
Addr ess 0x3807F7B4 is 0 bytes inside a bl ock of size 177 free'd
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)

63

Memcheck: amemory error detector

Memcheck keepstrack of the blocksallocated by your programwithmal | oc/new, soit can know exactly whether
or not theargument to f r ee/del et e islegitimate or not. Here, thistest program has freed the same block twice.
Aswiththeillegal read/write errors, Memcheck attemptsto make sense of the addressfreed. If, ashere, the address
is one which has previously been freed, you wil be told that -- making duplicate frees of the same block easy to
spot. You will also get this message if you try to free a pointer that doesn't point to the start of a heap block.

4.2.5. When a heap block is freed with an inappropriate
deallocation function

In the following example, ablock allocated with new|] haswrongly been deallocated with f r ee:

M smat ched free() / delete / delete []
at 0x40043249: free (vg_clientfuncs.c:171)
by Ox4102BB4E: QGArray::~QGArray(void) (tools/qggarray.cpp: 149)
by 0x4C261C41: Ppt Doc:: ~Ppt Doc(voi d) (include/ gnenmarray. h: 60)
by 0x4C261FO0E: Ppt Xm :: ~Ppt Xm (voi d) (pptxmn.cc:44)

Addr ess 0x4BB292A8 is 0 bytes inside a bl ock of size 64 alloc'd

at 0x4004318C. operator new] (unsigned int) (vg clientfuncs.c: 152)
by 0x4C21BCl5: KLaol a::readSBStrean(int) const (klaola.cc:314)
by O0x4C21C155: KLaol a: : st rean(KLaol a: : OLENode const *) (klaol a.cc: 416)
by O0x4C21788F: OLEFilter::convert(QCString const & (olefilter.cc:272)

In C++ it'simportant to deallocate memory in away compatible with how it was allocated. The deal is:

 If dlocated withmal | oc, cal | oc,real | oc,val | oc or nenal i gn, you must deallocate withf r ee.
« If alocated with new, you must deallocate with del et e.

* If alocated with newf], you must deallocate with del et e[] .

The worst thing is that on Linux apparently it doesn't matter if you do mix these up, but the same program may
then crash on adifferent platform, Solaris for example. So it's best to fix it properly. According to the KDE folks
"it's amazing how many C++ programmers don't know this".

The reason behind the requirement is as follows. In some C++ implementations, del et e[] must be used for
objects allocated by new|] because the compiler stores the size of the array and the pointer-to-member to the
destructor of the array's content just before the pointer actually returned. del et e doesn't account for thisand will
get confused, possibly corrupting the heap.

4.2.6. Overlapping source and destination blocks

The following C library functions copy some data from one memory block to another (or something similar):
mencpy, st rcpy,strncpy,strcat,strncat . Theblocks pointed to by their sr c and dst pointers aren't
allowed to overlap. The POSIX standards have wording along the lines "If copying takes place between objects
that overlap, the behavior is undefined." Therefore, Memcheck checks for this.

For example:

==27492== Sour ce and destination overlap in nmencpy(Oxbffff294, Oxbffff280, 21)
==27492== at 0x40026CDC. nentpy (nct_replace_strmemc: 71)
==27492== by 0x804865A: main (overl ap. c: 40)

Y ou don't want the two blocks to overlap because one of them could get partialy overwritten by the copying.

Y ou might think that Memcheck is being overly pedantic reporting this in the case where dst islessthan src.
For example, the obvious way to implement mentpy is by copying from the first byte to the last. However, the
optimisation guides of some architectures recommend copying from the last byte down to the first. Also, some

64

Memcheck: amemory error detector

implementationsof mencpy zerodst before copying, because zeroing the destination's cache ling(s) canimprove
performance.

Themoral of thestory is: if you want to write truly portable code, don't make any assumptions about the language
implementation.

4.2.7. Fishy argument values

All memory all ocation functionstake an argument specifying the size of the memory block that should be alocated.
Clearly, the requested size should be a non-negative value and is typically not excessively large. For instance, it
is extremely unlikly that the size of an allocation request exceeds 2**63 bytes on a 64-bit machine. It is much
more likely that such avalue is the result of an erroneous size calculation and is in effect a negative value (that
just happens to appear excessively large because the bit pattern is interpreted as an unsigned integer). Such a
value is called a "fishy value". The si ze argument of the following alocation functions is checked for being
fishy: mal | oc, cal | oc, real | oc, memal i gn, posi x_nenal i gn, al i gned_al | oc, new, new [].
__builtin_new,__builtin_vec_new, Forcal | oc both arguments are checked.

For example:

==32233== Argunent 'size' of function malloc has a fishy (possibly negative) val ue:

==32233== at Ox4C2CFA7: malloc (vg_replace_nmall oc. c: 298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: mmin (fishy.c:23)

In earlier Valgrind versions those values were being referred to as "silly arguments’ and no back-trace was
included.

4.2.8. Realloc size zero

The (ab)use or realloc to also do the job of f r ee has been poorly understood for along time. In the C17 standard
ISO/IEC 9899:2017] the behaviour of realloc when the size argument is zero is specified as implementation
defined. Memcheck warns about the non-portable use or realloc.

For example:

==77609== realloc() with size O

==77609== at 0x48502B8: realloc (vg_replace_malloc. c: 1450)

==77609== by 0x201989: nmin (reall oczero.c: 8)

==77609== Address 0x5464040 is O bytes inside a block of size 4 alloc'd
==77609== at 0x484CBB4: mal |l oc (vg_replace_mall oc. c: 397)

==77609== by 0x201978: nmin (reall oczero.c:7)

4.2.9. Alignment Errors

C and C++ have several functions that alow the user to obtain aligned memory. Typically this is done for
performance reasons so that the memory will be cache line or memory page aligned. C has the functions
memal i gn, posi x_nenal i gn and al i gned_al | oc. C++ has numerous overloads of oper at or new
and operator del ete. Of these, posix_memalign is quite clearly specified, the others vary quite widely
between implementations. Valgrind will generate errors for values of alignment that are invalid on any platform.

memal i gn will produce errorsif the alignment is zero or not a multiple of two.

posi x_nemal i gn will produce errors if the alignment is less than sizeof(size t), not a multiple of two or if
thesizeis zero.

al i gned_al | oc will produce errorsif the alignment is not a multiple of two , if the sizeis zero or if the size
isnot an integral multiple of the alignment.

