Valgrind Documentation

Release 3.24.0.GIT ?? Oct 2024
Copyright © 2000-2022 AUTHORS

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the section entitled The GNU Free Documentation License.

Thisis the top level of Valgrind's documentation tree. The documentation is contained in six logically separate
documents, as listed in the following Table of Contents. To get started quickly, read the Valgrind Quick Start
Guide. For full documentation on Valgrind, read the Valgrind User Manual.

Vagrind Documentation

Table of Contents

The Valgrind QUICK STt GUITEuuiiiiiii et e s iii
Valgrind USEr IMANUAL ... oottt e ettt e et et e e et et e e et e bt e e e eebb e e e eeneaeeees iv
VaAlGNNG FAQ i e e ettt et eaaans clxxiv
Valgrind Technical DOCUMENTALIONuuiiietieeieit ettt ettt e e ettt e e et e e e et e e e enb e e eenanaeeeen viii
Valgrind DistribDUtion DOCUMENLSccouuuieiiitieee ettt e et e et e e et eeeeaa s XVii
GINU LICEINSES ..ttt ettt e ettt e e et e b e e et et e e ettt e e et et e e et e b e e e e et e e e e ena s cX

The Valgrind Quick Start Guide

Release 3.24.0.GIT ?? Oct 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

The Valgrind Quick Start Guide

Table of Contents

The Valgrind QUICK SEAIT GUITEuuiieiii e e e e e e 1
O [gL oo [0 1o o EO PSP UPPPPTRPPPPIN 1
2. Preparing YOUE PrOGIAIMcceuu ettt e et e ettt e ettt e e et et e e et et e e et et e e et et e e et e bb e e e e e b e e e enaaas 1
3. Running your program under MemCheCKiiiiiiiiiii e 1
4. Interpreting MemChECK'S OUEPULiieieie ettt e e 1
S O V= £ PP 2
6. MOIE INFOMMEBIION ...ttt ettt ettt e et et e e et e et e e e aaa e e ennas 3

The Valgrind Quick Start Guide

The Valgrind Quick Start Guide

1. Introduction

The Vagrind tool suite provides a number of debugging and profiling tools that help you make your programs
faster and more correct. The most popular of these tools is called Memcheck. It can detect many memory-related
errors that are common in C and C++ programs and that can lead to crashes and unpredictable behaviour.

Therest of this guide gives the minimum information you need to start detecting memory errors in your program
with Memcheck. For full documentation of Memcheck and the other tools, please read the User Manual.

2. Preparing your program

Compile your program with - g to include debugging information so that Memcheck's error messages include
exact line numbers. Using - Q0 is also a good ideg, if you can tolerate the slowdown. With - OL line humbers
in error messages can be inaccurate, although generally speaking running Memcheck on code compiled at - OL
worksfairly well, and the speed improvement compared to running - Q0 isquite significant. Use of - O2 and above
is not recommended as Memcheck occasionally reports uninitialised-value errors which don't really exist.

3. Running your program under Memcheck

If you normally run your program like this:
myprog argl arg2
Use this command line:
val grind --I|eak-check=yes nyprog argl arg2
Memcheck is the default tool. The - - | eak- check option turns on the detailed memory leak detector.

Y our program will run much slower (eg. 20 to 30 times) than normal, and use alot more memory. Memcheck will
issue messages about memory errors and leaksthat it detects.

4. Interpreting Memcheck's output

Here's an example C program, in afile called a.c, with amemory error and a memory leak.

#i ncl ude <stdlib. h>

voi d f(void)
{
int* x = malloc(10 * sizeof (int));
x[10] = O; /1 problem 1: heap bl ock overrun
} /] problem2: menory leak -- x not freed

i nt mai n(voi d)

f();

return O;

}

Most error messages look like the following, which describes problem 1, the heap block overrun:

The Valgrind Quick Start Guide

==19182== Invalid wite of size 4

==19182== at 0x804838F: f (exanple.c:6)

==19182== by 0x80483AB: main (exanple.c:11)

==19182== Address 0x1BA45050 is O bytes after a block of size 40 alloc'd
==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)

==19182== by 0x8048385: f (exanple.c:5)

==19182== by 0x80483AB: main (exanple.c:11)

Thingsto notice:
e Thereisalot of information in each error message; read it carefully.
» The 19182 isthe process ID; it's usually unimportant.

» Thefirst line ("Invalid write...") tells you what kind of error it is. Here, the program wrote to some memory it
should not have due to a heap block overrun.

» Below thefirst lineisastack trace telling you where the problem occurred. Stack traces can get quite large, and
be confusing, especidly if you are using the C++ STL. Reading them from the bottom up can help. If the stack
trace is not big enough, usethe - - num cal | er s option to make it bigger.

» Thecode addresses (eg. 0x804838F) are usually unimportant, but occasionally crucia for tracking down weirder
bugs.

» Some error messages have a second component which describes the memory address involved. This one shows
that the written memory isjust past the end of a block allocated with malloc() on line 5 of example.c.

It's worth fixing errors in the order they are reported, as later errors can be caused by earlier errors. Failing to do
thisis a common cause of difficulty with Memcheck.

Memory leak messages |ook like this;

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

The stack trace tells you where the leaked memory was allocated. Memcheck cannot tell you why the memory
leaked, unfortunately. (Ignorethe "vg_replace malloc.c", that's an implementation detail .)

There are several kinds of leaks; the two most important categories are;
 "definitely lost": your program is leaking memory -- fix it!

» "probably lost": your program is leaking memory, unless you're doing funny things with pointers (such as
moving them to point to the middle of a heap block).

Memcheck also reports uses of uninitialised values, most commonly with the message " Conditional jump or move
depends on uninitialised value(s)". It can be difficult to determine the root cause of these errors. Try using the - -
track- ori gi ns=yes to get extrainformation. This makes Memcheck run slower, but the extra information
you get often saves alot of time figuring out where the uninitialised values are coming from.

If you don't understand an error message, please consult Explanation of error messages from Memcheck in the
Valgrind User Manual which has examples of al the error messages Memcheck produces.

5. Caveats

Memcheck is not perfect; it occasionally produces false positives, and there are mechanisms for suppressing these
(see Suppressing errorsinthe Valgrind User Manual). However, it istypically right 99% of thetime, so you should

The Valgrind Quick Start Guide

be wary of ignoring its error messages. After all, you wouldn't ignore warning messages produced by a compiler,
right? The suppression mechanism is also useful if Memcheck is reporting errorsin library code that you cannot
change. The default suppression set hides alot of these, but you may come across more.

Memcheck cannot detect every memory error your program has. For example, it can't detect out-of-range reads
or writes to arrays that are allocated statically or on the stack. But it should detect many errors that could crash
your program (eg. cause a segmentation fault).

Try to make your program so clean that Memcheck reports no errors. Once you achieve this state, it is much
easier to see when changes to the program cause Memcheck to report new errors. Experience from several years
of Memcheck use shows that it is possible to make even huge programs run Memcheck-clean. For example, large
parts of KDE, OpenOffice.org and Firefox are Memcheck-clean, or very closeto it.

6. More information

Please consult the Valgrind FAQ and the Valgrind User Manual, which have much more information. Note that
the other toolsin the Valgrind distribution can be invoked with the - - t ool option.

Valgrind User Manual

Release 3.24.0.GIT ?? Oct 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind User Manual

Table of Contents

O [gL oo (0 1o o RO OO PP PO UOUPPTRUPPPPIN 1
1.1 AN OVEVIEW OF ValGNNG ...uiiiiiie ettt e 1
1.2. HOw tO navigate thiS ManUalcoouuuniiiiiiii i 1

2. Using and understanding the Valgring COMEcoouuuuiiiiiiie e 3
2.1. What Valgrind does With YOUr PrOgrameeeeeuuieiiiie et 3
2.2, GEIING SEAMTEA ... ettt ettt 4
2.3. THE COMIMENTAIY ...eeeeneeieii ettt ettt et e et e et et e et et e e e et e e e eba s 4
2.4, REPOIING OF BITOIS ...ttt ettt ettt ettt e ettt e ettt e e ettt r e e e eabreeeeabaeeeentnaeeees 5
2.5, SUPPIESSING EITOFS ... ettt eeeeeti e e ettt e e ettt e et eeta e e e ettt e et es bt e et eebet e et esbareeeeabe s e e eesbn s eeeentnnaaeees 6
2.6. DEDUGINTOM ...ttt ettt ettt ettt e et et e e et et e et e e e e e e eeee 9
2.7. Core CommaNd-liNE OPLIONSeieerieeeiii ettt e e ettt e e et e e e e et e e eeaa e eeees 9

2.7.1. TOOI-SEIECHION OPLION ...ceetieiiit et e s 9
2.7.2. BASIC OPUIONS ...ttt ettt sttt ettt ettt ettt et et e e e et e enaan 9
2.7.3. Error-related OPLiONSuiiiiiiieiiiii ettt 12
2.7.4, MallOC-related OPLIONSuiiiiiiiee et e 19
2.7.5. UNCOMMON OPLIONS ..ottt ettt e e et e et et e e e e e era s 20
2.7.6. DEDUGGING OPLIONSvueeeiiie ettt et e ettt e et et e e e et e e e e et e e e eebanaeeens 27
2.7.7. Setting Default OPLiONSuiieiiieeiii ettt eeaaas 27
2.7.8. Dynamically Changing OptiONScccuuueiieuuieeieiii et e et e et e e et eeeeni e eeees 28
2.8. SUPPOIT FOF TRMEAASceeeie ettt e e et e e 29
2.8.1. Scheduling and Multi-Thread Performancecc.uveiiiiiiieieiiieece e 29
2.9. Handling Of SIGNaISccuuuiiiiiiei ittt e et et e e e et e e eera e aees 30
2.10. EXECULION TIEES ... eeitie ettt ettt ettt ettt et e et et e et et e et et e e e e e r e e e eab e e eenanns 30
2.11. Building and INstalling Valgringdcoouuuiiiiiiiaiei e 33
212, 1f YOU HAVE ProDIEMS ... ittt e e e e et e eeees 33
P R I 0] = o PP PP PP TUPPPTN 34
214, AN EXGMPIE RUN ..ottt e e 36
2.15. Warning Messages YOU Might SEE ... 36

3. Using and understanding the Valgrind core: Advanced TOPICScvvunieeneiiiieiieei e 38
3.1. The Client ReqUESE MECNANISITceeiii it 38
3.2. Debugging your program using Valgrind gdbserver and GDBccccoiviiiiiiiiiiiiiieie 40

3.2.1. Quick Start: debugging iN 3 SEEPSuuiiiiie e 40
3.2.2. Valgrind gdbserver overall organiSationcceeruieeiiriieeiii e 41
3.2.3. Connecting GDB t0 a Valgrind gabhSerVercc.uuiiiiiiiiiiiiiie e 41
3.2.4. Connecting to an ANdroid gaDSEIVEYcoeiiiiiiiii e 43
3.2.5. Monitor command handling by the Valgrind gdbservercccoooeviiiiiiiiiiiceeees 44
3.2.6. GDB front end commands for Valgrind gdbserver monitor commandscccuuen... 45
3.2.7. Valgrind gdbserver thread informationocoeuiiiiiiiiiiieeii e 46
3.2.8. Examining and modifying Valgrind shadow registersooovvveiieeiiiiinneiiiiineeceiiee 47
3.2.9. Limitations of the Valgrind gdsarver ... 47
3.2.10. vgdb command [iN€ OPLIONSuiiiiiieeieii e 50
3.2.11. Valgrind mONitor COMMENGSccuuuneieriieteti et e et e et e e et e et eeeenaes 52
3.3, FUNCLION WIBDPING ..ttt ettt ettt e et e et et e e et et e e et e b e e et e b neeeena s 56
331 A SIMPIE EXAMPIE ... 56
3.3.2. Wrapping SPECITICALIONSccuuuieiitiieee ettt ettt e e 57
3.3.3. WIrapping SEMANTICSceeitieeeiit et ettt ettt e e et e e e et e e e e nt e e e enba e aeees 58
334, DEDUGING . eeeetneeeett ettt ettt ettt e e et e ettt e ettt et n e e e a b et et et eaa e eee 59
3.3.5. Limitations - CONrol FIOWiiiiiiiiiiii e 59
3.3.6. Limitations - original funCtion SIgNaUIESccceuuuiiiiiiieieii e 59
337 EXAMPIES ..o 60

4. Memcheck: & MeMOrY ITOr JELECTONcieeiiieeeit ettt ettt e e et e e et e e e s 61
A1, OVEIVIBIW ...ttt ettt ettt ettt e e ettt e et e et et e e b e e et e e et e et e e e et s 61
4.2. Explanation of error messages from Memchecko.oiiiiiiiiiiiiiii e 61

4.2.1. lllegal read / 111@gal WITE EITOISuuiiiiiiie e 61
4.2.2. Use of UninitialiSed VBIUESccoeiiiiiiiiii e 62

Valgrind User Manual

4.2.3. Use of uninitialised or unaddressable valuesin system callsccooveviiciiiniiieennnnn, 63
R 1= o= | (== 63
4.2.5. When a heap block is freed with an inappropriate deallocation function 64
4.2.6. Overlapping source and destination BlOCKScooiiiiiiiiiiii e 64
4.2.7. Fishy argumENt VBIUBSciiiiiiii e e e e e e e e e e e e e et e e e e aaes 65
4.2.8. REAIOC SIZE ZENO ...eeeei ettt e e e aae 65
e R AN [Te 10001 o] £ 65
4.2.10. MemOry 168K dELECIONu.iiii e e eae s 66

4.3. Memcheck Command-Ling OPtiONScvuuiiiiiiiiii e e e e e e e e e e eens 69
4.4, Writing SUPPIESSION FIlES ..ouuiii i e e 74
4.5, Details of Memcheck's checking Machinerycoooviiiii i 75
A5. 1. Vaid-value (V) DItS ..uuniiiiii i 75
4.5.2. Valid-address (A) DITS ..oeeueniiiiiii e 76
4.5.3. Putting it all tOgEtNEroeiii i 77

4.6. Memcheck MONItOr COMMENGSccuuuiiiiiiiieieiie e e e et e e et e e e e e eran s 78
B O T o\ Q= (U1 P 84
4.8. Memory Pools. describing and working with custom allocatorsccccvvveiiiiiiiiieiiiieeieeeis 85
4.9. Debugging MPI Paralldl Programs with Valgrindcccooiiiiiiiiiieee e 87
4.9.1. Building and installing the WIapPeErSooiiiiiiiiiecie e 87
4.9.2. GELING SAMEieeicei e 88
4.9.3. Controlling the Wrapper lHDraryooovuiiiiii e 88
e B T 1 o] PR 89
e T 1Y/ o= P 89
4.9.6. WIItING NEW WIBPPETS ..vuuiiiteiiiee it e e et e e e e e e e et e e st e e et e e et e et e e et e e et e e e ta e eaneeannns 90
4.9.7. What to expect when using the WIaPPErScooviiiiici e e 90