65

-3

Memcheck: amemory error detector

al i gned newwill produce errors if the alignment is zero or not a multiple of two. The not hr ow overloads
will return aNULL pointer. The non-nothrow overloads will abort Valgrind.

al i gned del et e will produce errors if the alignment is zero or not a multiple of two or if the alignment is
not the same asthat used by al i gned new.

si zed del et e will produce errorsif the size is not the same as that used by new.

si zed al i gned del et e combinesthe error conditions of the individual sized and aligned del ete operators.

Example output:

==65825== Invalid alignnent value: 3 (should be power of 2)
==65825== at 0x485197E: nemalign (vg_replace_nalloc.c: 1740)
==65825== by 0x201CD2: main (nemalign.c: 39)

4.2.10. Memory leak detection

Memcheck keeps track of all heap blocksissued in responseto callsto mal | oc/newet a. So when the program
exits, it knows which blocks have not been freed.

If - - | eak- check isset appropriately, for each remaining block, Memcheck determinesif the block isreachable
from pointers within the root-set. The root-set consists of (a) general purpose registers of al threads, and (b)
initialised, aligned, pointer-sized data words in accessible client memory, including stacks.

There are two ways ablock can bereached. Thefirstiswith a"start-pointer”, i.e. apointer to the start of the block.
The second iswith an "interior-pointer”, i.e. apointer to the middle of the block. There are several ways we know
of that an interior-pointer can occur:

* The pointer might have originaly been a start-pointer and have been moved aong deliberately (or not
deliberately) by the program. In particular, this can happen if your program uses tagged pointers, i.e. if it uses
the bottom one, two or three bits of a pointer, which are normally aways zero due to alignment, in order to
store extrainformation.

It might be arandom junk value in memory, entirely unrelated, just a coincidence.

* It might beapointer totheinner char array of aC++ st d: : st ri ng. For example, some compilersadd 3 words
at the beginning of the std::string to store the length, the capacity and a reference count before the memory
containing the array of characters. They return a pointer just after these 3 words, pointing at the char array.

» Some code might allocate ablock of memory, and use thefirst 8 bytesto store (block size - 8) asa64bit number.
sql i t e3MemMval | oc doesthis.

* It might be apointer to an array of C++ objects (which possess destructors) allocated with new|] . Inthiscase,
some compilers store a"magic cookie" containing the array length at the start of the allocated block, and return
apointer to just past that magic cookie, i.e. an interior-pointer. See this page for more information.

* It might be a pointer to an inner part of a C++ object using multiple inheritance.

Y ou can optionaly activate heuristics to use during the leak search to detect the interior pointers corresponding
tothest dstri ng, | engt h64, newar ray andnnul ti pl ei nherit ance cases. If the heuristic detects that
an interior pointer corresponds to such a case, the block will be considered as reachable by the interior pointer. In
other words, the interior pointer will be treated asif it were a start pointer.

With that in mind, consider the nine possible cases described by the following figure.

Poi nt er chain AAA Leak Case BBB Leak Case
(1) RRR------------ > BBB DR
(2) RRR ---> AAA ---> BBB DR IR

66

https://docs.freebsd.org/info/gxxint/gxxint.info.Free_Store.html

Memcheck: amemory error detector

(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5) RRR ------ Pmen- > BBB (y)DR (n)DL
(6) RRR ---> AAA -?-> BBB DR (y)IR (n)DL

(7) RRR -?-> AAA ---> BBB (y)DR, (n)DL (yY)IR (n)IL
(8 RRR -?-> AAA -?-> BBB (y)DR, (n)DL (v, y)IR (n,y)IL, (_,n)DL
(99 RRR AAA -?-> BBB DL (y)IL, (n)DL

Poi nter chain | egend:

- RRR a root set node or DR bl ock
- AAA, BBB: heap bl ocks

- ---> a start-pointer

- -?-> an interior-pointer

Leak Case | egend:

- DR Directly reachabl e

- IR Indirectly reachable

- DL: Directly I ost

- IL: Indirectly | ost

- (y)XY: it's XY if the interior-pointer is a real pointer

- (n)XY: it's XY if the interior-pointer is not a real pointer
- ()XY it's XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these casesin its output,
resulting in the following four leak kinds.

o "Still reachable". Thiscoverscases 1 and 2 (for the BBB blocks) above. A start-pointer or chain of start-pointers
to the block is found. Since the block is still pointed at, the programmer could, at least in principle, have freed
it before program exit. "Still reachable" blocks are very common and arguably not a problem. So, by defaullt,
Memcheck won't report such blocks individually.

» "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no pointer to the block can
befound. The block is classified as "lost", because the programmer could not possibly have freed it at program
exit, since no pointer to it exists. Thisislikely a symptom of having lost the pointer at some earlier point in the
program. Such cases should be fixed by the programmer.

» "Indirectly lost". This covers cases 4 and 9 (for the BBB blocks) above. This means that the block is lost, not
because there are no pointers to it, but rather because all the blocks that point to it are themselves lost. For
example, if you have abinary tree and the root nodeislogt, al its children nodeswill be indirectly lost. Because
the problem will disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck won't
report such blocksindividually by default.

» "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a chain of one or more
pointers to the block has been found, but at least one of the pointersis an interior-pointer. This could just be a
random value in memory that happens to point into a block, and so you shouldn't consider this ok unless you
know you have interior-pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best way that leaks
could be reported; in particular, interior-pointers are treated inconsistently. It is possible the categorisation may
be improved in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed” no matter what which of the
above four kindsit belongs to.

Thefollowing is an example leak summary.

LEAK SUMVARY:
definitely lost: 48 bytes in 3 bl ocks.
indirectly lost: 32 bytes in 2 bl ocks.

67

Memcheck: amemory error detector

possi bly lost: 96 bytes in 6 bl ocks.
still reachable: 64 bytes in 4 bl ocks.
suppressed: 0 bytes in O bl ocks.

If heuristics have been used to consider some blocks as reachable, the leak summary details the heuristically
reachable subset of 'still reachable:’ per heuristic. In the below example, of the 95 bytes still reachable, 87 bytes
(56+7+8+16) have been considered heuristically reachable.

LEAK SUVMVARY:
definitely lost: 4 bytes in 1 bl ocks
indirectly lost: 0 bytes in O bl ocks
possibly lost: 0 bytes in O bl ocks

still reachable: 95 bytes in 6 bl ocks
of whi ch reachabl e via heuristic:
stdstring : 56 bytes in 2 bl ocks
| engt h64 : 16 bytes in 1 bl ocks
newar r ay : 7 bytes in 1 bl ocks

mul ti pl ei nheritance: 8 bytes in 1 bl ocks
suppressed: 0 bytes in O bl ocks

If - -1 eak- check=f ul | isspecified, Memcheck will give detailsfor each definitely lost or possibly lost block,
including where it was allocated. (Actually, it merges results for al blocks that have the same leak kind and
sufficiently similar stack traces into a single "loss record”. The - - | eak-r esol uti on lets you control the
meaning of "sufficiently similar”.) It cannot tell you when or how or why the pointer to aleaked block was lost;
you have to work that out for yourself. In general, you should attempt to ensure your programs do not have any
definitely lost or possibly lost blocks at exit.