5. Cachegrind: a high-precision tracing pProfileroociiiiiii e e 91
LI O = a7 1 PP 91
5.2. Using Cachegrind and CQ_annOtateuiiiuiieiiii e e e e e e e et e e e e e e aeaas 91
5.2.1. RUNNING CaChegrindiiii i e e e e e e 91
I © 0 1 o 10| T = T PP 92
5.2.3. RUNNING CO_ANMNOLAEEuiiiiii i e e e e e e e e e e e e e e et e e et e eeanaaees 92
5.2.4, The Metadata SECHONcccuvtiiiiiii et e et e e et e e e ert e eeees 92
5.2.5. Global, File, and Function-level COUNLSoviiiiiiiieeiiiine e 93
5.2.6. PEr-1INE COUMLS ... ittt eeii ettt e et e et e e ettt s e e e ettt e e e et e e e eettaeeeentnaeeaees 95
5.2.7. FOTKING PrOgraMS ...uuiiiie e e e e e e e e et e et e e e e e eanns 96
5.2.8. CO_aNNOtate WaIMINGScvvuiiiiii e e e e e e e e e e e e e e et e e e e e e e et e e ean e e eanaas 97
5.2.9. Merging Cachegrind OULPUL FIlESuiiiiiiii e 97
5.2.10. Differencing Cachegrind oUtput fil€Scocoiiiiiii i, 97
5.2.11. Cache and Branch SIMUIGLIONoviiiiiiiiiiiie e 98

5.3. Cachegrind Command-lin€ OPLiONSciuuiiiiiieiii e e e e e e e e 98
5.4. cg_annotate Command-ling OPLIONSccuuiiiiiiiiiii e e e e e e e e e e eeanns 99
5.5. cg_merge Command-lin€ OPLiONSoiiuiiiiiii e e e e e e 100
5.6. cg_diff Command-line OPLIONSuiiiiiiiiii e 100
5.7. Cachegrind CHEnt REGUESESoiiuueiiiei e e e e e e e e e e e e e e e e et e eaaeees 100
5.8, SIMUIBLION DELAIS ...ttt e e e e e et e e e et e e e e e 101
5.8.1. Cache SImulation SPECITICSuiiiniiii e e e 101
5.8.2. Branch Simulation SPECIfiCScvuviiiiie e 101

Lo R oo U = os Y PPN 102

5.9. Implementation DEtailSiiiiiiieii e 103
5.9.1. HOW Cachegrind WOTKScouuiiiiiiiii e e e e e e e e e e aens 103
5.9.2. Cachegrind Output File FOrMEEcoviiiiiiii i e e e 103

6. Callgrind: a call-graph generating cache and branch prediction profilerco.ooiiiiiiiiiiin s 105
L3 @ = o= 1 PP 105
300 0 O g Tox 05 7= YN 105
B.1.2. BASIC USAJE ..evvuiiiiiiiiieeiiii ettt e ettt ettt e et e e et e e et e e et e e e et e e et e aee 106

LS N0 V7 g o= o U o T 107
6.2.1. Multiple profiling dumps from one Program FUNccueeiiiieiiiieei e e eaenn 107
6.2.2. Limiting the range of collected eVentsSccoovuiiiiii i 107

Vi

Valgrind User Manual

6.2.3. Counting global BUS BVENLSccuuiiiii i 108
6.2.4. AVOIAING CYCIES ..uniiiiii et e e e e e e e e et e e et e e e eaaaees 108
O o T o 0 = 1 P 109

6.3. Calgrind Command-1ing OPLiONScccuiiiiiiiiie e e eaa s 110
6.3.1. DUMP Creation OPLIONSciuiciiie e ee e e e e e e e e et e e e e e e e e et e e st e e et e eanaees 110
6.3.2. ACHIVILY OPLIONS . .ovuiiiii et e e e e e e e e e e e et e e et e e e e eaes 110
(SRCRCHN DT - Weoio) 1= vt 1o o] o 1 o o0 111
6.3.4. Cost entity Separation OPLIONSviiuuieiiii e e e e e e e e aen 112
6.3.5. SIMUIBEION OPLIONS .. cevuiiiiiieiie e e e e e e e e e e e e e e s e e et e e et e e et e eeaneas 113
6.3.6. Cache SIMUIGioN OPLIONSciveieiii eaneees 113

6.4. Calgrind Monitor COMMANGSccuuiiiiiieiiiiee e e e e e e e e e e et e e et e e e e s e eaanas 114
6.5. Callgrind SPECIfiC Client FEOUESESivve e e e e e e 114
6.6. callgrind_annotate Command-line OPLIONSccovuiiiiiii i 115
6.7. callgrind_control Command-1ing OPLiONSccvuuiiiiiiiiiie e 116
7. Helgrind: athread error dELECLONciiiiii e e e e e e e e e aaaas 118
45 T O = T 1 PP 118
7.2. Detected errors: Misuses of the POSIX pthreadS API ..o, 118
7.3. Detected errors: Inconsistent LOCK Orderingsccvvuieiiiiieiiiiiiii e e e e e e e 119
7.4. Detected erors: Dat@ RACESivvvii ettt e et e e e e aaeas 121
741 A SIMPIE DA RACEuuciitiiiiii e e e e e e e 121
7.4.2. Helgrind's Race Detection Algorithm ..o, 122
7.4.3. Interpreting RaCe ErrOr MESSAgESuuiiii i i e ee et e e e e e e e et e e e e e e aaaas 124

7.5. Hints and Tips for Effective Use of HElIGrindccoooiiiiiiiiiii e 126
7.6. Helgrind Command-ling OPLioNSciuiiiiiiiiii e e e e e e 129
7.7. Helgrind Monitor COMMEANASuuiiineiiieiie e ee e e e e e e e e e et e e et e et e e e et e eeaneeeens 131
7.8. HElgrind CHENt REGUESESuueiiiieiiii et e e e e e e e e et e e e eaaas 133
7.9. A TO-DO List fOr HEIGING ..o e e e eaa s 133
8. DRD: @ thread error GELECLOTiiiiiiiiieee e e e e et e et e e e ere s 134
ST O Y= oY= 1 PP 134
8.1.1. Multithreaded Programming Paradigmsccooiviiiiiiiii e 134
8.1.2. POSIX Threads Programming MOdelcciiiiiiiiiiii e, 134
8.1.3. Multithreaded Programming Problemscoooviiiiii i, 135
8.1.4. Data RACE DELECHION ... iiiiii ettt e e e e e e e e e et 135

S22 U L= oo I I PP 136
8.2.1. DRD Command-1ing OPLIONSceuuuiiiiiieiiieeiiee e e e e e e et e et e e e e e et e e e eaneees 136
8.2.2. Detected Errors: Data RACESuuiiiiiiiieeiiii et e e e eeees 138
8.2.3. Detected Errors: LOCK CONLENLIONc.uuiiiiiiiiieeiiii e e e e 139
8.2.4. Detected Errors. Misuse of the POSIX threadS APlcooovviiiiiiiiiiiiiieee e, 140
8.2.5, ClIENT REGUESES ...evviieiiiiiie ettt ettt ettt e e e e e e et e e e et n e e e et e e e eanen s 141
8.2.6. DEbUQQING CH+1L ProgramsScvuuuieiieeiiieeie e e e e e e e e e e s e e et e e e satnaesaneeennnes 143
8.2.7. Debugging GNOME Programsceeiuuieiiiiieiie e e e e e e e e et e e e eees 143
8.2.8. Debugging Boost. Thread Programscvuuieiieeiii e eeee e e e e e e e e e e aanes 143
8.2.9. Debugging OPenMP Programsuuiiiii e e e e e e e e e e e e e et e e e e eaneees 144
8.2.10. DRD and Custom Memory AlIOCEIOIScvvuniiiiiiiiii e 145
8.2.11. DRD Versus MEMCHECKcccvuiiiiiiiiiieiiiii et e e e e e eeees 145
8.2.12. RESOUICE REQUITEMENTSeetieiii et e et e e et e e e e e e e e e e e et e e et eeaan e eean s 145
8.2.13. Hints and Tips for Effective Use 0f DRDcccoiiiiiiiiiiiiii e, 146

8.3. Using the POSIX Threads APl EffeCtiVElYoiiiiiiii e 146
8.3, L. MULEX DY IBS vttt ettt e e e 146
8.3.2. ConditioN VATADIES ... 146
8.3.3. pthread _cond _timedwait and tiMEOULSoeviiiiiiiiiiii e 147

S S I 411 = o] PPN 147
8.5, FEEUDACKeiieii e aaan 147
9. MasSif: @hEaD PrOfIlEr . .oeee i e 148
LN O = T T PP 148
9.2. UsiNg MasSIT and MS PriNt ... couuiiiiieiiii e e e e e e e e s e e e et e e et e e aane e et 148
9.2.1. AN EXaMPIE PrOgram .. .couuiii i cee e e e e e e e e e e e e e e e e e e 148
LS {0 g 1 o = P 149

vii

Valgrind User Manual

9.2.3. RUNNING MS _PIINE .etuiiiiiii e e e e e e e e e e e e e et e et e e et e e eanaeeees 149
9.2.4. The OUPUL Preamblecoiiniiii e e ean s 149
LS I S X @ U1 o 10 =" o P 149
9.2.6. The SNapShOt DELAIISuuiiiiiiii e e e e e e e e e aaeees 152
S A o] o 0 = 0 PP 154
9.2.8. Measuring All MemOry iN @ PrOCESSccuuuiiiiieiiie e e e e e e e e e e e 154
9.2.9. Acting on Massif's INfOrMaionooiuuiiiiiiiii e e 155

9.3. USING MASSIT-VISUAIIZENovuiiiiieii e e e e e e e e e e eaaas 155
9.4. Massif Command-liNe OPLiONSciiuiiiii e e e e e aes 155
9.5. Ma@sSif MONItOr COMMENGSeieiiiieeiiiis et e et e et e e e et s e e e et reeeettreeeertaeeeerenaeaees 157
9.6. MESSIT ClIENT REGUESES ...evvtieeiiiii ettt e et e et e e et e e e et e e e eaan e eeennnns 157
9.7. ms_print Command-line OPLIONSceiuiiiiiii e e 158
9.8. Massif's OULPUL FIlE FOIMELoveiiiii e e e e e 158
10. DHAT: adynamic heap analySIS tOO0]cciuuiiiiiiiii e e e e 159
FO. L. OVEIVIBIW ettt e e e e e e e et e e e e ettt e e e et b e e e et ete s e e e eeta e e e enttnaeeeetnaeaenes 159
02 U £ T oo] 1N OSSP 159
10.2.1. RUNNING DHAT Lot e et e e et e e et e e e era s 159
10.2.2. OUIPUL FITE .ottt e e e e et a e e e et e e e eaaaaeeees 160

10.3. DHAT'S VIBWET ...ttt e ettt e e e et e e e et e e e e et e e e e et e e e eett e e e eeteaeeaatnaeaees 160
10.3.1. The OULPUE HEBAENcceeviieeiiii e e e et a e e eea e eees 160

L0 o I T e I (= PP 161
10.3.3. The OULPUL FOOLENiiiicii e e e e e e e e e e e an s 164
10.3.4, SO MELTICS ..eevtieieite ettt e et e et e e e et e e e et e e e e et naeeeaen s 164

10.4. Treatment OF FEAIIOCiiieii e e e e e e e eeeat e eeees 166
O @0 o) VA o 1011 111 [166
10.6. Ad NOC PrOfIING .ovvniiiiei e e e e e e e e e e e 167
10.7. DHAT Command-lin€ OPLIONSccuuiiiiieiiiieiieee et e e e e e e e et e e e eeanas 167
11. Lackey: an example tO0]coouiiiiiii e e 168
0 @ = 4T PN 168
11.2. Lackey Command-ling OPLiONSccuuiiiiiiiiiieeiie e ee e e e e e e e e e e e e e e et e e et e e eanaeees 168
12. Nulgrind: the minimal Valgrind tO0lco.iiiiiiiii e e e e 169
@ = 4T T PPN 169
13. BBV: an experimental basic block vector generation toolcooeviiiiiii i 170
T @ = 4T T PN 170
13.2. Using Basic Block Vectors to create SIMPOINESccuuiiiiieiiiiieii e 170
13.3. BBV Command-ling€ OPtioNSiiiiiiiiiiiiii e e e e e e e e e e e e aens 171
13.4. BasiC BIOCK VECtOr Fil@ FOMMELccvvuiieiiiie et e e e e e 171
TR 1ol = 4= 1 1 o 172
13.6. Threaded EXeCUtable SUPPOITccuuiiii e e e e e e e e e e e e eanees 172
G A £ T 7 (o] o PP 172
13,8, PEITOIMMANCE ...ttt ettt et e e e 173

viii

1. Introduction
1.1. An Overview of Valgrind

Vagrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools each
of which performs some kind of debugging, profiling, or similar task that helps you improve your programs.
Vagrind's architectureis modular, so new tools can be created easily and without disturbing the existing structure.

A number of useful tools are supplied as standard.

1. Memcheck isamemory error detector. It helps you make your programs, particularly those written in C and
C++, more correct.

2. Cachegrind is acache and branch-prediction profiler. It helps you make your programs run faster.

3. Callgrind isacall-graph generating cache profiler. It has some overlap with Cachegrind, but also gathers some
information that Cachegrind does not.

4. Helgrind isathread error detector. It helps you make your multi-threaded programs more correct.

5. DRD isaso athread error detector. It issimilar to Helgrind but uses different analysis techniques and so may
find different problems.

6. Massif isaheap profiler. It helps you make your programs use less memory.

7. DHAT isadifferent kind of heap profiler. It helps you understand issues of block lifetimes, block utilisation,
and layout inefficiencies.

8. BBV is an experimental SimPoint basic block vector generator. It is useful to people doing computer
architecture research and development.

There are also a couple of minor tools that aren't useful to most users: Lackey is an example tool that illustrates
some instrumentation basics; and Nulgrind isthe minimal Valgrind tool that does no analysis or instrumentation,
and is only useful for testing purposes.

Valgrind is closely tied to details of the CPU and operating system, and to a lesser extent, the compiler and basic
Clibraries. Nonetheless, it supports a number of widely-used platforms, listed in full at http://www.valgrind.org/.

Vagrind is built viathe standard Unix . / conf i gur e, make, make i nst al | process; full details are given
in the README file in the distribution.

Valgrind is licensed under the The GNU General Public License, version 2. Theval gri nd/ *. h headers that
you may wish to include in your code (eg. val gri nd. h, nencheck. h, hel gri nd. h, etc.) are distributed
under aBSD-stylelicense, so you may include them in your code without worrying about license conflicts. Some
of the PThreadstest cases, pt h_*. ¢, aretaken from " Pthreads Programming" by Bradford Nichols, Dick Buittlar
& Jacqueline Proulx Farrell, ISBN 1-56592-115-1, published by O'Reilly & Associates, Inc.

If you contribute codeto Valgrind, please ensure your contributionsarelicensed as"GPLV2, or (at your option) any
later version." Thisisso asto alow the possibility of easily upgrading the licenseto GPLv3 in future. If you want
to modify codein the VEX subdirectory, please aso see the file VEX/HACKING.README in the distribution.

1.2. How to navigate this manual

This manual's structure reflects the structure of Valgrind itself. First, we describe the Valgrind core, how to use
it, and the options it supports. Then, each tool has its own chapter in this manual. You only need to read the
documentation for the core and for the tool(s) you actually use, although you may find it helpful to be at least a
little bit familiar with what all tools do. If you're new to al this, you probably want to run the Memcheck tool and
you might find the The Valgrind Quick Start Guide useful.

http://www.valgrind.org/

Introduction

Be aware that the core understands some command line options, and the tools have their own options which they
know about. This means there is no central place describing all the options that are accepted -- you have to read
the options documentation both for Valgrind's core and for the tool you want to use.

2. Using and understanding the
Valgrind core

This chapter describesthe Valgrind core services, command-line options and behaviours. That meansit isrelevant
regardless of what particular tool you areusing. Theinformation should be sufficient for you to make effective day-
to-day use of Valgrind. Advanced topics related to the Valgrind core are described in Valgrind's core: advanced
topics.

A point of terminology: most referencesto "Valgrind” in this chapter refer to the Valgrind core services.

2.1. What Valgrind does with your program

Vagrind isdesigned to be as non-intrusive as possible. It works directly with existing executables. Y ou don't need
to recompile, relink, or otherwise modify the program to be checked.

You invoke Valgrind like this:

val grind [val grind-options] your-prog [your-prog-options]

The most important optionis- - t ool which dictates which Valgrind tool to run. For example, if want to run the
command| s -1 using the memory-checking tool Memcheck, issue this command:

val grind --tool =nentheck |s -I
However, Memcheck isthe default, so if you want to use it you can omit the - - t ool option.

Regardless of which tool isin use, Valgrind takes control of your program beforeit starts. Debugging information
is read from the executable and associated libraries, so that error messages and other outputs can be phrased in
terms of source code locations, when appropriate.

Y our program is then run on a synthetic CPU provided by the Vagrind core. Asnew code is executed for the first
time, the core hands the code to the selected tool. The tool addsits own instrumentation code to this and hands the
result back to the core, which coordinates the continued execution of this instrumented code.

The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck adds
code to check every memory access and every value computed, making it run 10-50 times slower than natively.
At the other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causesin
total "only" about a 4 times slowdown.

Vagrind simulates every single instruction your program executes. Because of this, the active tool checks, or
profiles, not only the code in your application but also in al supporting dynamically-linked libraries, including
the C library, graphical libraries, and so on.

If you're using an error-detection tool, Valgrind may detect errors in system libraries, for example the GNU C
or X11 libraries, which you have to use. You might not be interested in these errors, since you probably have
no control over that code. Therefore, Valgrind allows you to selectively suppress errors, by recording them in
a suppressions file which is read when Valgrind starts up. The build mechanism selects default suppressions
which give reasonable behaviour for the OS and libraries detected on your machine. To make it easier to
write suppressions, you can use the - - gen- suppr essi ons=yes option. This tells Valgrind to print out a
suppression for each reported error, which you can then copy into a suppressions file.

Valgrind will try to match the behaviour of applications compiled to run on the same OS and librariesthat Valgrind
was built with. If you use different libraries or a different OS version there may be some small differences in
behaviour.

Different error-checking tools report different kinds of errors. The suppression mechanism therefore allows you
to say which tool or tool(s) each suppression applies to.

Using and understanding the Valgrind core

2.2. Getting started

First off, consider whether it might be beneficial to recompile your application and supporting libraries with
debugging info enabled (the - g option). Without debugging info, the best Valgrind toolswill be ableto do isguess
which function a particular piece of code belongs to, which makes both error messages and profiling output nearly
useless. With - g, you'll get messages which point directly to the relevant source code lines.

Another option you might like to consider, if you are working with C++, is- f no-i nl i ne. That makesit easier
to see the function-call chain, which can help reduce confusion when navigating around large C++ apps. For
example, debugging OpenOffice.org with Memcheck is a bit easier when using this option. Y ou don't have to do
this, but doing so helps Valgrind produce more accurate and |ess confusing error reports. Chances are you're set up
like this already, if you intended to debug your program with GNU GDB, or some other debugger. Alternatively,
theValgrind option - - r ead- i nl i ne-i nf o=yes instructs Valgrind to read the debug information describing
inlining information. With this, function call chain will be properly shown, even when your applicationiscompiled
with inlining.

If you are planning to use Memcheck: On rare occasions, compiler optimisations (at - O2 and above, and sometimes
- O1) have been observed to generate code which fools Memcheck into wrongly reporting uninitialised value
errors, or missing uninitialised value errors. We have looked in detail into fixing this, and unfortunately the result
isthat doing so would give afurther significant slowdown in what is already a slow tool. So the best solution isto
turn off optimisation altogether. Since this often makes things unmanageably slow, areasonable compromiseisto
use - O. This gets you the majority of the benefits of higher optimisation levels whilst keeping relatively small the
chances of false positives or false negatives from Memcheck. Also, you should compile your code with - Wl |
because it can identify some or al of the problemsthat Vagrind can miss at the higher optimisation levels. (Using
-\Wal | isalso agood ideain general.) All other tools (as far as we know) are unaffected by optimisation level,
and for profiling tools like Cachegrind it is better to compile your program at its normal optimisation level.

Vagrind understands the DWARF2/3/4 formats used by GCC 3.1 and later. The reader for "stabs" debugging
format (used by GCC versions prior to 3.1) has been disabled in Valgrind 3.9.0.

When you're ready to roll, run Valgrind as described above. Note that you should run the real (machine-code)
executable here. If your application is started by, for example, a shell or Perl script, you'll need to modify it to
invoke Valgrind on the real executables. Running such scripts directly under Valgrind will result in you getting
error reports pertaining to / bi n/ sh, / usr/ bi n/ per |, or whatever interpreter you're using. This may not be
what you want and can be confusing. Y ou can force the issue by giving theoption- -t r ace- chi | dr en=yes,
but confusion is till likely.

2.3. The Commentary

Valgrind tools write acommentary, a stream of text, detailing error reports and other significant events. All lines
in the commentary have following form:

==12345== sone- nessage-from Val gri nd

The12345 istheprocess|D. Thisschememakesit easy to distinguish program output from Valgrind commentary,
and also easy to differentiate commentaries from different processes which have become merged together, for
whatever reason.

By default, Valgrind tools write only essential messages to the commentary, so as to avoid flooding you with
information of secondary importance. If you want more information about what is happening, re-run, passing the
- v option to Valgrind. A second - v gives yet more detail.

Y ou can direct the commentary to three different places:

1. Thedefault: send it to afile descriptor, which isby default 2 (stderr). So, if you give the core no options, it will
write commentary to the standard error stream. If you want to send it to some other file descriptor, for example
number 9, you can specify - - | og- f d=9.

Using and understanding the Valgrind core

Thisisthe ssimplest and most common arrangement, but can cause problems when Valgrinding entire trees of
processes which expect specific file descriptors, particularly stdin/stdout/stderr, to be available for their own
use.

2. A lessintrusive option isto write the commentary to afile, which you specify by - - 1 og-fi | e=fi | enane.
There are special format specifiers that can be used to use a process ID or an environment variable name in
the log file name. These are useful/necessary if your program invokes multiple processes (especialy for MPI
programs). See the basic options section for more details.

3. The least intrusive option is to send the commentary to a network socket. The socket is specified as an IP
address and port number pair, like this: - - | 0g- socket =192. 168. 0. 1: 12345 if you want to send the
output to host 1P 192.168.0.1 port 12345 (note: we have no ideaif 12345 isaport of pre-existing significance).
Y ou can also omit the port number: - - | 0og- socket =192. 168. 0. 1, in which case a default port of 1500
isused. This default is defined by the constant VG_CLO_DEFAULT_LOGPORT in the sources.

Note, unfortunately, that you have to use an IP address here, rather than a hostname.

Writing to a network socket is pointless if you don't have something listening at the other end. We provide a
simplelistener program, val gri nd- 1 i st ener , which accepts connections on the specified port and copies
whatever it is sent to stdout. Probably someone will tell us thisis ahorrible security risk. It seems likely that
people will write more sophisticated listenersin the fullness of time.

val grind-1i st ener canaccept simultaneous connections from up to 50 Valgrinded processes. In front of
each line of output it prints the current number of active connections in round brackets.

val gri nd-1i st ener acceptsthree command-line options:
-e --exit-at-zero

When the number of connected processes falls back to zero, exit. Without this, it will run forever, that is,
until you send it Control-C.

- - max- connect =I NTEGER

By default, the listener can connect to up to 50 processes. Occasionally, that number istoo small. Usethis
option to provide a different limit. E.g. - - max- connect =100.

port number

Changes the port it listens on from the default (1500). The specified port must be in the range 1024 to
65535. The same restriction applies to port numbers specified by a- - | 0g- socket to Valgrind itself.

If aValgrinded process fails to connect to a listener, for whatever reason (the listener isn't running, invalid or
unreachable host or port, etc), Valgrind switches back to writing the commentary to stderr. The same goes for
any process which loses an established connection to alistener. In other words, killing the listener doesn't kill
the processes sending data to it.

Here is an important point about the relationship between the commentary and profiling output from tools. The
commentary contains a mix of messages from the VValgrind core and the selected tool. If the tool reports errors, it
will report them to the commentary. However, if the tool does profiling, the profile data will be written to afile
of some kind, depending on the tool, and independent of what - - | 0g- * optionsarein force. The commentary is
intended to be alow-bandwidth, human-readable channel. Profiling data, on the other hand, is usually voluminous
and not meaningful without further processing, which is why we have chosen this arrangement.

2.4. Reporting of errors

When an error-checking tool detects something bad happening in the program, an error message is written to the
commentary. Here's an example from Memcheck:

Using and understanding the Valgrind core

==25832== I nvalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize(int, int, int) (bogon.cpp:45)
==25832== by 0x80487AF: mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, malloc'd or free'd

This message saysthat the program did an illegal 4-byte read of address OXBFFFF74C, which, asfar as Memcheck
can tell, is not a valid stack address, nor corresponds to any current heap blocks or recently freed heap blocks.
Theread is happening at line 45 of bogon. cpp, called from line 66 of the samefile, etc. For errors associated
with anidentified (current or freed) heap block, for example reading freed memory, Vagrind reports not only the
location where the error happened, but also where the associated heap block was allocated/freed.

Valgrind remembers all error reports. When an error is detected, it is compared against old reports, to seeif it is
aduplicate. If so, the error is noted, but no further commentary is emitted. This avoids you being swamped with
bazillions of duplicate error reports.

If you want to know how many times each error occurred, run with the - v option. When execution finishes, all
the reports are printed out, along with, and sorted by, their occurrence counts. This makes it easy to see which
errors have occurred most frequently.

Errors are reported before the associated operation actually happens. For example, if you're using Memcheck and
your program attempts to read from address zero, Memcheck will emit a message to this effect, and your program
will then likely die with a segmentation fault.

In general, you should try and fix errors in the order that they are reported. Not doing so can be confusing. For
example, a program which copies uninitialised values to several memory locations, and later uses them, will
generate severa error messages, when run on Memcheck. The first such error message may well give the most
direct clue to the root cause of the problem.

The process of detecting duplicate errors is quite an expensive one and can become a significant performance
overhead if your program generates huge quantities of errors. To avoid serious problems, Valgrind will simply
stop collecting errors after 1,000 different errors have been seen, or 10,000,000 errors in total have been seen.
In this situation you might as well stop your program and fix it, because Valgrind won't tell you anything else
useful after this. Note that the 1,000/10,000,000 limits apply after suppressed errors are removed. Theselimitsare
definedinm_er r or mgr . ¢ and can be increased if necessary.

To avoid this cutoff you can usethe --error-1i m t=no option. Then Vagrind will always show errors,
regardless of how many there are. Use this option carefully, since it may have a bad effect on performance.

2.5. Suppressing errors

The error-checking tools detect numerous problems in the system libraries, such as the C library, which come
pre-installed with your OS. You can't easily fix these, but you don't want to see these errors (and yes, there are
many!) So Valgrind reads a list of errors to suppress at startup. A default suppression file is created by the . /
conf i gur e script when the system is built.

Y ou can modify and add to the suppressions file at your leisure, or, better, write your own. Multiple suppression
filesare allowed. Thisisuseful if part of your project contains errors you can't or don't want to fix, yet you don't
want to continuously be reminded of them.

Note: By far the easiest way to add suppressionsisto usethe- - gen- suppr essi ons=yes option described
in Core Command-line Options. This generates suppressions automatically. For best results, though, you may
want to edit the output of - - gen- suppr essi ons=yes by hand, in which case it would be advisable to read
through this section.

Each error to be suppressed is described very specifically, to minimise the possibility that a suppression-directive
inadvertently suppresses a bunch of similar errors which you did want to see. The suppression mechanism is
designed to allow precise yet flexible specification of errors to suppress.

If you usethe- v option, at the end of execution, Valgrind prints out one line for each used suppression, giving the
number of timesit got used, itsname and thefilename and line number where the suppression isdefined. Depending

Using and understanding the Valgrind core

on the suppression kind, the filename and line number are optionally followed by additional information (such as
the number of blocks and bytes suppressed by a Memcheck |eak suppression). Here's the suppressions used by a
runofval grind -v --tool =nencheck Is -1:

--1610-- used_suppression: 2 dl -hack3-cond-1 /usr/lib/val grind/default.supp: 1234
--1610-- used_suppression: 2 glibc-2.5. x-on-SUSE- 10. 2- (PPC) -2a /usr/lib/val grind/ di

Multiple suppressionsfiles are allowed. Valgrind loads suppression patternsfrom $PREFI X/ | i b/ val gri nd/
defaul t.supp unless --defaul t-suppressi ons=no has been specified. You can ask to add
suppressions from additional files by specifying - - suppr essi ons=/ pat h/to/fil e. supp one or more
times.

If you want to understand more about suppressions, look at an existing suppressions file whilst reading the
following documentation. Thefilegl i bc- 2. 3. supp, inthe source distribution, provides some good examples.

Blank and comment linesin asuppression file are ignored. Comment lines are made of 0 or more blanks followed
by a# character followed by some text.

Each suppression has the following components:;

* Firstline: itsname. Thismerely gives ahandy nameto the suppression, by whichit isreferred to in the summary
of used suppressions printed out when a program finishes. It's not important what the name is; any identifying
string will do.

» Second line: name of the tool(s) that the suppression is for (if more than one, comma-separated), and the name
of the suppression itself, separated by a colon (n.b.: no spaces are allowed), eg:

t ool _nanel, t ool _name2: suppr essi on_nane

Recall that Valgrind is a modular system, in which different instrumentation tools can observe your program
whilst it is running. Since different tools detect different kinds of errors, it is necessary to say which tool(s) the
suppression is meaningful to.

Tools will complain, at startup, if a tool does not understand any suppression directed to it. Tools ignore
suppressions which are not directed to them. As aresult, it is quite practical to put suppressions for all tools
into the same suppression file.

* Next line: a small number of suppression types have extra information after the second line (eg. the Par am
suppression for Memcheck)

* Remaining lines: Thisis the calling context for the error -- the chain of function calls that led to it. There can
be up to 24 of these lines.