For example:

8 bytes in 1 blocks are definitely lost in loss record 1 of 14

at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:39)
88 (8 direct, 80 indirect) bytes in 1 blocks are definitely lost in |oss record 13 of
at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:25)

The first message describes a simple case of a single 8 byte block that has been definitely lost. The second case
mentions another 8 byte block that has been definitely lost; the differenceisthat afurther 80 bytesin other blocks
are indirectly lost because of thislost block. The loss records are not presented in any notable order, so the loss
record numbers aren't particularly meaningful. The loss record numbers can be used in the Valgrind gdbserver to
list the addresses of the leaked blocks and/or give more details about how ablock is still reachable.

The option --show | eak- ki nds=<set > controls the set of leak kinds to show when - -1 eak-
check=f ul | isspecified.

The<set > of leak kindsis specified in one of the following ways:

» acommaseparated list of oneor moreof def i nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

* none for the empty set.

The default value for the leak kinds to show is- - show | eak- ki nds=defi nit e, possi bl e.

To also show the reachable and indirectly lost blocksin addition to the definitely and possibly lost blocks, you can
use- - show- | eak- ki nds=al | . To only show the reachable and indirectly lost blocks, use - - show- | eak-

68

1.

Memcheck: amemory error detector

ki nds=i ndi rect, r eachabl e. Thereachable and indirectly lost blocks will then be presented as shown in
the following two examples.

64 bytes in 4 blocks are still reachable in |oss record 2 of 4
at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c:74)

32 bytes in 2 blocks are indirectly lost in loss record 1 of 4

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c: 80)

Because there are different kinds of leaks with different severities, an interesting question is: which leaks should
be counted as true "errors" and which should not?

The answer to this question affects the numbers printed in the ERROR SUMVIARY line, and also the effect of the- -
error - exi t code option. First, aleak isonly counted asatrue"error” if - - | eak- check=f ul | isspecified.
Then, the option - - err or s-f or - | eak- ki nds=<set > controls the set of leak kinds to consider as errors.
The default valueis- - error s-f or - | eak- ki nds=defi nite, possible

4.3. Memcheck Command-Line Options

- -| eak- check=<no| sunmary|yes|ful |l > [defaul t: sunmary]

When enabled, search for memory leaks when the client program finishes. If set to summary, it says how
many leaks occurred. If settof ul | or yes, each individual leak will be shown in detail and/or counted as
an error, as specified by the options - - show | eak- ki nds and - - err ors- f or - | eak- ki nds.

If - - xm =yes isgiven, memcheck will automatically usethevalue- - | eak- check=f ul | . You can use
- -show | eak- ki nds=none to reduce the size of the xml output if you are not interested in the leak
results.

eak-resol uti on=<| ow med| hi gh> [defaul t: high]

When doing leak checking, determines how willing Memcheck is to consider different backtraces to be the
same for the purposes of merging multiple leaks into asingle leak report. When set to | ow, only the first two
entries need match. When red, four entries have to match. When hi gh, all entries need to match.

For hardcore leak debugging, you probably want to use - - | eak-r esol ut i on=hi gh together with - -
num cal | er s=40 or some such large number.

Notethatthe- - | eak- r esol ut i on setting doesnot affect Memcheck'sability to find leaks. It only changes
how the results are presented.

--show | eak- ki nds=<set> [default: definite, possible]
Specifiesthe leak kindsto show inaf ul | leak search, in one of the following ways:
» acommaseparated list of oneor moreof defi ni te i ndirect possible reachable.

« all to specify the complete set (al leak kinds). It is equivdent to --show | eak-
ki nds=definite,indirect, possibl e, reachabl e.

» none for the empty set.
--errors-for-1eak-kinds=<set> [default: definite, possible]

Specifies the leak kinds to count as errorsin af ul | leak search. The <set > is specified similarly to - -
show | eak- ki nds

69

Memcheck: amemory error detector

- -l eak-check-heuristics=<set> [default: all]

Specifiesthe set of leak check heuristicsto be used during leak searches. The heuristics control which interior
pointersto ablock causeit to be considered as reachable. The heuristic set is specified in one of the following
ways:

e a comma separated list of one or more of stdstring | engt h64 newar r ay
mul ti pl ei nheritance.

e« all to activate the complete set of heuristics. It is equivaent to --I|eak-check-
heuri stics=stdstring, | ength64, newarray, nul tipl ei nheritance.

* none for the empty set.

Note that these heuristics are dependent on the layout of the objects produced by the C++ compiler. They have
been tested with somegcc versions (e.g. 4.4 and 4.7). They might not work properly with other C++ compilers.

- -show r eachabl e=<yes| no> , --show possi bl y-1 ost =<yes| no>
These options provide an aternative way to specify the leak kinds to show:

e --showreachabl e=no --show- possi bl y-1 ost =yes is equivalent to - - show | eak-
ki nds=definite, possi bl e.

e --showreachabl e=no --show possi bl y-1ost=no is equivalent to --show- | eak-
ki nds=definite.

e --show reachabl e=yes isequivalentto- - show | eak- ki nds=al | .
Note that - - show possi bl y- 1 ost =no hasno effect if - - show r eachabl e=yes is specified.
--xtree-| eak=<no| yes> [no]

If set toyes, theresultsfor theleak search doneat exit will be output in a'Callgrind Format' execution treefile.
Note that this automatically sets the options - - | eak- check=f ul | and - - show | eak- ki nds=al |,
to allow xtree visualisation tools such as kcachegrind to select what kind to leak to visualise. The produced
file will contain the following events:

* RB: Reachable Bytes

» PB: Possibly lost Bytes

e | B: Indirectly lost Bytes

» DB: Definitely lost Bytes (direct plus indirect)

» DI B: Definitely Indirectly lost Bytes (subset of DB)
» RBK : reachable Blocks

» PBK : Possibly lost Blocks

e | Bk : Indirectly lost Blocks

» DBK : Definitely lost Blocks

The increase or decrease for all events above will also be output in the file to provide the delta (increase
or decrease) between 2 successive leak searches. For example, i RB is the increase of the RB event, dPBk
is the decrease of PBk event. The values for the increase and decrease events will be zero for the first leak
search done.

See Execution Trees for a detailed explanation about execution trees.