L ocations may be names of either shared objects, functions, or source lines. They begin with obj : ,fun: , or
src: respectively. Function, object, and file names to match against may use the wildcard characters* and ?.
Source lines are specified using theform f i | enane[: | i neNunber] .

Important note: C++ function names must be mangled. If you are writing suppressions by hand, use the - -
demangl e=no option to get the mangled namesin your error messages. An example of amangled C++ name
is_ZNOQLi st Vi ewdshowEv. Thisisthe form that the GNU C++ compiler usesinternally, and the form that
must be used in suppression files. The equivalent demangled name, QLi st Vi ew. : show() , iswhat you see
at the C++ source code level.

A location line may aso be simply ". . . " (three dots). This is a frame-level wildcard, which matches zero
or more frames. Frame level wildcards are useful because they make it easy to ignore varying numbers of
uninteresting frames in between frames of interest. That is often important when writing suppressions which
are intended to be robust against variations in the amount of function inlining done by compilers.

* Finaly, the entire suppression must be between curly braces. Each brace must be the first character on its own
line.

Using and understanding the Valgrind core

A suppression only suppresses an error when the error matchesall the detailsin the suppression. Here'san example:

{
__gconv_transform ascii_internal/__nbrtowc/ nmbt owc
Mentheck: Val ue4d
fun: __gconv_transform ascii _internal

fun: __nbr*toc
fun: nbt owc

}

What it meansis: for Memcheck only, suppress a use-of-uninitialised-value error, when the data size is 4, when it
occursin the function __gconv_transform ascii _i nt ernal , when that is called from any function of
name matching __ nbr *t oc, when that is called from nbt owc. It doesn't apply under any other circumstances.
The string by which this suppressionisidentified totheuseris__gconv_t ransform ascii _i nternal /
___nbrtowc/ nbt ownc.

(See Writing suppression files for more details on the specifics of Memcheck's suppression kinds.)

Another example, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/]ibXaw.so.7.0

Mentheck: Val ue4d

obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/libXaw. so. 7.0

}

This suppresses any size 4 uninitialised-value error which occurs anywherein| i bX11. so. 6. 2, when caled
from anywhere in the same library, when called from anywherein| i bXaw. so. 7. 0. Theinexact specification
of locations is regrettable, but is about all you can hope for, given that the X11 libraries shipped on the Linux
distro on which this example was made have had their symbol tables removed.

An example of the src: specification, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/1ibXaw.so.7.0

Menctheck: Val ue4
src:valid.c:321

}

This suppresses any size-4 uninitialised-value error which occursat line321inval i d. c.

Although the above two examples do not make this clear, you can freely mix obj : , fun: ,and src: linesin
asuppression.

Finally, here's an example using three frame-level wildcards:

a-contrived- exanpl e
Mencheck: Leak
fun: mal | oc

fun: ddd

fun: ccc

Using and understanding the Valgrind core

fun: mai n
}

This suppresses Memcheck memory-leak errors, in the case where the alocation was done by nmai n calling
(though any number of intermediaries, including zero) ccc, calling onwardsviaddd and eventually tomal | oc. .

2.6. Debuginfod

Vagrind supports the downloading of debuginfo files via debuginfod, an HTTP server for distributing ELF/
DWARF debugging information. When a debuginfo file cannot be found locally, Valgrind is able to query
debuginfod servers for the file using the file's build-id.

In order to use this feature debugi nfod-find must be installed and the $DEBUG NFOD_URLS
environment variable must contain space-separated URLs of debuginfod servers. Valgrind does not support
debugi nfod-fi nd verbose output that is normally enabled with $DEBUG NFOD_PROGRESS and
$DEBUG NFCD_VERBGCSE. These environment variables will be ignored. This feature is supported on Linux
only.

For more information regarding debuginfod, see Elfutils Debuginfod .

2.7. Core Command-line Options

As mentioned above, Valgrind's core accepts acommon set of options. Thetools also accept tool-specific options,
which are documented separately for each tool.

Valgrind's default settings succeed in giving reasonable behaviour in most cases. We group the available options
by rough categories.

2.7.1. Tool-selection Option

The single most important option.
--t ool =<t ool nane> [defaul t: nentheck]

Run the Valgrind tool called t ool nane, e.g. memcheck, cachegrind, callgrind, helgrind, drd, massif, dhat,
lackey, none, exp-bbv, etc.

2.7.2. Basic Options

These options work with all tools.
-h --help

Show help for all options, both for the core and for the selected tool. If the option is repeated it is equivalent
togiving - - hel p- debug.

- - hel p- debug

Sameas- - hel p, but also lists debugging options which usually are only of use to Valgrind's devel opers.
--version

Show the version number of the VValgrind core. Tools can have their own version numbers. Thereis ascheme

in place to ensure that tools only execute when the core version is one they are known to work with. Thiswas
done to minimise the chances of strange problems arising from tool-vs-core version incompatibilities.

https://sourceware.org/elfutils/Debuginfod.html

Using and understanding the Valgrind core

-q,--qui et

Run silently, and only print error messages. Useful if you are running regression tests or have some other
automated test machinery.

-V, --verbose

Be more verbose. Gives extra information on various aspects of your program, such as: the shared objects
loaded, the suppressions used, the progress of the instrumentation and execution engines, and warnings about
unusual behaviour. Repeating the option increases the verbosity level.

--trace-chil dren=<yes| no> [defaul t: no]

When enabled, Valgrind will trace into sub-processes initiated via the exec system call. This is necessary
for multi-process programs.

Note that Valgrind does trace into the child of af or k (it would be difficult not to, since f or k makes an
identical copy of a process), so this option is arguably badly named. However, most children of f or k calls
immediately call exec anyway.

--trace-chil dren-ski p=pattl, patt2,...

This option only has an effect when - - t r ace- chi | dr en=yes is specified. It alows for some children
to be skipped. The option takes a comma separated list of patterns for the names of child executables that
Vagrind should not trace into. Patterns may include the metacharacters ? and *, which have the usual
meaning.

This can be useful for pruning uninteresting branches from atree of processes being run on Valgrind. But you
should be careful when using it. When Valgrind skips tracing into an executable, it doesn't just skip tracing
that executable, it also skips tracing any of that executabl€e's child processes. In other words, the flag doesn't
merely cause tracing to stop at the specified executables -- it skips tracing of entire process subtrees rooted
at any of the specified executables.

--trace-chil dren-ski p-by-arg=pattl, patt2,...

Thisisthesameas--trace-chi | dr en- ski p, with one difference: the decision as to whether to trace
into a child process is made by examining the arguments to the child process, rather than the name of its
executable.

--child-silent-after-fork=<yes|no> [default: no]

When enabled, Valgrind will not show any debugging or logging output for the child process resulting from a
f or k call. This can make the output less confusing (although more misleading) when dealing with processes
that create children. It is particularly useful in conjunction with - - t r ace- chi | dr en=. Use of this option
is also strongly recommended if you are requesting XML output (- - xni =yes), since otherwise the XML
from child and parent may become mixed up, which usually makes it useless.

--vgdb=<no| yes|ful | > [default: yes]

Valgrind will provide "gdbserver" functionality when - - vgdb=yes or - - vgdb=f ul | is specified. This
allows an external GNU GDB debugger to control and debug your program when it runs on Valgrind.
--vgdb=ful I incurs significant performance overheads, but provides more precise breakpoints and
watchpoints. See Debugging your program using Valgrind's gdbserver and GDB for a detailed description.

If the embedded gdbserver is enabled but no gdb is currently being used, the vgdb command line utility can
send "monitor commands" to Valgrind from a shell. The Valgrind core provides a set of VValgrind monitor
commands. A tool can optionally provide tool specific monitor commands, which are documented in the tool
specific chapter.

--vgdb- error=<nunber> [default: 999999999]

Use this option when the Valgrind gdbserver is enabled with - - vgdb=yes or - - vgdb=f ul | . Tools that
report errorswill wait for "nunber " errorsto be reported before freezing the program and waiting for you to

10

Using and understanding the Valgrind core

connect with GDB. It follows that a value of zero will cause the gdbserver to be started before your program
is executed. Thisistypically used to insert GDB breakpoints before execution, and al so works with tools that
do not report errors, such as Massif.

--vgdb- st op- at =<set > [defaul t: none]

Usethisoption whenthe VValgrind gdbserver isenabled with - - vgdb=yes or - - vgdb=f ul | . TheVagrind
gdbserver will beinvoked for each error after - - vgdb- er r or have been reported. Y ou can additionally ask
the Valgrind gdbserver to be invoked for other events, specified in one of the following ways:

» acommaseparated list of oneor moreof start up exit abexit val gri ndabexit.

Thevaluesst art up exi t val gri ndabexi t respectively indicate to invoke gdbserver before your
program is executed, after the last instruction of your program, on Valgrind abnormal exit (e.g. internal
error, out of memory, ...).

The option abexi t issimilar to exi t but tells to invoke gdbserver only when your application exits
abnormally (i.e. with an exit code different of 0).

Note: st art up and - - vgdb- er r or =0 will both cause Valgrind gdbserver to be invoked before your
programisexecuted. The- - vgdb- er r or =0 will in addition cause your program to stop on all subsequent
errors.

o all to gpecify the complete set. It is equivalent to --vgdb-stop-
at =startup, exit, abexit, val gri ndabexit.

» none for the empty set.

--track-fds=<yes|no|all> [default: no]

When enabled, Valgrind will print out alist of open file descriptors on exit or on request, via the gdbserver
monitor commandyv. i nf o open_f ds. Alongwith eachfiledescriptor is printed astack backtrace of where
the file was opened and any details relating to the file descriptor such as the file name or socket details. Use
al | toincludereportingonst di n, st dout and st derr.

--tinme-stanmp=<yes| no> [default: no]

When enabled, each message is preceded with an indication of the elapsed wallclock time since startup,
expressed as days, hours, minutes, seconds and milliseconds.

og- fd=<nunber> [default: 2, stderr]

Specifies that Valgrind should send all of its messages to the specified file descriptor. The default, 2, isthe
standard error channel (stderr). Note that this may interfere with the client's own use of stderr, as Valgrind's
output will be interleaved with any output that the client sends to stderr.

og-fil e=<fil enane>

Specifiesthat Valgrind should send all of its messagesto the specified file. If thefile nameis empty, it causes
an abort. There are three special format specifiers that can be used in the file name.

%p is replaced with the current process ID. Thisis very useful for program that invoke multiple processes.
WARNING: If youuse- -t race- chi | dr en=yes and your program invokes multiple processes OR your
program forks without calling exec afterwards, and you don't use this specifier (or the %g specifier below), the
Valgrind output from all those processes will go into one file, possibly jumbled up, and possibly incompl ete.
Note: If the program forks and calls exec afterwards, Valgrind output of the child from the period between
fork and exec will be lost. Fortunately this gap is really tiny for most programs; and modern programs use
posi X_spawn anyway.

% isreplaced with afile sequence number unique for this process. Thisis useful for processes that produces
several files from the same filename template.

11

Using and understanding the Valgrind core

%g{ FOO} is replaced with the contents of the environment variable FOQO. If the { FOO} part is malformed,
it causes an abort. This specifier israrely needed, but very useful in certain circumstances (eg. when running
MPI programs). Theideaisthat you specify avariable which will be set differently for each processin thejob,
for example BPROC_RANK or whatever is applicable in your MPI setup. If the named environment variable
is not set, it causes an abort. Note that in some shells, the { and } characters may need to be escaped with
abackslash.

%®%is replaced with %
If an %is followed by any other character, it causes an abort.

If the file name specifies arelative file name, it is put in the program's initial working directory: thisis the
current directory when the program started its execution after the fork or after the exec. If it specifies an
absolute file name (ie. startswith /") then it is put there.

0g- socket =<i p- addr ess: port - nunber >

Specifies that Valgrind should send all of its messages to the specified port at the specified IP address.
The port may be omitted, in which case port 1500 is used. If a connection cannot be made to the specified
socket, Valgrind falls back to writing output to the standard error (stderr). This option isintended to be used
in conjunction with the val gri nd-1i st ener program. For further details, see the commentary in the
manual.

- - enabl e- debugi nf od=<no| yes> [defaul t: yes]

When enabled Valgrind will attempt to download missing debuginfo from debuginfod servers if space-
separated server URLs are present in the $DEBUG NFOD_URLS environment variable. This option is
supported on Linux only.

2.7.3. Error-related Options

These options are used by all tools that can report errors, e.g. Memcheck, but not Cachegrind.
--xm =<yes| no> [defaul t: no]

When enabled, the important parts of the output (e.g. tool error messages) will bein XML format rather than
plain text. Furthermore, the XML output will be sent to a different output channel than the plain text output.
Therefore, you also must useone of - - xm -fd,--xm -fil e or--xm -socket to specify where the
XML isto be sent.

Less important messages will still be printed in plain text, but because the XML output and plain text output
are sent to different output channels (the destination of the plain text output is still controlled by - - 1 og- f d,
--log-fileand--1og-socket) thisshould not cause problems.

Thisoptionisaimed at making life easier for toolsthat consume Valgrind's output asinput, such as GUI front
ends. Currently this option works with Memcheck, Helgrind and DRD. The output format is specified in the
filedocs/ i nt ernal s/ xm - out put - pr ot ocol 4. t xt inthe sourcetreefor Valgrind 3.5.0 or later.

Therecommended optionsfor aGUI to pass, when requesting XML output, are; - - xm =yes toenable XML
output, - - xm - fi | e to send the XML output to a (presumably GUI-selected) file, - -1 og-fi | e to send
the plain text output to a second GUI-selected file, - - chi | d-sil ent-after-fork=yes, and -q to
restrict the plain text output to critical error messages created by Valgrind itself. For example, failure to read
aspecified suppressionsfile countsas acritical error message. In thisway, for asuccessful run the text output
filewill be empty. But if it isn't empty, then it will contain important information which the GUI user should
be made aware of.

--xm - fd=<nunber> [defaul t: -1, disabled]

Specifies that Valgrind should send its XML output to the specified file descriptor. It must be used in
conjunction with - - xm =yes.

12

Using and understanding the Valgrind core

--xm -file=<fil enane>

Specifies that Valgrind should send its XML output to the specified file. It must be used in conjunction with
--xm =yes. Any % or % sequences appearing in the filename are expanded in exactly the same way as
they arefor - - | og-fi | e. Seethe description of --log-file for details.

--xm - socket =<i p- addr ess: port - nunmber >

Specifies that Valgrind should send its XML output the specified port at the specified |P address. It must
be used in conjunction with - - xm =yes. The form of the argument is the same as that used by - - | og-
socket . Seethedescription of - - | 0g- socket for further details.

--xm - user-comrent =<stri ng>

Embeds an extra user comment string at the start of the XML output. Only works when - - ximi =yes is
specified; ignored otherwise.

- -demangl e=<yes| no> [defaul t: yes]

Enable/disable automatic demangling (decoding) of C++ names. Enabled by default. When enabled, Valgrind
will attempt to trandate encoded C++ names back to something approaching the original. The demangler
handles symbols mangled by g++ versions 2.X, 3.X and 4.X.

An important fact about demangling is that function names mentioned in suppressions files should be in
their mangled form. Val grind does not demangl e function names when searching for applicable suppressions,
because to do otherwise would make suppression file contents dependent on the state of VVal grind'sdemangling
machinery, and also slow down suppression matching.

--numcal | ers=<nunber> [defaul t: 12]

Specifies the maximum number of entries shown in stack traces that identify program locations. Note that
errors are commoned up using only the top four function locations (the place in the current function, and that
of itsthree immediate callers). So this doesn't affect the total number of errors reported.

The maximum value for thisis 500. Note that higher settings will make Valgrind run a bit more slowly and
take a bit more memory, but can be useful when working with programs with deeply-nested call chains.

- -unw- st ack- scan-t hr esh=<nunber > [defaul t: 0] , --unw- st ack-scan-
frames=<nunber> [default: 5]

Stack-scanning support is available only on ARM targets.

These flags enable and control stack unwinding by stack scanning. When the normal stack unwinding
mechanisms -- usage of Dwarf CFI records, and frame-pointer following -- fail, stack scanning may be able
to recover a stack trace.

Note that stack scanning is an imprecise, heuristic mechanism that may give very misleading results, or none
at all. It should be used only in emergencies, when normal unwinding fails, and it isimportant to nevertheless
have stack traces.

Stack scanning is a simple technique: the unwinder reads words from the stack, and tries to guess which of
them might be return addresses, by checking to see if they point just after ARM or Thumb call instructions.
If so, the word is added to the backtrace.

The main danger occurs when afunction call returns, leaving its return address exposed, and a new function
is called, but the new function does not overwrite the old address. The result of thisisthat the backtrace may
contain entries for functions which have already returned, and so be very confusing.

A second limitation of thisimplementation is that it will scan only the page (4KB, normally) containing the
starting stack pointer. If the stack frames are large, this may result in only a few (or not even any) being
present in the trace. Also, if you are unlucky and have an initial stack pointer near the end of its containing
page, the scan may miss al interesting frames.

13

Using and understanding the Valgrind core

By default stack scanning is disabled. The normal use caseisto ask for it when a stack trace would otherwise
bevery short. So, to enableit, use- - unw st ack- scan-t hr esh=nunber . ThisrequestsValgrind to try
using stack scanning to "extend" stack traces which contain fewer than nurrber frames.

If stack scanning does take place, it will only generate at most the number of frames specified by - - unw
st ack- scan- f r anes. Typicaly, stack scanning generates so many garbage entriesthat thisvalueisset to
alow vaue (5) by default. In no case will a stack trace larger than the value specified by - - num cal | er s
be created.

--error-limt=<yes|no> [default: yes]

When enabled, Valgrind stops reporting errors after 10,000,000 in total, or 1,000 different ones, have been
seen. Thisisto stop the error tracking machinery from becoming a huge performance overhead in programs
with many errors.

--error-exitcode=<nunber> [default: O]

Specifies an alternative exit code to return if Valgrind reported any errorsin the run. When set to the default
value (zero), the return value from Valgrind will always be the return value of the process being simulated.
When set to a nonzero value, that value is returned instead, if Valgrind detects any errors. Thisis useful for
using Valgrind as part of an automated test suite, since it makesit easy to detect test cases for which Valgrind
has reported errors, just by inspecting return codes. When set to anonzero value and Valgrind detects no error,
the return value of Valgrind will be the return value of the program being simulated.

--exit-on-first-error=<yes|no> [default: no]

If this option is enabled, Valgrind exits on the first error. A nonzero exit value must be defined using - -
error-exitcode option. Useful if you are running regression tests or have some other automated test
machinery.

--error-markers=<begi n>, <end> [defaul t: none]

When errors are output as plain text (i.e. XML not used), - - er r or - mar ker s instructs to output a line
containing the begi n (end) string before (after) each error.

Such marker linesfacilitate searching for errors and/or extracting errorsin an output file that contain valgrind
errors mixed with the program output.

Note that empty markers are accepted. So, only using a begin (or an end) marker is possible.
--showerror-1list=no|yes|all [default: no]

If this option is yes, for tools that report errors, valgrind will show the list of detected errors and the list of
used suppressions at exit. The value al indicates to also show the list of suppressed errors.

Notethat at verbosity 2 and above, valgrind automatically showsthelist of detected errorsand thelist of used
suppressions at exit, unless - - show error-1i st =no isseected.

Specifying - s isequivalentto- - show error-1i st =yes.
--sigill-diagnostics=<yes|no> [default: yes]

Enable/disable printing of illegal instruction diagnostics. Enabled by default, but defaults to disabled when
- - qui et isgiven. The default can always be explicitly overridden by giving this option.

When enabled, a warning message will be printed, along with some diagnostics, whenever an instruction is
encountered that VValgrind cannot decode or translate, before the program isgiven aSIGILL signal. Often an
illegal instruction indicates a bug in the program or missing support for the particular instruction in Valgrind.
But some programs do deliberately try to execute an instruction that might be missing and trap the SIGILL

14

Using and understanding the Valgrind core

signal to detect processor features. Using this flag makes it possible to avoid the diagnostic output that you
would otherwise get in such cases.

- - keep- debugi nf o=<yes| no> [defaul t: no]

When enabled, keep ("archive") symbols and all other debuginfo for unloaded code. This allows saved stack
traces to include file/line info for code that has been diclose'd (or similar). Be careful with this, since it can
lead to unbounded memory use for programs which repeatedly load and unload shared objects.

Some tools and some functionalities have only limited support for archived debug info. Memcheck fully
supportsit. Generally, tools that report errors can use archived debug info to show the error stack traces. The
known limitations are: Helgrind's past access stack trace of arace condition is does not use archived debug
info. Massif (and more generally the xtree Massif output format) does not make use of archived debug info.
Only Memcheck has been (somewhat) tested with - - keep- debugi nf o=yes, so other tools may have
unknown limitations.

- - show bel ow mai n=<yes| no> [default: no]

By default, stack traces for errors do not show any functions that appear beneath mai n because most
of the time it's uninteresting C library stuff and/or gobbledygook. Alternatively, if mai n is not present
in the stack trace, stack traces will not show any functions below mai n-like functions such as glibc's
__libc_start_main. Furthermore, if mai n-like functions are present in the trace, they are normalised
as(bel ow mai n), in order to make the output more deterministic.

If thisoption isenabled, all stack trace entrieswill be shown and mai n-like functionswill not be normalised.
--full path-after=<string> [default: don't show source paths]

By default Valgrind only shows the filenames in stack traces, but not full paths to source files. When using
Valgrind in large projects where the sources reside in multiple different directories, this can be inconvenient.
--ful | pat h- af t er providesaflexible solution to this problem. When this option is present, the path to
each source file is shown, with the following al-important caveat: if st ri ng isfound in the path, then the
path up to and including st ri ng is omitted, else the path is shown unmodified. Note that st ri ng is not
required to be a prefix of the path.

For example, consider afilenamed/ hore/ j anedoe/ bl ah/ src/ f oo/ bar/ xyzzy. c. Specifying - -
ful | pat h-after=/hone/janedoe/ bl ah/ src/ will cause Vagrind to show the name as f oo/
bar/xyzzy. c.

Because the string is not required to be a prefix, - - f ul | pat h- af t er =sr ¢/ will produce the same
output. This is useful when the path contains arbitrary machine-generated characters. For example, the
path / ny/ bui | d/ di r/ C32A1B47/ bl ah/ src/ f oo/ xyzzy can be pruned to f oo/ xyzzy using - -
ful |l path-after=/blah/src/.

If you simply want to see the full path, just specify an empty string: - - f ul | pat h- aft er =. Thisisn't a
special case, merely alogical consequence of the aboverules.

Finally, you canuse- - f ul | pat h- af t er multiple times. Any appearance of it causes Valgrind to switch
to producing full paths and applying the above filtering rule. Each produced path is compared against all the
--ful | pat h- af t er -specified strings, in the order specified. The first string to match causes the path to
be truncated as described above. If none match, the full path is shown. This facilitates chopping off prefixes
when the sources are drawn from anumber of unrelated directories.

- -extra-debugi nf o- pat h=<pat h> [defaul t: undefined and unused]
By default Valgrind searches in severa well-known paths for debug objects, such as/ usr/ 1 i b/ debug/ .

However, there may be scenarios where you may wish to put debug objects at an arbitrary location, such
as external storage when running Valgrind on a mobile device with limited local storage. Another example
might be a situation where you do not have permission to install debug object packages on the system where
you are running Valgrind.

15

Using and understanding the Valgrind core

In these scenarios, you may provide an absolute path as an extra, final place for Valgrind to search for
debug objects by specifying - - ext r a- debugi nf o- pat h=/ pat h/ t o/ debug/ obj ect s. The given
path will be prepended to the absolute path name of the searched-for object. For example, if Valgrind is
looking for the debuginfo for / W/ x/ y/ zz. so and - - ext r a- debugi nf o- pat h=/ a/ b/ ¢ isspecified,
it will look for adebug object at / a/ b/ ¢/ w x/ y/ zz. so.

This flag should only be specified once. If it is specified multiple times, only the last instance is honoured.
- - debugi nf o- server =i paddr: port [default: undefined and unused]
Thisisanew, experimental, feature introduced in version 3.9.0.

In some scenarios it may be convenient to read debuginfo from objects stored on a different machine. With
thisflag, Vagrind will query adebuginfo server runningoni paddr and listening on port por t , if it cannot
find the debuginfo object in the local filesystem.

The debuginfo server must accept TCP connections on port por t . The debuginfo server is contained in the
source file auxpr ogs/ val gri nd-di - server. c. It will only serve from the directory it is started in.
port defaultsto 1500 in both client and server if not specified.

If Valgrind looks for the debuginfo for / W x/ y/ zz. so by using the debuginfo server, it will strip the
pathname components and merely request zz. so on the server. That in turn will look only in its current
working directory for a matching debuginfo object.

The debuginfo data is transmitted in small fragments (8 KB) as requested by Vagrind. Each block is
compressed using L ZO to reduce transmission time. Theimplementation has been tuned for best performance
over asingle-stage 802.11g (WiFi) network link.

Note that checks for matching primary vs debug objects, using GNU debuglink CRC scheme, are performed
even when using the debuginfo server. To disable such checking, you need to also specify - - al | ow
m smat ched- debugi nf o=yes.

By default the Valgrind build system will build val gri nd- di - ser ver for the target platform, which is
almost certainly not what you want. So far we have been unable to find out how to get automake/autoconf to
build it for the build platform. If you want to useit, you will have to recompileit by hand using the command
shown at thetop of auxpr ogs/ val gri nd-di - server. c.

Vagrind can also download debuginfo viadebuginfod. See the DEBUGINFOD section for moreinformation.
--al | ow m smat ched- debugi nf o=no| yes [no]

When reading debuginfo from separate debuginfo objects, Valgrind will by default check that the main
and debuginfo objects match, using the GNU debuglink mechanism. This guarantees that it does not read
debuginfo from out of date debuginfo objects, and also ensures that Valgrind can't crash as a result of
mismatches.

Thischeck canbeoverriddenusing- - al | ow i srmat ched- debugi nf o=yes. Thismay beuseful when
the debuginfo and main objects have not been split in the proper way. Be careful when using this, though:
it disables all consistency checking, and Valgrind has been observed to crash when the main and debuginfo
objects don't match.

--suppressions=<fil enane> [defaul t: $PREFI X/ |ib/val grind/ defaul t. supp]

Specifies an extra file from which to read descriptions of errors to suppress. You may use up to 100 extra
suppression files.

--gen-suppressi ons=<yes| no|al |l > [default: no]
When set toyes, Valgrind will pause after every error shown and print the line:

---- Print suppression ? --- [Return/Nn/Y/y/Cc] ----

16

Using and understanding the Valgrind core

PressingRet , or N Ret orn Ret, causes Valgrind continue execution without printing a suppression for
thiserror.

PressingY Ret ory Ret causesVagrind to write a suppression for this error. Y ou can then cut and paste
it into a suppression file if you don't want to hear about the error in the future.

When settoal |, Vagrind will print a suppression for every reported error, without querying the user.

This option is particularly useful with C++ programs, as it prints out the suppressions with mangled names,
as required.

Note that the suppressions printed are as specific as possible. Y ou may want to common up similar ones,
by adding wildcards to function names, and by using frame-level wildcards. The wildcarding facilities are
powerful yet flexible, and with abit of careful editing, you may be able to suppress awhole family of related
errors with only afew suppressions.

Sometimes two different errors are suppressed by the same suppression, in which case Valgrind will output
the suppression more than once, but you only need to have one copy in your suppression file (but having
more than one won't cause problems). Also, the suppression nameisgivenas<i nsert a suppr essi on
nane her e>; the name doesn't really matter, it's only used with the - v option which prints out all used
suppression records.

i nput - fd=<nunmber> [default: 0, stdin]

Whenusing - - gen- suppr essi ons=yes, Vagrind will stop so asto read keyboard input from you when
each error occurs. By default it reads from the standard input (stdin), whichis problematic for programswhich
close stdin. This option allows you to specify an alternative file descriptor from which to read input.

--dsymutil =no| yes [yes]
Thisoption is only relevant when running Valgrind on macOS.

macOS uses a deferred debug information (debuginfo) linking scheme. When object files containing
debuginfo arelinked intoa. dyl i b or an executable, the debuginfo is not copied into the final file. Instead,
the debuginfo must be linked manually by running dsynut i | , asystem-provided utility, on the executable
or. dyl i b. Theresulting combined debuginfo is placed in adirectory alongside the executable or . dyl i b,
but with the extension . dSYM

With- - dsynut i | =no, Valgrind will detect caseswherethe. d SYMdirectory iseither missing, or ispresent
but does not appear to match the associated executable or . dyl i b, most likely because it is out of date. In
these cases, Valgrind will print awarning message but take no further action.

With- - dsynuti | =yes, Valgrind will, in such cases, automatically rundsynut i | asnecessary to bring
the debuginfo up to date. For all practical purposes, if you aways use - - dsynut i | =yes, then there is
never any need to run dsynut i | manually or as part of your applications's build system, since Valgrind
will run it as necessary.

Valgrind will not attempt to run dsyrut i | on any executable or library in/ usr/,/bin/,/sbin/,/
opt/,/sw,/System ,/Library/ or/ Applications/ sincedsynuti |l will alwaysfail in such
situations. It fails both because the debuginfo for such pre-installed system components is not available
anywhere, and also because it would require write privilegesin those directories.

Be careful whenusing - - dsynut i | =yes, sinceit will cause pre-existing . dSYMdirectoriesto be silently
deleted and re-created. Also note that dsynut i | isquite slow, sometimes excessively so.

- - max- st ackf rame=<nunber > [defaul t: 2000000]

The maximum size of a stack frame. If the stack pointer moves by more than this amount then Valgrind will
assume that the program is switching to a different stack.

You may need to use this option if your program has large stack-allocated arrays. Valgrind keeps track
of your program's stack pointer. If it changes by more than the threshold amount, Valgrind assumes your

17

Using and understanding the Valgrind core

program is switching to adifferent stack, and Memcheck behaves differently than it would for a stack pointer
change smaller than the threshold. Usually this heuristic workswell. However, if your program allocates large
structures on the stack, this heuristic will be fooled, and Memcheck will subsequently report large numbers
of invalid stack accesses. This option allows you to change the threshold to a different value.