70

Memcheck: amemory error detector

--xtree-leak-file=<filenane> [default: xtleak. kcg. %p]

Specifiesthat VValgrind should produce the xtree leak report in the specified file. Any %p, %g or % sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.

See Execution Trees for a detailed explanation about execution trees formats.
--undef - val ue- errors=<yes| no> [defaul t: yes]

Controls whether Memcheck reports uses of undefined value errors. Set thisto no if you don't want to see
undefined value errors. It also has the side effect of speeding up Memcheck somewhat. AddrCheck (removed
in Valgrind 3.1.0) functioned like Memcheck with - - undef - val ue- err or s=no.

--track-origi ns=<yes| no> [default: no]

Controls whether Memcheck tracks the origin of uninitialised values. By default, it does not, which means
that although it can tell you that an uninitialised value is being used in a dangerous way, it cannot tell you
where the uninitialised value came from. This often makesit difficult to track down the root problem.

When set toyes, Memcheck keepstrack of the origins of all uninitialised values. Then, when an uninitialised
valueerror isreported, Memcheck will try to show the origin of thevalue. An origin can be one of thefollowing
four places: aheap block, astack allocation, aclient request, or miscellaneous other sources(eg, acall tobr k).

For uninitialised values originating from a heap block, Memcheck shows where the block was all ocated. For
uninitialised values originating from a stack allocation, Memcheck can tell you which function allocated the
value, but no more than that -- typically it shows you the source location of the opening brace of the function.
So you should carefully check that all of the function'slocal variables are initialised properly.

Performance overhead: origin tracking is expensive. It halves Memcheck's speed and increases memory use
by a minimum of 100MB, and possibly more. Nevertheless it can drastically reduce the effort required to
identify the root cause of uninitialised value errors, and so is often a programmer productivity win, despite
running more slowly.

Accuracy: Memcheck tracks origins quite accurately. To avoid very large space and time overheads, some
approximations are made. It is possible, although unlikely, that Memcheck will report an incorrect origin, or
not be able to identify any origin.

Notethat thecombination- - t r ack- ori gi ns=yes and- - undef - val ue- err or s=noisnonsensical.
Memcheck checks for and rejects this combination at startup.

--partial -1 oads- ok=<yes| no> [default: yes]

Controls how Memcheck handles 32-, 64-, 128- and 256-bit naturally aligned loads from addresses for which
some bytes are addressable and othersare not. Wheny es, such loads do not produce an address error. Instead,
loaded bytes originating from illegal addresses are marked as uninitialised, and those corresponding to legal
addresses are handled in the normal way.

When no, loads from partially invalid addresses are treated the same as loads from completely invalid
addresses: an illegal-address error isissued, and the resulting bytes are marked as initialised.

Note that code that behavesin thisway isin violation of the SO C/C++ standards, and should be considered
broken. If at al possible, such code should be fixed.

- -expensi ve- def i nedness- checks=<no| aut o] yes> [defaul t: auto]

Controls whether Memcheck should employ more precise but also more expensive (time consuming)
instrumentation when checking the definedness of certain values. In particular, this affectstheinstrumentation
of integer adds, subtracts and equality comparisons.

Selecting - - expensi ve- def i nedness- checks=yes causes Memcheck to use the most accurate
analysis possible. This minimises false error rates but can cause up to 30% performance degradation.

71

Memcheck: amemory error detector

Selecting - - expensi ve- defi nedness-checks=no causes Memcheck to use the cheapest
instrumentation possible. This maximises performance but will normally give an unusably high false error
rate.

The default setting, - - expensi ve- def i nedness- checks=aut o, is strongly recommended. This
causes Memcheck to use the minimum of expensive instrumentation needed to achieve the same false error
rate as - - expensi ve- def i nedness- checks=yes. It also enables an instrumentation-time analysis
pass which aims to further reduce the costs of accurate instrumentation. Overall, the performance loss is
generaly around 5% relative to - - expensi ve- def i nedness- checks=no, athough this is strongly
workload dependent. Note that the exact instrumentation settings in this mode are architecture dependent.

--keep-stacktraces=al l oc|free|alloc-and-free|alloc-then-free| none [default:
al | oc-and-free]

Controls which stack trace(s) to keep for malloc'd and/or free'd blocks.

With al | oc-t hen-fr ee, astack trace is recorded at allocation time, and is associated with the block.
When the block is freed, a second stack trace is recorded, and this replaces the allocation stack trace. As a
result, any "use after free" errors relating to this block can only show a stack trace for where the block was
freed.

With al | oc- and- f r ee, both allocation and the deallocation stack traces for the block are stored. Hence
a"use after free" error will show both, which may make the error easier to diagnose. Comparedto al | oc-
t hen-fr ee, this setting dlightly increases Valgrind's memory use as the block contains two references
instead of one.

With al | oc, only the allocation stack trace is recorded (and reported). With f r ee, only the deallocation
stack trace is recorded (and reported). These values somewhat decrease Valgrind's memory and cpu usage.
They can be useful depending on the error types you are searching for and the level of detail you need to
analyse them. For example, if you are only interested in memory leak errors, it is sufficient to record the
allocation stack traces.

With none, no stack traces are recorded for malloc and free operations. If your program allocates a lot
of blocks and/or allocates/frees from many different stack traces, this can significantly decrease cpu and/or
memory required. Of course, few details will be reported for errors related to heap blocks.

Note that once a stack trace isrecorded, Valgrind keeps the stack trace in memory even if it is not referenced
by any block. Some programs (for example, recursive algorithms) can generate a huge number of stack traces.
If Valgrind uses too much memory in such circumstances, you can reduce the memory required with the
options - - keep- st ackt r aces and/or by using asmaller value for the option - - nunt cal | er s.

If you want to use - - xt r ee- menor y=f ul | memory profiling (see Execution Trees), then you cannot
specify - - keep- st ackt races=free or - - keep- st ackt races=none.

--freelist-vol =<nunber> [default: 20000000]

When the client program releases memory using free (in C) or del et e (C++), that memory is not
immediately made availablefor re-allocation. Instead, it is marked inaccessible and placed in aqueue of freed
blocks. The purpose is to defer as long as possible the point at which freed-up memory comes back into
circulation. This increases the chance that Memcheck will be able to detect invalid accesses to blocks for
some significant period of time after they have been freed.

This option specifies the maximum total size, in bytes, of the blocksin the queue. The default value is twenty
million bytes. Increasing thisincreasesthe total amount of memory used by Memcheck but may detect invalid
uses of freed blocks which would otherwise go undetected.