Y ou should only consider use of this option if Valgrind's debug output directs you to do so. In that case it
will tell you the new threshold you should specify.

In general, allocating large structures on the stack is abad idea, because you can easily run out of stack space,
especialy on systems with limited memory or which expect to support large numbers of threads each with a
small stack, and al so because the error checking performed by Memcheck is more effective for heap-allocated
data than for stack-allocated data. If you have to use this option, you may wish to consider rewriting your
code to allocate on the heap rather than on the stack.

--mai n- st acksi ze=<nunber > [default: use current 'ulint' val ue]
Specifies the size of the main thread's stack.

To simplify its memory management, Valgrind reserves al required space for the main thread's stack at
startup. That means it needs to know the required stack size at startup.

By default, Valgrind usesthe current "ulimit" value for the stack size, or 16 MB, whichever islower. In many
cases this gives a stack size in the range 8 to 16 MB, which almost never overflows for most applications.

If you need alarger total stack size, use- - nai n- st acksi ze to specify it. Only set it as high as you need,
since reserving far more space than you need (that is, hundreds of megabytes more than you need) constrains
Vagrind's memory allocators and may reduce the total amount of memory that Valgrind can use. Thisisonly
really of significance on 32-bit machines.

On Linux, you may request a stack of size up to 2GB. Valgrind will stop with a diagnostic message if the
stack cannot be allocated.

- - mai n- st acksi ze only affects the stack size for the program's initial thread. It has no bearing on the
size of thread stacks, as VValgrind does not allocate those.

You may need to use both - - mai n- st acksi ze and - - max- st ackf r ame together. It is important to
understand that - - mai n- st acksi ze sets the maximum total stack size, whilst - - max- st ackf r ane
specifies the largest size of any one stack frame. You will have to work out the - - mai n- st acksi ze
value for yourself (usualy, if your applications segfaults). But Valgrind will tell you the needed - - max-
st ackf r ame size, if necessary.

Asdiscussed further in the description of - - max- st ackf r ane, arequirement for alarge stack isa sign of
potential portability problems. Y ou are best advised to place all large datain heap-allocated memory.

--max-t hreads=<nunber> [defaul t: 500]

By default, Valgrind can handle to up to 500 threads. Occasionally, that number istoo small. Use this option
to provide adifferent limit. E.g. - - max- t hr eads=3000.

--realloc-zero-bytes-frees=yes|no [default: yes for glibc no otherw se]

The behaviour of r eal | oc() isimplementation defined (in C17, in C23 it islikely to become undefined).
Vagrind triesto work in the same way as the underlying system and C runtime library that it was configured
and built on. However, if you use a different C runtime library then this default may be wrong. If the value
isyes thenr eal | oc will deallocate the memory and return NULL. If the valueisno thenr eal | oc will
not deallocate the memory and the size will be handled as though it were one byte.

As an example, if you use Vagrind installed via a package on a Linux distro using GNU libc but link your

test executable with mud libc or the JEMalloc library then consider using - - r eal | oc- zer o- byt es-
frees=no.

18

Using and understanding the Valgrind core

Address Sanitizer has a similar and even wordier option
all ocator_frees_and returns_null _on_realloc_zero.

2.7.4. malloc-related Options

For toolsthat use their own version of mal | oc (e.g. Memcheck, Massif, Helgrind, DRD), the following options
apply.

--al i gnnent =<nunber> [default: 8 or 16, depending on the platforni

By default Valgrind'snal | oc, r eal | oc, etc, return ablock whose starting addressis 8-byte aligned or 16-
byte aligned (the value depends on the platform and matches the platform default). This option alows you
to specify adifferent alignment. The supplied value must be greater than or equal to the default, less than or
equal to 4096, and must be a power of two.

--redzone- si ze=<nunber > [default: depends on the tool]

Vagrind'smal | oc, reall oc, etc, add padding blocks before and after each heap block allocated by the
program being run. Such padding blocks are called redzones. The default value for the redzone size depends
on the tool. For example, Memcheck adds and protects a minimum of 16 bytes before and after each block
allocated by the client. Thisalowsiit to detect block underruns or overruns of up to 16 bytes.

Increasing the redzone size makes it possible to detect overruns of larger distances, but increases the amount
of memory used by Valgrind. Decreasing the redzone size will reduce the memory needed by Valgrind but
also reduces the chances of detecting over/underruns, so is not recommended.

--xtree-menory=none| al |l ocs|full [none]

Tools replacing Vagrind'smal | oc, real |l oc, etc, can optionally produce an execution tree detailing
which piece of code is responsible for heap memory usage. See Execution Trees for a detailed explanation
about execution trees.

When set to none, no memory execution tree is produced.

When setto al | ocs, the memory execution tree gives the current number of allocated bytes and the current
number of allocated blocks.

Whensettof ul | , thememory execution tree gives6 different measurements: the current number of allocated
bytes and blocks (same values as for al | ocs), the total number of alocated bytes and blocks, the total
number of freed bytes and blocks.

Note that the overhead in cpu and memory to produce an xtree depends on the tool. The overhead in cpu is
small for the value al | ocs, as the information needed to produce this report is maintained in any case by
the tool. For massif and helgrind, specifying f ul | implies to capture a stack trace for each free operation,
while normally these tools only capture an allocation stack trace. For Memcheck, the cpu overhead for the
valuef ul | issmall, asthiscan only beused in combinationwith - - keep- st ackt r aces=al | oc- and-

freeor--keep-stacktraces=all oc-t hen-free,whichaready recordsastack tracefor each free
operation. The memory overhead varies between 5 and 10 words per unique stacktrace in the xtree, plus the
memory needed to record the stack trace for the free operations, if needed specifically for the xtree.

--xtree-menory-file=<filenane> [default: xtnenory.kcg. %p]
Specifiesthat Valgrind should produce the xtree memory report in the specified file. Any %p or %g sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.
If the filename contains the extension . s, then the produced file format will be a massif output file format.

If the filename contains the extension . kcg or no extension is provided or recognised, then the produced file
format will be a callgrind output format.

19

Using and understanding the Valgrind core

See Execution Trees for a detailed explanation about execution trees formats.

2.7.5. Uncommon Options

These options apply to all tools, as they affect certain obscure workings of the Valgrind core. Most people won't
need to use them.

--snt- check=<none| stack|all|all-non-file> [default: all-non-file for x86/
and64/ s390x, stack for other archs]

This option controls Valgrind's detection of self-modifying code. If no checking is done, when a program
executes some code, then overwrites it with new code, and executes the new code, Valgrind will continue to
execute the trandations it made for the old code. Thiswill likely lead to incorrect behaviour and/or crashes.

For "modern" architectures -- anything that's not x86, and64 or s390x -- the defaultisst ack. Thisisbecause
a correct program must take explicit action to reestablish D-I cache coherence following code modification.
Valgrind observes and honours such actions, with the result that self-modifying code is transparently handled
with zero extra cost.

For x86, amd64 and s390x, the program is not required to notify the hardware of required D-I coherence
syncing. Hence the default isal | - non-fi | e, which covers the normal case of generating code into an
anonymous (non-file-backed) mmap'd area.

The meanings of the four available settings are as follows. No detection (none), detect self-modifying code
on the stack (which is used by GCC to implement nested functions) (st ack), detect self-modifying code
everywhere (al |), and detect self-modifying code everywhere except in file-backed mappings (al | - non-
file).

Runningwithal | will slow Valgrind down noticeably. Running with none will rarely speed things up, since
very little code getsdynamically generated in most programs. The VALGRI ND_DI SCARD_TRANSLATI ONS
client requestisan alternativeto- - snt- check=al | and- - snt- check=al | - non-fi | e that requires
more programmer effort but allows Valgrind to run your program faster, by telling it precisely when
translations need to be re-made.

--snt-check=al | - non-fi | e providesacheaper but morelimited version of - - sntc- check=al | . It
adds checksto any translationsthat do not originate from file-backed memory mappings. Typical applications
that generate code, for example JITsin web browsers, generate code into anonymous mmaped areas, whereas
the "fixed" code of the browser always lives in file-backed mappings. - - snc- check=al | -non-fil e
takes advantage of this observation, limiting the overhead of checking to code which is likely to be JT
generated.

--read-inline-info=<yes|no> [default: see bel ow

When enabled, Valgrind will read information about inlined function calls from DWARF3 debug info. This
dows Valgrind startup and makes it use more memory (typically for each inlined piece of code, 6 words and
space for the function name), but it results in more descriptive stacktraces. Currently, this functionality is
enabled by default only for Linux, FreeBSD, Android and Solaris targets and only for the tools Memcheck,
Massif, Helgrind and DRD. Here is an example of some stacktraceswith - - r ead- i nl i ne- i nf o=no:

==15380== Condi tional junmp or nobve depends on uninitialised val ue(s)

==15380== at Ox80484EA: main (inlinfo.c:6)

==15380==

==15380== Conditional junmp or nobve depends on uninitialised val ue(s)
==15380== at 0x8048550: fun_noninline (inlinfo.c:6)

==15380== by 0x804850E: main (inlinfo.c:34)

==15380==

==15380== Condi tional junmp or nobve depends on uninitialised val ue(s)

20

Using and understanding the Valgrind core

==15380== at 0x8048520: main (inlinfo.c:6)

And here are the same errors with - - r ead- i nl i ne- i nf o=yes:

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)

==15377== at Ox80484EA: fun_d (inlinfo.c:6)

==15377== by Ox80484EA: fun_c (inlinfo.c:14)

==15377== by Ox80484EA: fun_b (inlinfo.c:20)

==15377== by Ox80484EA: fun_a (inlinfo.c:26)

==15377== by Ox80484EA: main (inlinfo.c:33)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048550: fun_d (inlinfo.c:6)

==15377== by 0x8048550: fun_noninline (inlinfo.c:41)

==15377== by O0x804850E: main (inlinfo.c:34)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048520: fun_d (inlinfo.c:6)

==15377== by 0x8048520: main (inlinfo.c:35)

--read-var-info=<yes| no> [default: no]

When enabled, Valgrind will read information about variable types and locations from DWARF3 debug info.
ThisslowsValgrind startup significantly and makesit use significantly more memory, but for thetool sthat can
take advantage of it (Memcheck, Helgrind, DRD) it can result in more precise error messages. For example,
here are some standard errorsissued by Memcheck:

==15363== Uninitialised byte(s) found during client check request

==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048544: nmmin (varinfol.c:55)

==15363== Address 0x80497f7 is 7 bytes inside data synbol "global i?2"
==15363==

==15363== Uninitialised byte(s) found during client check request
==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048550: nmmin (varinfol.c:56)

==15363== Address OxbeaOdOcc is on thread 1's stack

==15363== in frane #1, created by main (varinfol.c:45)

And here are the same errors with - - r ead- var - i nf o=yes:

==15370== Uninitialised byte(s) found during client check request

==15370== at 0x80484A9: croak (varinfol.c: 28)

==15370== by 0x8048544: nmain (varinfol.c:55)

==15370== Locati on 0x80497f7 is 0 bytes inside global _i2[7],
==15370== a gl obal vari able declared at varinfol.c:41

==15370==

==15370== Uninitialised byte(s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048550: nmin (varinfol.c:56)

==15370== Locati on Oxbeb4aOcc is O bytes inside [ocal var "local"

==15370== declared at varinfol.c:46, in frane #1 of thread 1
- -vgdb- pol | =<nunber > [defaul t: 5000]

As part of its main loop, the Valgrind scheduler will poll to check if some activity (such as an external
command or some input from a gdb) has to be handled by gdbserver. This activity poll will be done after
having run the given number of basic blocks (or dightly more than the given number of basic blocks). This

21

Using and understanding the Valgrind core

poll is quite cheap so the default value is set relatively low. You might further decrease this value if vgdb
cannot use ptrace system call to interrupt Valgrind if all threads are (most of thetime) blocked in asystem call.

- -vgdb- shadow- r egi st ers=no| yes [default: no]

When activated, gdbserver will expose the Valgrind shadow registers to GDB. With this, the value of the
Valgrind shadow registers can be examined or changed using GDB. Exposing shadow registers only works
with GDB version 7.1 or |ater.

--vgdb- prefix=<prefix> [default: /tnp/vgdb-pipe]

To communicate with gdb/vgdb, the Valgrind gdbserver creates 3 files (2 named FIFOs and a mmap shared
memory file). The prefix option controls the directory and prefix for the creation of thesefiles.

--run-libc-freeres=<yes|no> [default: yes]
This option is only relevant when running Valgrind on Linux with GNU libc.

TheGNU Clibrary (I i bc. so), whichisused by all programs, may allocate memory for itsown uses. Usually
it doesn't bother to free that memory when the program ends—there would be no point, since the Linux kernel
reclaims all process resources when a process exits anyway, so it would just slow things down.

The glibc authors realised that this behaviour causes leak checkers, such as Vagrind, to falsely report
leaks in glibc, when a leak check is done at exit. In order to avoid this, they provided a routine called
__libc_freeres specificaly to make glibc release all memory it has allocated. Memcheck thereforetries
torun__libc_freeres atexit.

Unfortunately, in some very old versions of glibc, __ | i bc_freeres is sufficiently buggy to cause
segmentation faults. This was particularly noticeable on Red Hat 7.1. So this option is provided in order to
inhibittherunof __|'i bc_f r eer es. If your program seems to run fine on Valgrind, but segfaults at exit,
youmay findthat - - run- 1 i bc- f r eer es=no fixesthat, although at the cost of possibly falsely reporting
spaceleaksinl i bc. so.

--run-cxx-freeres=<yes| no> [default: yes]

Thisoptionisonly relevant when running Valgrind on Linux, FreeBSD or Solaris C++ programs using libstdc
++.

The GNU Standard C++ library (I i bst dc++. s0), which is used by all C++ programs compiled with g+
+, may alocate memory for its own uses. Usually it doesn't bother to free that memory when the program
ends—there would be no point, since the kernel reclaims all process resources when a process exits anyway,
so it would just slow things down.

The gcc authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report leaks
in libstdc++, when a leak check is done at exit. In order to avoid this, they provided a routine called

__gnu_cxx::__freeres specificaly to make libstdc++ release all memory it has allocated. Memcheck
thereforetriestorun __gnu_cxx:: __ freeres at exit.
For the sake of flexibility and unforeseen problemswith__gnu_cxx: : __freer es,option- - r un- cxx-

f r eer es=no exists, although at the cost of possibly falsely reporting spaceleaksin| i bst dc++. so.
--simhints=hintl, hint2,...

Pass miscellaneous hints to Valgrind which dlightly modify the simulated behaviour in nonstandard or
dangerous ways, possibly to help the simulation of strange features. By default no hints are enabled. Use with
caution! Currently known hints are:

e lax-ioctls: Beverylaxaboutioctl handling; the only assumption isthat the size is correct. Doesn't
require the full buffer to be initialised when writing. Without this, using some device drivers with alarge
number of strange ioctl commands becomes very tiresome.