--freelist-big-bl ocks=<nunber> [default: 1000000]

When making blocks from the queue of freed blocks available for re-allocation, Memcheck will in priority re-
circulate the blocks with a size greater or equal to - - f r eel i st - bi g- bl ocks. This ensures that freeing
big blocks (in particular freeing blocks bigger than - - f r eel i st - vol) does not immediately lead to are-

72

Memcheck: amemory error detector

circulation of al (or alot of) thesmall blocksin thefreelist. In other words, thisoptionincreasesthelikelihood
to discover dangling pointers for the "small" blocks, even when big blocks are freed.

Setting avalue of 0 meansthat all the blocks are re-circulated in a FIFO order.
- -wor kar ound- gcc296- bugs=<yes| no> [defaul t: no]

When enabled, assume that reads and writes some small distance below the stack pointer are due to bugsin
GCC 2.96, and does not report them. The "small distance” is 256 bytes by default. Note that GCC 2.96 isthe
default compiler on some ancient Linux distributions (RedHat 7.X) and so you may need to use this option.
Do not useit if you do not have to, asit can cause real errors to be overlooked. A better alternative is to use
amore recent GCC in which thisbug is fixed.

Y ou may also need to use this option when working with GCC 3.X or 4.X on 32-bit PowerPC Linux. Thisis
because GCC generates code which occasionally accesses below the stack pointer, particularly for floating-
point to/from integer conversions. Thisisin violation of the 32-bit PowerPC EL F specification, which makes
no provision for locations below the stack pointer to be accessible.

This option isdeprecated as of version 3.12 and may be removed from future versions. Y ou should instead use
--i gnor e-range- bel ow sp to specify the exact range of offsets below the stack pointer that should be
ignored. A suitable equivalentis- - i gnor e-r ange- bel ow sp=1024- 1.

gnor e-r ange- bel ow sp=<nunber >- <nunber >

This is a more general replacement for the deprecated - - wor kar ound- gcc296- bugs option. When
specified, it causes Memcheck not to report errorsfor accesses at the specified offsets below the stack pointer.
The two offsets must be positive decimal numbers and -- somewhat counterintuitively -- the first one must be
larger, in order to imply a non-wraparound address range to ignore. For example, to ignore 4 byte accesses
at 8192 bytes below the stack pointer, use- - i gnor e- r ange- bel ow sp=8192- 8189. Only one range
may be specified.

--show m smat ched- f rees=<yes| no> [defaul t: yes]

When enabled, Memcheck checksthat heap blocks are deall ocated using afunction that matchesthe all ocating
function. That is, it expectsf r ee to be used to deallocate blocks allocated by mal | oc, del et e for blocks
allocated by new, and del et e[] for blocks alocated by new] . If a mismatch is detected, an error is
reported. Thisisin general important because in some environments, freeing with a non-matching function
can cause crashes.

There is however a scenario where such mismatches cannot be avoided. That is when the user provides
implementations of newnew|] that call mal | oc and of del et e/del et e[] that cal f r ee, and these
functions are asymmetricaly inlined. For example, imaginethat del et e[] isinlined but new{] isnot. The
result is that Memcheck "sees' all del et e[] callsasdirect callsto f r ee, even when the program source
contains no mismatched calls.

This causes a lot of confusing and irrelevant error reports. - - show ni smat ched- f r ees=no disables
these checks. It isnot generally advisableto disable them, though, because you may missreal errorsasaresult.

--showreal |l oc-si ze-zero=<yes| no> [defaul t: yes]

When enabled, Memcheck checksfor usesof r eal | oc withasize of zero. Thisusageof r eal | oc isunsafe
sinceit is not portable. On some systems it will behave likef r ee. On other systemsit will either do nothing
or else behavelikeacall tof r ee followed by acall to mal | oc with asize of zero.

--i gnore-ranges=0xPP- 0xQJ , OXRR- 0xSS]

Any ranges listed in this option (and multiple ranges can be specified, separated by commas) will be ignored
by Memcheck's addressability checking.

--mal l oc-fill =<hexnunber >

Fills blocks allocated by mal | oc, new, etc, but not by cal | oc, with the specified byte. This can be
useful when trying to shake out obscure memory corruption problems. The allocated area is still regarded

73

Memcheck: amemory error detector

by Memcheck as undefined -- this option only affects its contents. Note that - - mal | oc-fi | | does not
affect ablock of memory when it is used as argument to client requests VALGRIND _MEMPOOL_ALLOC
or VALGRIND_MALLOCLIKE_BLOCK.

--free-fill =<hexnunber >

Fills blocks freed by f r ee, del et e, etc, with the specified byte value. This can be useful when trying
to shake out obscure memory corruption problems. The freed area is still regarded by Memcheck as
not valid for access -- this option only affects its contents. Note that - -free-fil | does not affect
a block of memory when it is used as argument to client requests VALGRIND_MEMPOOL _FREE or
VALGRIND_FREELIKE_BLOCK.

4.4. Writing suppression files

The basic suppression format is described in Suppressing errors.

The suppression-type (second) line should have the form:

Mentheck: suppressi on_t ype
The Memcheck suppression types are as follows:

e Val uel, Val ue2, Val ue4, Val ue8, Val uel6, meaning an uninitialised-value error when using a value
of 1, 2, 4, 8 or 16 bytes.

» Cond (or itsold name, Val ue0), meaning use of an uninitialised CPU condition code.

* Addr 1, Addr 2, Addr 4, Addr 8, Addr 16, meaning an invalid address during a memory access of 1, 2, 4,
8 or 16 bytes respectively.

» Junp, meaning an jJump to an unaddressable location error.

e Par am meaning an invalid system call parameter error.

* Fr ee, meaning aninvalid or mismatching free.

e Overl ap, meaningasr c /dst overlapinmencpy or asimilar function.
» Leak, meaning a memory leak.

Par amerrors have a mandatory extra information line at this point, which is the name of the offending system
call parameter.

Leak errors have an optional extrainformation line, with the following format:

mat ch- | eak- ki nds: <set >

where <set > specifies which leak kinds are matched by this suppression entry. <set > is specified in the same
way aswith the option - - show- | eak- ki nds, that is, one of the following:

» acommaseparated list of one or more of defi nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

» none for the empty set.

If this optional extralineis not present, the suppression entry will match all leak kinds.

Be aware that leak suppressions that are created using - - gen- suppr essi ons will contain this optional extra
line, and therefore may match fewer leaks than you expect. You may want to remove the line before using the
generated suppressions.

The other Memcheck error kinds do not have extralines.