22

Using and understanding the Valgrind core

« fuse-conpati bl e: Enablespecia handling for certain system calls that may block in a FUSE file-
system. This may be necessary when running Valgrind on a multi-threaded program that uses one thread
to manage a FUSE file-system and another thread to access that file-system.

* enabl e-out er: Enable some special magic needed when the program being run isitself Valgrind.

* no-inner-prefix: Disableprintingaprefix > infront of each stdout or stderr output linein an inner
Valgrind being run by an outer Valgrind. Thisisuseful when running Valgrind regression testsin an outer/
inner setup. Note that the prefix > will always be printed in front of the inner debug logging lines.

e no-nptl - pthread-stackcache: Thishintisonly relevant when running Valgrind on Linux; it
isignored on FreeBSD, Solaris and macOS.

The GNU glibc pthread library (1 i bpt hr ead. so), whichisused by pthread programs, maintainsacache
of pthread stacks. When a pthread terminates, the memory used for the pthread stack and some thread local
storage related data structure are not aways directly released. This memory is kept in a cache (up to a
certain size), and isre-used if a new thread is started.

This cache causes the helgrind tool to report some false positive race condition errors on this cached
memory, as helgrind does not understand the internal glibc cache synchronisation primitives. So, when
using helgrind, disabling the cache helps to avoid false positive race conditions, in particular when using
thread local storage variables (e.g. variablesusing the __t hr ead qualifier).

When using the memcheck tool, disabling the cache ensures the memory used by glibc to handle __thread
variablesis directly released when a thread terminates.

Note: Valgrind disables the cache using some internal knowledge of the glibc stack cache implementation
and by examining the debug information of the pthread library. This technique is thus somewhat fragile
and might not work for all glibc versions. This has been successfully tested with various glibc versions
(eg. 2.11, 2.16, 2.18) on various platforms.

e | ax-doors: (Solaris only) Be very lax about door syscall handling over unrecognised door file
descriptors. Does not require that full buffer is initialised when writing. Without this, programs using
libdoor(3L1B) functionality with completely proprietary semantics may report large number of false
positives.

o fall back-11sc: (MIPSand ARM64 only): Enables an alternative implementation of Load-Linked
(LL) and Store-Conditional (SC) instructions. The standard implementation gives more correct behaviour,
but can cause indefinite looping on certain processor implementations that are intolerant of extra memory
references between LL and SC. So far this is known only to happen on Cavium 3 cores. Y ou should not
need to use this flag, since the relevant cores are detected at startup and the alternative implementation is
automatically enabled if necessary. Thereisno equivalent anti-flag: you cannot force-disablethe aternative
implementation, if it is automatically enabled. The underlying problem exists because the "standard"
implementation of LL and SC is done by copying through LL and SC instructions into the instrumented
code. However, tools may insert extra instrumentation memory references in between the LL and SC
instructions. These memory references are not present in the original uninstrumented code, and their
presence in the instrumented code can cause the SC instructions to persistently fail, leading to indefinite
loopingin LL-SC blocks. The alternativeimplementation gives correct behaviour of LL and SCinstructions
between threadsin aprocess, up to and including the ABA scenario. It also gives correct behaviour between
a Valgrinded thread and a non-Valgrinded thread running in a different process, that communicate via
shared memory, but only up to and including correct CAS behaviour -- in this case the ABA scenario may
not be correctly handled.

- -schedul i ng- quant umr<nunber > [defaul t: 100000]

The - - schedul i ng- quant um option controls the maximum number of basic blocks executed by a
thread before releasing the lock used by Valgrind to serialise thread execution. Smaller values give finer
interleaving but increases the scheduling overhead. Finer interleaving can be useful to reproduce race
conditions with helgrind or DRD. For more details about the Valgrind thread serialisation scheme and its
impact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

23

Using and understanding the Valgrind core

--fair-sched=<no|yes|try> [defaul t: no]

The- - f ai r - sched option controls the locking mechanism used by Valgrind to serialise thread execution.
Thelocking mechanism controlsthe way the threads are scheduled, and different settings give different trade-
offs between fairness and performance. For more details about the Valgrind thread serialisation scheme and
itsimpact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

» Thevaue--f air-sched=yes activatesafar scheduler. In short, if multiple threads are ready to run,
the threads will be scheduled in a round robin fashion. This mechanism is not available on all platforms
or Linux versions. If not available, using - - f ai r - sched=yes will cause Valgrind to terminate with
an error.

Y ou may find this setting improves overall responsivenessif you are running an interactive multithreaded
program, for example aweb browser, on Valgrind.

» Thevalue- -fai r-sched=try activatesfair scheduling if available on the platform. Otherwise, it will
automatically fall back to - - f ai r - sched=no.

e Thevaue- - f ai r - sched=no activates a scheduler which does not guarantee fairness between threads
ready to run, but which in general gives the highest performance.

--kernel -variant=variant1, variant?2,...

Handle system callsand ioctls arising from minor variants of the default kernel for this platform. Thisisuseful
for running on hacked kernels or with kernel modules which support nonstandard ioctls, for example. Use
with caution. If you don't understand what this option does then you almost certainly don't need it. Currently
known variants are:

» bproc: supportthesys_br oc system call onx86. Thisisfor running on BProc, whichisaminor variant
of standard Linux which is sometimes used for building clusters.

e andr oi d- no- hwt | s: someversionsof the Android emulator for ARM do not provideahardware TLS
(thread-local state) register, and Valgrind crashes at startup. Use this variant to select software support for
TLS.

e andr oi d- gpu- sgx5xx: use this to support handling of proprietary ioctls for the PowerVR SGX 5XX
series of GPUs on Android devices. Failure to select this does not cause stability problems, but may cause
Memcheck to report false errors after the program performs GPU-specific ioctls.

e andr oi d- gpu- adr eno3xx: similarly, use this to support handling of proprietary ioctls for the
Qualcomm Adreno 3XX series of GPUs on Android devices.

--nerge-recursive-franmes=<nunber> [defaul t: 0]

Some recursive algorithms, for example balanced binary tree implementations, create many different stack
traces, each containing cycles of calls. A cycleis defined as two identical program counter values separated
by zero or more other program counter values. Valgrind may then use alot of memory to store all these stack
traces. Thisisapoor use of memory considering that such stack traces contain repeated uninteresting recursive
callsinstead of more interesting information such as the function that has initiated the recursive call.

Theoption- - mer ge- r ecur si ve- f rames=<nunber > instructsValgrind to detect and mergerecursive
call cycles having a size of up to <numnber > frames. When such a cycle is detected, Valgrind records the
cyclein the stack trace as a unigque program counter.

The value O (the default) causes no recursive call merging. A value of 1 will cause stack traces of smple
recursive algorithms (for example, a factorial implementation) to be collapsed. A value of 2 will usually be
needed to collapse stack traces produced by recursive algorithms such as binary trees, quick sort, etc. Higher
values might be needed for more complex recursive algorithms.

Note: recursive calls are detected by analysis of program counter values. They are not detected by looking
at function names.

24

Using and understanding the Valgrind core

--numtranst ab- sect ors=<nunber> [default: 6 for Android platforns, 16 for
all others]

Valgrind trandlates and instruments your program’'s machine code in small fragments (basic blocks). The
trandations are stored in a trandation cache that is divided into a number of sections (sectors). If the
cache is full, the sector containing the oldest trandations is emptied and reused. If these old translations
are needed again, Valgrind must re-trandlate and re-instrument the corresponding machine code, which is
expensive. If the "executed instructions" working set of a program is big, increasing the number of sectors
may improve performance by reducing the number of re-translations needed. Sectors are all ocated on demand.
Once allocated, a sector can never be freed, and occupies considerable space, depending on the tool and the
vaue of - - avg-transt ab-entry-si ze (about 40 MB per sector for Memcheck). Use the option - -

st at s=yes to obtain preciseinformation about the memory used by asector and the allocation and recycling
of sectors.

--avg-transtab-entry-si ze=<nunber> [default: 0, neaning use tool provided
defaul t]

Average size of tranglated basic block. This average size is used to dimension the size of a sector. Each tool
providesadefault valueto be used. If thisdefault valueistoo small, the trand ation sectorswill becomefull too
quickly. If thisdefault valueistoo big, asignificant part of the trand ation sector memory will be unused. Note
that the average size of a basic block translation depends on the tool, and might depend on tool options. For
example, the memcheck option - - t r ack- or i gi ns=yes increasesthe size of the basic block trandlations.
Use--avg-transt ab-entry-si ze to tune the size of the sectors, either to gain memory or to avoid
too many retranslations.

- -aspace- m naddr =<addr ess> [defaul t: depends on the platforni

To avoid potential conflicts with some system libraries, Valgrind does not use the address space below - -
aspace- m naddr value, keeping it reserved in case alibrary specifically requests memory in this region.
So, some "pessimistic” valueis guessed by Valgrind depending on the platform. On linux, by default, Vagrind
avoids using the first 64MB even if typicaly there is no conflict in this complete zone. You can use the
option - - aspace- mi naddr to have your memory hungry application benefitting from more of thislower
memory. On the other hand, if you encounter a conflict, increasing aspace-minaddr value might solve it.
Conflicts will typically manifest themselves with mmap failures in the low range of the address space. The
provided addr ess must be page aligned and must be equal or bigger to 0x1000 (4KB). To find the default
value on your platform, do somethingsuchasval grind -d -d date 2>&1 | grep -i m naddr.
Values lower than 0x10000 (64K B) are known to create problems on some distributions.

--val gri nd- st acksi ze=<nunber > [defaul t: 1MB]

For each thread, Valgrind needsitsown ‘private' stack. The default sizefor these stacksislargely dimensioned,
and so should be sufficient in most cases. In case the size is too small, Valgrind will segfault. Before
segfaulting, awarning might be produced by Valgrind when approaching the limit.

Usetheoption- - val gri nd- st acksi ze if suchan (unlikely) warning is produced, or Valgrind diesdueto
asegmentation violation. Such segmentation violations have been seen when demangling huge C++ symbols.

If your application uses many threads and needs a lot of memory, you can gain some memory by reducing
the size of these Valgrind stacks using the option - - val gri nd- st acksi ze.

--show emwar ns=<yes| no> [defaul t: no]

When enabled, Valgrind will emit warnings about its CPU emulation in certain cases. These are usually not
interesting.

--require-text-synbol =: sonanepatt: f nnanepatt

When a shared object whose soname matches sonanepat t isloaded into the process, examine all the text
symbols it exports. If none of those match f nnamepat t, print an error message and abandon the run. This
makes it possible to ensure that the run does not continue unless a given shared object contains a particular
function name.

25

Using and understanding the Valgrind core

Both sonanmepatt and f nnanepatt can be written using the usual ? and * wildcards. For example:
":*libc.so*:foo?bar". You may use characters other than a colon to separate the two patterns. It
is only important that the first character and the separator character are the same. For example, the above
examplecould also bewritten" QI i bc. so* (¥ oo?bar " . Multiple - -require-text-synbol flags
are alowed, in which case shared objects that are loaded into the process will be checked against all of them.

The purpose of this is to support reliable usage of marked-up libraries. For example, suppose we have a
version of GCC's| i bgonp. so which has been marked up with annotations to support Helgrind. It is only
too easy and confusing to load thewrong, un-annotated | i bgonp. so into the application. Sotheideais: add
a text symbol in the marked-up library, for example annot at ed_f or _hel gri nd_3_6, and then give
theflag- -require-text-synbol =: *1 i bgonp*so*: annotated_for_hel gri nd_3 6 sothat
when | i bgonp. so isloaded, Vagrind scans its symbol table, and if the symbol isn't present the run is
aborted, rather than continuing silently with the un-marked-up library. Note that you should put the entire flag
in quotes to stop shells expanding up the* and ? wildcards.

- -soname- synonyns=synl=patternl, syn2=pattern2, ...

When ashared library isloaded, Valgrind checksfor functionsin the library that must be replaced or wrapped.
For example, Memcheck replaces some string and memory functions (strchr, strlen, strepy, memchr, memcpy,
memmove, etc.) with its own versions. Such replacements are normally done only in shared libraries whose
soname matches a predefined soname pattern (e.g. | i bc. so* onlinux). By default, no replacement is done
for astatically linked binary or for alternativelibraries, except for the allocation functions (malloc, free, calloc,
memalign, realloc, operator new, operator delete, etc.) Such allocation functions are intercepted by default in
any shared library or in the executableif they are exported as global symbols. Thismeansthat if areplacement
alocation library such as tcmalloc is found, its functions are also intercepted by default. In some cases, the
replacementsalow - - sonane- synonymns to specify one additional synonym pattern, giving flexibility in
the replacement. Or to prevent interception of al public allocation symbols.

Currently, this flexibility is only allowed for the malloc related functions, using the synonym somal | oc.
This synonym is usable for al tools doing standard replacement of malloc related functions (e.g. memcheck,
helgrind, drd, massif, dhat).

» Alternate malloc library: to replace the malloc related functions in a specific alternate library
with soname mymall oclib.so (and not in any others), give the option --sonane-
synonyns=somal | oc=nmymal | ocl i b. so.A pattern can be used to match multiplelibraries sonames.
For example, - - sonane- synonynms=somal | oc=*t crmal | oc* will match the soname of al variants
of the tcmalloc library (native, debug, profiled, ... tcmalloc variants).

Note: the soname of a elf shared library can be retrieved using the readelf utility.

» Replacementsin a statically linked library are done by using the NONE pattern. For example, if you link
with | i bt cmal | oc. a, and only want to intercept the malloc related functions in the executable (and
standard libraries) themselves, but not any other shared libraries, you can give the option - - sonane-
synonyns=sonmal | oc=NONE. Notethat aNONE pattern will match the main executable and any shared
library having no soname.

» To only intercept allocation symbols in the default system libraries, but not in any other shared library or
the executable defining public malloc or operator new related functions use a hon-existing library name
like - - sonane- synonyns=somnal | oc=nouseri nt er cepts (where nouseri ntercepts can
be any non-existing library name).

* Shared library of the dynamic (runtime) linker is excluded from searching for global public symbols, such
as those for the malloc related functions (identified by somal | oc synonym).

--progress-interval =<nunber> [default: 0, meaning 'disabled']
Thisis an enhancement to Valgrind's debugging output. It is unlikely to be of interest to end users.

When nunber is set to a non-zero value, Vagrind will print a one-line progress summary every nunber
seconds. Valid settings for nunber are between 0 and 3600 inclusive. Here's some example output with
nunber setto 10:

26

Using and understanding the Valgrind core

PROGRESS: U 110s, W 113s, 97.3% CPU, EvC 414.79M TIn 616. 7k, TQut 0.5k, #thr
PROGRESS: U 120s, W 124s, 96.8% CPU, EvC 505.27M TIn 636. 6k, TQut 3.0k, #thr
PROGRESS: U 130s, W 134s, 97.0% CPU, EvC 574.90M TIn 657.5k, TQut 3.0k, #thr

Each line shows:

U: total user time
W total wallclock time
CPU: overall average cpu use

Ev C. number of event checks. An event check is a backwards branch in the simulated program, so thisis
ameasure of forward progress of the program

TI n: number of code blocks instrumented by the JIT
TQut : number of instrumented code blocks that have been thrown away

#t hr : number of threads in the program

From the progress of these, it is possible to observe:

when the program is compute bound (T1 n rises slowly, EvCrises rapidly)

when the program isin aspinloop (T1 n/TQut fixed, EvCrisesrapidly)

when the program is J T-bound (T1 n rises rapidly)

when the program is rapidly discarding code (TQut rises rapidly)

when the program is about to achieve some expected state (Ev C arrives at some value you expect)

when the program isidling (U rises more slowly than W

2.7.6. Debugging Options

There are also some options for debugging Valgrind itself. Y ou shouldn't need to use them in the normal run of
things. If you wish to seethellist, usethe - - hel p- debug option.