74

Memcheck: amemory error detector

If you give the - v option, Valgrind will print the list of used suppressions at the end of execution. For a leak
suppression, this output gives the number of different loss records that match the suppression, and the number
of bytes and blocks suppressed by the suppression. If the run contains multiple leak checks, the number of bytes
and blocks are reset to zero before each new leak check. Note that the number of different loss records is not
reset to zero.

In the example below, in the last leak search, 7 blocks and 96 bytes have been suppressed by a suppression with
thenamesone_| eak_suppr essi on:

--21041-- used_suppressi on: 10 sone_ot her | eak_suppressi on s.supp: 14 suppressed: 12
--21041-- used_suppressi on: 39 sone_| eak_suppression s.supp: 2 suppressed: 96 bytes |

For Val ueN and Addr N errors, the first line of the calling context is either the name of the function in which
the error occurred, or, failing that, the full path of the . so file or executable containing the error location. For
Fr ee errors, thefirst line isthe name of the function doing thefreeing (eg,free, _builtin_vec_del et e,
etc). For Over | ap errors, thefirst lineisthe name of the function with the overlapping arguments (eg. nencpy,
st rcpy, etc).

The last part of any suppression specifies the rest of the calling context that needs to be matched.

4.5. Details of Memcheck's checking
machinery

Read this section if you want to know, in detail, exactly what and how Memcheck is checking.

4.5.1. Valid-value (V) bits

It is simplest to think of Memcheck implementing a synthetic CPU which is identical to a real CPU, except for
one crucia detail. Every bit (literally) of data processed, stored and handled by the real CPU has, in the synthetic
CPU, an associated "valid-value' bit, which says whether or not the accompanying bit has alegitimate value. In
the discussions which follow, thisbit isreferred to asthe V (valid-value) hit.

Each byte in the system therefore has a 8 V bits which follow it wherever it goes. For example, when the CPU
loads a word-size item (4 bytes) from memory, it also loads the corresponding 32 V bits from a bitmap which
storesthe V bitsfor the process' entire address space. If the CPU should later write the whole or some part of that
value to memory at a different address, the relevant V bits will be stored back in the V-bit bitmap.

In short, each bit in the system has (conceptually) an associated V bit, which follows it around everywhere, even
inside the CPU. Yes, all the CPU'sregisters (integer, floating point, vector and condition registers) have their own
V bit vectors. For this to work, Memcheck uses a great deal of compression to represent the V bits compactly.

Copying values around does not cause Memcheck to check for, or report on, errors. However, when a value is
used in away which might conceivably affect your program's externally-visible behaviour, the associated V bits
areimmediately checked. If any of these indicate that the value is undefined (even partially), an error is reported.

Here's an (admittedly nonsensical) example:

int i, j;

int a[10], b[10];

for (i =0; i <10; i++) {
j = a[i];
b[i] =j;

}

Memcheck emits no complaints about this, since it merely copies uninitiaised values from a[] into b[], and
doesn't use them in away which could affect the behaviour of the program. However, if the loop is changed to:

75

Memcheck: amemory error detector

for (i =0; i <10; i++) {
jo+=alil];

}

if (] ==77)
printf("hello there\n");

then Memcheck will complain, at thei f , that the condition depends on uninitialised values. Note that it doesn't
complainatthej += a[i];,sinceat that point the undefinednessis not "observable". It's only when adecision
has to be made as to whether or not to dothepr i nt f -- an observable action of your program -- that Memcheck

complains.

Most low level operations, such as adds, cause Memcheck to usethe V bitsfor the operandsto calculate the V bits
for the result. Even if the result is partially or wholly undefined, it does not complain.

Checks on definedness only occur in three places. when a value is used to generate a memory address, when
control flow decision needs to be made, and when a system call is detected, Memcheck checks definedness of
parameters as required.

If acheck should detect undefinedness, an error message isissued. Theresulting value is subsequently regarded as
well-defined. To do otherwise would give long chains of error messages. In other words, once Memcheck reports
an undefined value error, it tries to avoid reporting further errors derived from that same undefined value.

This sounds overcomplicated. Why not just check all reads from memory, and complain if an undefined value
is loaded into a CPU register? Well, that doesn't work well, because perfectly legitimate C programs routinely
copy uninitialised valuesaround in memory, and we don't want endless complaints about that. Here'sthe canonical
example. Consider astruct like this:

struct S{ int x; char c; };
struct S sl1, s2;

sl.x = 42;
sl.c ='z2";
s2 = sli;

The question to ask is: how largeisstruct S, inbytes? Ani nt is4 bytesand achar one byte, so perhapsa
struct S occupies5 bytes? Wrong. All non-toy compilers we know of will round the size of st ruct Sup
to awhole number of words, in this case 8 bytes. Not doing this forces compilers to generate truly appalling code
for accessing arrays of st r uct S'son some architectures.

So s1 occupies 8 bytes, yet only 5 of them will be initialised. For the assignment s2 = s1, GCC generates
codeto copy al 8 byteswholesaleinto s2 without regard for their meaning. If Memcheck simply checked values
as they came out of memory, it would yelp every time a structure assignment like this happened. So the more
complicated behaviour described above is necessary. This allows GCC to copy s1 into s2 any way it likes, and
awarning will only be emitted if the uninitialised values are later used.

As explained above, Memcheck maintains 8 V bits for each byte in your process, including for bytes that are in
shared memory. However, the same piece of shared memory can be mapped multiple times, by several processes
or even by the same process (for example, if the process wants a read-only and a read-write mapping of the same
page). For such multiple mappings, Memcheck tracks the V bits for each mapping independently. This can lead
to false positive errors, as the shared memory can be initialised via a first mapping, and accessed via another
mapping. The access via this other mapping will have its own V bits, which have not been changed when the
memory was initialised via the first mapping. The bypass for these false positives is to use Memcheck's client
requests VALGRI ND_MAKE_MEM DEFI NED and VALGRI ND_MAKE_MEM UNDEFI NED to inform Memcheck
about what your program does (or what another process does) to these shared memory mappings.

4.5.2. Valid-address (A) bits

Notice that the previous subsection describes how the validity of values is established and maintained without
having to say whether the program does or does not have the right to access any particular memory location. We
now consider the latter question.

76

Memcheck: amemory error detector

Asdescribed above, every hitin memory or in the CPU has an associated valid-value (V) bit. In addition, al bytes
in memory, but not in the CPU, have an associated valid-address (A) bit. Thisindicates whether or not the program
can legitimately read or writethat location. It does not give any indication of the validity of the data at that location
-- that's the job of the V bits -- only whether or not the location may be accessed.

Every timeyour program reads or writes memory, Memcheck checksthe A bits associated with the address. If any
of them indicate an invalid address, an error is emitted. Note that the reads and writes themselves do not change
the A bits, only consult them.

So how do the A bits get set/cleared? Like this:
* When the program starts, al the global data areas are marked as accessible.

* Whentheprogram doesmal | oc/new, the A bitsfor exactly the areaallocated, and not abyte more, are marked
as accessible. Upon freeing the areathe A bits are changed to indicate inaccessibility.

* When the stack pointer register (SP) moves up or down, A bits are set. The rule is that the area from SP up
to the base of the stack is marked as accessible, and below SP isinaccessible. (If that soundsillogical, bear in
mind that the stack grows down, not up, on almost al Unix systems, including GNU/Linux.) Tracking SP like
this has the useful side-effect that the section of stack used by afunction for local variables etc is automatically
marked accessible on function entry and inaccessible on exit.

» When doing system calls, A bits are changed appropriately. For example, mmap magically makes files appear
in the process' address space, so the A bits must be updated if mmap succeeds.

» Optionally, your program can tell Memcheck about such changes explicitly, using the client request mechanism
described above.

4.5.3. Putting it all together

Memcheck's checking machinery can be summarised as follows:

» Each byte in memory has 8 associated V (valid-value) bits, saying whether or not the byte has a defined value,
and asingle A (valid-address) bit, saying whether or not the program currently has the right to read/write that
address. As mentioned above, heavy use of compression means the overhead is typically around 25%.

» When memory isread or written, therelevant A bitsare consulted. If they indicate an invalid address, Memcheck
emits an Invalid read or Invalid write error.

» When memory is read into the CPU's registers, the relevant V bits are fetched from memory and stored in the
simulated CPU. They are not consulted.

» When aregister iswritten out to memory, the V bitsfor that register are written back to memory too.

» When values in CPU registers are used to generate a memory address, or to determine the outcome of a
conditional branch, the V bits for those values are checked, and an error emitted if any of them are undefined.

» When valuesin CPU registers are used for any other purpose, Memcheck computes the V bits for the result,
but does not check them.

» OncetheV bits for avalue in the CPU have been checked, they are then set to indicate validity. This avoids
long chains of errors.

* When values are loaded from memory, Memcheck checks the A bits for that location and issues an illegal-
addresswarning if needed. In that case, the V bitsloaded areforced to indicate Valid, despite the location being
invalid.

This apparently strange choice reduces the amount of confusing information presented to the user. It avoids
the unpleasant phenomenon in which memory is read from a place which is both unaddressable and contains

77

Memcheck: amemory error detector

invalid values, and, asaresult, you get not only an invalid-address (read/write) error, but also apotentially large
set of uninitialised-value errors, one for every time the valueis used.

Thereisahazy boundary case to do with multi-byte loads from addresses which are partialy valid and partialy
invalid. See details of the option - - par ti al - | oads- ok for details.

Memcheck intercepts calls to mal | oc, cal | oc, real | oc, val | oc, neral i gn, free, new, new],
del et e and del et e[] . The behaviour you get is:

e mal | oc/newnew] : the returned memory is marked as addressable but not having valid values. This means
you haveto write to it before you can read it.

e cal | oc: returned memory is marked both addressable and valid, since cal | oc clearsthe areato zero.

e real | oc:if thenew sizeislarger than the old, the new sectionis addressable but invalid, aswithmal | oc. If
the new size is smaller, the dropped-off section is marked as unaddressable. Y ou may only passtor eal | oc
apointer previously issued to you by mal | oc/cal | oc/real | oc.

» freeldel et e/del et e[] : you may only pass to these functions a pointer previously issued to you by the
corresponding alocation function. Otherwise, Memcheck complains. If the pointer isindeed valid, Memcheck
marks the entire area it points at as unaddressable, and places the block in the freed-blocks-queue. Theaimis
to defer aslong as possible reallocation of this block. Until that happens, all attempts to access it will elicit an
invalid-address error, as you would hope.

4.6. Memcheck Monitor Commands

The Memcheck tool provides monitor commands handled by VVal grind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver). Valgrind python code provides GDB front end commands giving an easier
usage of the memcheck monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch a memcheck monitor command viaits GDB front end command, instead of prefixing the
command with "monitor", you must use the GDB mentheck command (or the shorter aiases nt). Using the
memcheck GDB front end command provide a more flexible usage, such as evaluation of address and length
arguments by GDB. In GDB, you can use hel p nentheck to get help about the memcheck front end monitor
commands and you can use apr opos nentheck to get all the commands mentionning the word "memcheck"
in their name or on-line help.

 xb <addr> [<l en>] shows the definedness (V) bits and values for <len> (default 1) bytes starting at
<addr>. For each 8 bytes, two lines are output.

The first line shows the validity bits for 8 bytes. The definedness of each byte in the range is given using two
hexadecimal digits. These hexadecimal digits encode the validity of each bit of the corresponding byte, using
0if the bit is defined and 1 if the bit is undefined. If abyte is not addressable, its validity bits are replaced by
___ (adouble underscore).

The second line shows the values of the bytes below the corresponding validity bits. The format used to show
the bytes data is similar to the GDB command 'x /<len>xb <addr>". The value for a non addressable bytes is
shown as ?? (two question marks).

In the following example, st ri ngl0 is an array of 10 characters, in which the even numbered bytes are
undefined. In the below example, the byte corresponding to st ri ng10[5] is not addressable.

(gdb) p &stringlO
$4 = (char (*)[10]) 0x804a2f0
(gdb) nmo xb 0x804a2f0 10

ff 00 ff 00 ff . ff 00
0x804A2F0: Ox 3f Ox6e Ox 3f 0x65 Ox 3f 0x?? Ox 3f 0x65
ff 00
0x804A2F8: Ox 3f 0x00

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

78

Memcheck: amemory error detector

(gdb)

The GDB memcheck front end command mencheck xb ADDR [LEN] acceptsany address expression for
itsfirst ADDR argument. The second optional argument is any integer expression. Note that these 2 arguments
must be separated by a space. The following example shows how to get the definedness of st ri ng10 using
the memcheck xb front end command.

(gdb) nt xb &stringl0 sizeof (stringlO0)

ff 00 ff 00 ff . ff 00
0x804A2FO0: Ox3f Ox6e Ox3f 0x65 Ox3f 0x?? Ox3f 0x65
ff 00
0x804A2F8: Ox3f 0x00
Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

(gdb)

The command xb cannot be used with registers. To get the validity bits of a register, you must start Valgrind
with the option - - vgdb- shadow- r egi st er s=yes. The validity bits of a register can then be obtained
by printing the 'shadow 1' corresponding register. In the below x86 example, the register eax has al its hits
undefined, while the register ebx isfully defined.

(gdb) p /x $eaxsl
$9 = Oxffffffff
(gdb) p /x $ebxsl
$10 = 0x0

(gdb)

get _vbits <addr> [<l en>] showsthedefinedness (V) bitsfor <len> (default 1) bytes starting at <addr>
using the same convention as the xb command. get _vbi t s only shows the V bits (grouped by 4 bytes). It
does not show the values. If you want to associate V bits with the corresponding byte values, the xb command
will be easier to use, in particular on little endian computers when associating undefined parts of an integer
with their V bits values.

The following example shows the result of get _vbits on the stringl0 used in the xb command
explanation. The GDB memcheck equivalent front end command nencheck get_vbits ADDR
[LEN] accepts any ADDR expression and any LEN expression (separated by a space).

(gdb) nonitor get vbits 0x804a2f0 10

ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e
(gdb) menctheck get vbits &stringlO sizeof(stringl0Q)
ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

make_nenory [noaccess| undefi ned| def i ned| Def i nedi f addr essabl e] <addr >
[<l en>] marks the range of <len> (default 1) bytes at <addr> as having the given status. Parameter
noaccess marks the range as non-accessible, so Memcheck will report an error on any access to it.
undef i ned or def i ned mark the area as accessible, but Memcheck regards the bytes in it respectively as
having undefined or defined values. Def i nedi f addr essabl e marks as defined, bytes in the range which
are aready addressible, but makes no change to the status of bytesin the range which are not addressible. Note
that the first letter of Def i nedi f addr essabl e isan uppercase D to avoid confusion with def i ned.

The GDB equivalent memcheck front end commands nentheck nake_nenory [noaccess|
undef i ned| def i ned| Def i nedi f addr essabl e] ADDR [LEN] accept any address expression for
their first ADDR argument. The second optional argument isany integer expression. Notethat these 2 arguments
must be separated by a space.

In the following example, the first byte of the st ri ng10 ismarked as defined and then is marked noaccess:

79

Memcheck: amemory error detector

(gdb) nonitor make_nenory defi ned 0x8049e28 1
(gdb) nonitor get_vbits 0x8049e28 10

0000f f 00 ffOOff00 ffOO

(gdb) nmencheck nmake nenory noaccess &stringlO[0]
(gdb) nmenctheck get _vbits &stringlO sizeof (stringl0)
__ooffoo ffooffoo ffoO

Addr ess 0x8049E28 | en 10 has 1 bytes unaddressabl e

(gdb)

check_nmenory [addressabl e|defined] <addr> [<len>] checks that the range of <len>
(default 1) bytes at <addr> has the specified accessibility. It then outputs a description of <addr>. In the
following example, adetailed descriptionisavailable becausetheoption- - r ead- var - i nf o=yes wasgiven
at Valgrind startup:

(gdb) rnonitor check nenory defined 0x8049e28 1

Addr ess 0x8049E28 | en 1 defi ned

==14698== Locati on 0x8049e28 is 0 bytes inside stringl0O[O0],
==14698== declared at prog.c:10, in frame #0 of thread 1

(gdb)

The GDB equivalent memcheck front end commands nenctheck check nenory [addressabl e|
defined] ADDR [LEN] accept any addressexpression for their first ADDR argument. The second optional
argument is any integer expression. Note that these 2 arguments must be separated by a space.

| eak_check [full*]|summary|xtleak] [kinds <set>|reachabl e|possibleleak*|

definitel eak] [heuristics heurl,heur2,...] [newincreased*|changed|any]

[unlimted*|limted <max_loss_records_output>] peforms aleak check. The * in the
arguments indicates the default values.

If the[ful |l *| sunmary| xt| eak] argument is summary, only a summary of the leak search is given;
otherwise afull leak report is produced. A full leak report gives detailed information for each leak: the stack
trace wheretheleaked blockswere allocated, the number of blocks|eaked and their total size. When afull report
is requested, the next two arguments further specify what kind of leaks to report. A leak's details are shown if
they match both the second and third argument. A full leak report might output detailed information for many
leaks. The nr of leaksfor which information is output can be controlled using thel i ni t ed argument followed
by the maximum nr of leak records to output. If this maximum is reached, the leak search outputs the records
with the biggest number of bytes.

Thevalue xt | eak also produces afull leak report, but output it as an xtree in afile xtleak.kcg.%p.%n (see --
log-file). See Execution Trees for adetailed explanation about execution trees formats. See --xtree-leak for the
description of the eventsin a xtree leak file.

The ki nds argument controls what kind of blocks are shown for af ul | leak search. The set of leak kinds
to show can be specified using a <set > similarly to the command line option - - show- | eak- ki nds.
Alternatively, thevaluedef i ni t el eak isequivalenttoki nds defi ni t e,thevaluepossi bl el eak is
equivalentto ki nds definite, possi bl e :itwill alsoshow possibly leaked blocks, .i.e those for which
only an interior pointer was found. The value r eachabl e will show all block categories (i.e. is equivalent
toki nds all).

The heuri sti cs argument controls the heuristics used during the leak search. The set of heuristics to use
can be specified using a<set > similarly to the command line option - - | eak- check- heuri sti cs. The
default valuefor theheuri sti cs argumentisheuri sti cs none.

The[new| i ncr eased* | changed| any] argument controls what kinds of changes are shown for af ul |

leak search. The value i ncr eased specifies that only block allocation stacks with an increased number of
leaked bytes or blocks since the previous leak check should be shown. The value changed specifies that
alocation stacks with any change since the previous leak check should be shown. The value new specifies to

80

Memcheck: amemory error detector

show only the block allocation stacks that are new since the previous leak search. The value any specifies that
all leak entries should be shown, regardless of any increase or decrease. If newor i ncr eased or changed
are specified, the leak report entries will show the delta relative to the previous leak report and the new loss
records will have a"new" marker (even wheni ncr eased or changed were specified).

The following example shows usage of the | eak_check monitor command on the mencheck/ t est s/
| eak- cases. c regression test. The first command outputs one entry having an increase in the leaked bytes.
The second command is the same as the first command, but uses the abbreviated forms accepted by GDB and
the Valgrind gdbserver. It only outputs the summary information, as there was no increase since the previous
leak search.

(gdb) nonitor |eak _check full possibleleak increased
==19520== 16 (+16) bytes in 1 (+1) blocks are possibly lost in new |loss record 9 of 1-

==19520== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19520== by 0x80484D5: nk (| eak-cases.c:52)

==19520== by 0x804855F: f (| eak-cases.c: 81)

==1952