If you wish to debug your program rather than debugging Valgrind itself, then you should use the options - -
vgdb=yes or--vgdb=ful | .

2.7.7. Setting Default Options

Note that Valgrind also reads options from three places:

1. Thefile~/ . val grindrc

2. The environment variable $VALGRI ND_OPTS

3. Thefile./.val grindrc

These are processed in the given order, before the command-line options. Options processed later override
those processed earlier; for example, options in . /. val grindrc will take precedence over those in
~/ . val gri ndrec.

Please notethat the. / . val gri ndr c fileisignored if it isnot aregular file, or is marked as world writeable, or
is not owned by the current user. Thisis becausethe. /. val gri ndr ¢ can contain options that are potentially
harmful or can be used by alocal attacker to execute code under your user account.

27

67
64
63

Using and understanding the Valgrind core

Any tool-specific options put in $VALGRI ND_OPTS or the. val gri ndr ¢ filesshould be prefixed with the tool
name and a colon. For example, if you want Memcheck to always do leak checking, you can put the following
entryin~/ . val grindrc:

--mentheck: | eak- check=yes

This will be ignored if any tool other than Memcheck is run. Without the mentheck: part, this will cause
problems if you select other tools that don't understand - - | eak- check=yes.

2.7.8. Dynamically Changing Options

The value of some command line options can be changed dynamically while your program is running under
Valgrind.

The dynamically changeable options of the valgrind core and a given tool can be listed using option - - hel p-
dyn- opt i ons, for example:

$ val grind --tool =nenctheck --hel p-dyn-options
dynam cal | y changeabl e opti ons:
-v -q -d --stats --vgdb=no --vgdb=yes --vgdb=full --vgdb-poll --vgdb-error
--vgdb-stop-at --error-markers --showerror-list -s --show bel ow nmai n
--tinme-stanp --trace-children --child-silent-after-fork --trace-sched

--trace-signals --trace-syntab --trace-cfi --debug-dunp=syms
- - debug- dunp=li ne --debug-dunp=franmes --trace-redir --trace-syscalls
--symoffsets --progress-interval --merge-recursive-frames

--vex-iropt-verbosity --suppressions --trace-flags --trace-not bel ow
--trace-not above --profile-flags --gen-suppressi ons=no

- - gen-suppr essi ons=yes --gen-suppressions=all --errors-for-I|eak-Kkinds
--show | eak- ki nds - -1 eak-check-heuristics --showreachabl e

--show possi bly-lost --freelist-vol --freelist-big-blocks --1eak-check=no
- -| eak- check=sunmary --Ieak-check=yes --1|eak-check=full --ignore-ranges

--ignore-range- bel owsp --show m smat ched-frees
valgrind: Use --help for nore information.
$

The dynamic options can be changed the following ways:

1. From the shell, using vgdb and the monitor command v. cl o:

$ vgdb "v.clo --trace-children=yes --child-silent-after-fork=no"
sendi ng command v.clo --trace-children=yes --child-silent-after-fork=no to pid 4404
$

Note: you must use doubl e quotes around the monitor command to avoid vgdb interpreting the valgrind options
asits own options.

2. From gdb, using the monitor command v. cl o:
(gdb) nmonitor v.clo --trace-children=yes --child-silent-after-fork=no
(gdb)

3. From your program, using the client request VALGRI ND_CLO_CHANGE(opt i on) :

VALGRI ND_CLO CHANGE ("--trace-chil dren=yes");
VALGRI ND_ CLO CHANGE ("--child-silent-after-fork=no");

28

Using and understanding the Valgrind core

Dynamically changeable options can be used in various circumstances, such as changing the valgrind behaviour
during execution, loading suppression files as part of shared library initialisation, change or set valgrind options
in child processes, ...

2.8. Support for Threads

Threaded programs are fully supported.

The main thing to point out with respect to threaded programsis that your program will use the native threading
library, but Valgrind serialises execution so that only one (kernel) thread isrunning at atime. This approach avoids
the horrible implementation problems of implementing atruly multithreaded version of Valgrind, but it does mean
that threaded apps never use more than one CPU simultaneously, even if you have a multiprocessor or multicore
machine.

Vagrind doesn't schedule the threads itself. It merely ensures that only one thread runs at once, using a simple
locking scheme. The actual thread scheduling remains under control of the OSkernel. What thisdoes mean, though,
isthat your program will see very different scheduling when run on Valgrind than it does when running normally.
Thisis both because Valgrind is serialising the threads, and because the code runs so much slower than normal.

Thisdifferencein scheduling may causeyour program to behave differently, if you have somekind of concurrency,
critical race, locking, or similar, bugs. In that case you might consider using the tools Helgrind and/or DRD to
track them down.

On Linux, Valgrind also supports direct use of the cl one system call, f ut ex and so on. cl one is supported
where either everything is shared (athread) or nothing is shared (fork-like); partial sharing will fail.

2.8.1. Scheduling and Multi-Thread Performance

A thread executes code only when it hol ds the abovementioned lock. After executing some number of instructions,
the running thread will release the lock. All threads ready to run will then compete to acquire the lock.

The- - f ai r - sched option controls the locking mechanism used to serialise thread execution.

The default pipe based locking mechanism (- - f ai r - sched=no) is available on all platforms. Pipe based
locking does not guarantee fairness between threads: it is quite likely that a thread that has just released the lock
reacquires it immediately, even though other threads are ready to run. When using pipe based locking, different
runs of the same multithreaded application might give very different thread scheduling.

An dternative locking mechanism, based on futexes, is available on some platforms. If available, it is
activated by - - f ai r - sched=yes or - -f ai r- sched=t ry. Futex based locking ensures fairness (round-
robin scheduling) between threads: if multiple threads are ready to run, the lock will be given to the thread which
first requested the lock. Note that a thread which is blocked in a system call (e.g. in ablocking read system call)
has not (yet) requested the lock: such athread requests the lock only after the system call is finished.

Thefairnessof the futex based locking produces better reproducibility of thread scheduling for different executions
of amultithreaded application. This better reproducibility is particularly helpful when using Helgrind or DRD.

Valgrind's use of thread serialisation impliesthat only onethread at atime may run. On amultiprocessor/multicore
system, the running thread is assigned to one of the CPUs by the OS kernel scheduler. When athread acquiresthe
lock, sometimes the thread will be assigned to the same CPU as the thread that just released the lock. Sometimes,
the thread will be assigned to another CPU. When using pipe based locking, the thread that just acquired the
lock will usually be scheduled on the same CPU as the thread that just released the lock. With the futex based
mechanism, the thread that just acquired the lock will more often be scheduled on another CPU.

Vagrind's thread seriaisation and CPU assignment by the OS kernel scheduler can interact badly with the CPU
frequency scaling available on many modern CPUs. To decrease power consumption, the frequency of a CPU
or coreis automatically decreased if the CPU/core has not been used recently. If the OS kernel often assigns the
thread which just acquired the lock to another CPU/core, it is quite likely that this CPU/coreis currently at alow
frequency. The frequency of this CPU will be increased after some time. However, during this time, the (only)

29

Using and understanding the Valgrind core

running thread will have run at the low frequency. Once this thread has run for sometime, it will release the lock.
Another thread will acquire this lock, and might be scheduled again on another CPU whose clock frequency was
decreased in the meantime.

The futex based locking causes threads to change CPUs/cores more often. So, if CPU frequency scaling is
activated, the futex based locking might decrease significantly the performance of a multithreaded app running
under Valgrind. Performance losses of up to 50% degradation have been observed, as compared to running on a
machine for which CPU frequency scaling has been disabled. The pipe based | ocking locking scheme a so interacts
badly with CPU frequency scaling, with performance losses in the range 10..20% having been observed.

To avoid such performance degradation, you should indicate to the kernel that all CPUs/cores should always run
at maximum clock speed. Depending on your Linux distribution, CPU frequency scaling may be controlled using
agraphical interface or using command line such ascpuf r eq- sel ect or or cpufreq-set.

An dternative way to avoid these problemsisto tell the OS scheduler to tiea Vagrind process to a specific (fixed)
CPU using thet askset command. This should ensure that the selected CPU does not fall below its maximum
frequency setting so long as any thread of the program has work to do.

2.9. Handling of Signals

Valgrind has a fairly complete signal implementation. It should be able to cope with any POSIX-compliant use
of signals.

If youre using signals in clever ways (for example, catching SIGSEGV, modifying page state and
restarting the instruction), you're probably relying on precise exceptions. In this case, you will
need to use --vex-iropt-register-updates=allregs-at-nemaccess or --vex-iropt-
regi st er-updat es=al | regs- at - each-i nsn.

If your program dies as a result of a fatal core-dumping signal, Valgrind will generate its own core file
(vgcor e. NNNNN) containing your program's state. Y ou may use this core file for post-mortem debugging with
GDB or similar. (Note: it will not generate acoreif your core dump sizelimit is0.) At the time of writing the core
dumps do not include al the floating point register information.

In the unlikely event that VValgrind itself crashes, the operating system will create a core dump in the usua way.

2.10. Execution Trees

An execution tree (xtree) is made of a set of stack traces, each stack trace is associated with some resource
consumptions or event counts. Depending on the xtree, different event counts/resource consumptions can be
recorded in the xtree. Multiple tools can produce memory use xtree. Memcheck can output the leak search results
in an xtree.

A typical usage for an xtree is to show a graphical or textual representation of the heap usage of a program. The
below figure is a heap usage xtree graphical representation produced by kcachegrind. In the kcachegrind output,
you can see that main current heap usage (allocated indirectly) is 528 bytes : 388 bytes allocated indirectly viaa
call tofunctionfland 140 bytesindirectly allocated viaacall to functionf2. f2 hasallocated memory by calling g2,
while f1 has allocated memory by calling g11 and g12. g11, g12 and g2 have directly called amemory alocation
function (malloc), and so have a non zero 'Self' value. Note that when kcachegrind shows an xtree, the 'Called'
column and call nr indicationsin the Call Graph are not significant (always set to 0 or 1, independently of thereal
nr of calls. The kcachegrind versions >= 0.8.0 do not show anymore such irrelevant xtree call number information.

An xtree heap memory report is produced at the end of the execution when required using the option - - xt r ee-
nmenory. It can also be produced on demand using the xt menor y monitor command (see Valgrind monitor
commands). Currently, an xtree heap memory report can be produced by the nencheck, hel gri nd and
massi f tools.

Thextrees produced by the option --xtree-memory or thext menor y monitor command are showing thefollowing
events/resource consumption describing heap usage:

30

Using and understanding the Valgrind core

 cur B current number of Bytes allocated. The number of allocated bytes is added to the cur B value of a stack
trace for each alocation. It is decreased when a block alocated by this stack trace is released (by another
"freeing" stack trace)

» cur Bk current number of Blocks allocated, maintained similary to curB : +1 for each allocation, -1 when the
block isfreed.

* t ot Btotal allocated Bytes. Thisisincreased for each allocation with the number of allocated bytes.
* t ot Bk total allocated Blocks, maintained similary to totB : +1 for each allocation.

» t ot FdB total Freed Bytes, increased each time a block is released by this ("freeing") stack trace : + nr freed
bytes for each free operation.

t ot FdBk total Freed Blocks, maintained similarly to totFdB : +1 for each free operation.

Note that the last 4 counts are produced only when the - - xt r ee- menor y=f ul | was given at startup.
Xtrees can be saved in 2 file formats, the "Callgrind Format" and the "Massif Format”.

» Cdlgrind Format

An xtree file in the Callgrind Format contains a single callgraph, associating each stack trace with the values
recorded in the xtree.

Different Callgrind Format file visualizers are available:

Valgrind distribution includesthe cal | gri nd_annot at e command line utility that reads in the xtree data,
and prints a sorted lists of functions, optionally with source annotation. Note that due to xtree specificities, you
must givetheoption - - i ncl usi ve=yes to callgrind_annotate.

For graphical visualization of the data, you can use KCachegrind, which is a KDE/Qt based GUI that makes it
easy to navigate the large amount of data that an xtree can contain.

Note that xtree Callgrind Format does not make use of the inline information even when specifying - - r ead-
i nline-info=yes.

* Massif Format

An xtree file in the Massif Format contains one detailed tree callgraph data for each type of event recorded
in the xtree. So, for - - xt r ee- menor y=al | oc, the output file will contain 2 detailed trees (for the counts
cur Band cur BKk), while- - xt r ee- menor y=f ul | will give afilewith 6 detailed trees.

Different Massif Format file visualizers are available. Valgrind distribution includesthens_pr i nt command
line utility that produces an easy to read reprentation of a massif output file. See Using Massif and ms_print
and Using massif-visualizer for more details about visualising Massif Format output files.

Note that xtree Massif Format makes use of the inline information when specifying - - r ead-i nl i ne-
i nf o=yes.

Note that for equivalent information, the Callgrind Format is more compact than the Massif Format. However, the
Callgrind Format always contains the full data: there is no filtering done during file production, filtering is done
by visualizers such as kcachegrind. kcachegrind is particularly easy to use to analyse big xtree data containing
multiple events counts or resources consumption. The Massif Format (optionally) only contains a part of the data.
For example, the Massif tool might filter some of the data, according to the - - t hr eshol d option.

To clarify the xtree concept, the below gives several extracts of the output produced by the following commands:

val grind --xtree-menory=full --xtree-nenory-file=xtmenory.kcg nfg
cal l grind_annotate --auto=yes --inclusive=yes --sort=curB: 100, cur Bk: 100, t ot B: 100, t ot BK: .

31

https://kcachegrind.github.io/html/Home.html

Using and understanding the Valgrind core

The below extract shows that the program mfg has allocated in total 770 bytes in 60 different blocks. Of these 60
blocks, 19 were freed, releasing atotal of 242 bytes. The heap currently contains 528 bytesin 41 blocks.

528 41 770 60 242 19 PROGRAM TOTALS
The below gives more details about which functions have allocated or released memory. As an example, we see
that main has (directly or indirectly) allocated 770 bytes of memory and freed (directly or indirectly) 242 bytes

of memory. The function f1 has (directly or indirectly) allocated 570 bytes of memory, and has not (directly or
indirectly) freed memory. Of the 570 bytes allocated by function f1, 388 bytes (34 blocks) have not been rel eased.

528 41 770 60 242 19 nfg.c:nmain
388 34 570 50 0 0 nfg.c:f1l
220 20 330 30 0 0 nfg.c:gll
168 14 240 20 0 0 nfg.c:gl2
140 7 200 10 0 0 nfg.c:g2
140 7 200 10 0 0 nfg.c:f2

0 0 0 0 131 10 nfg.c:freeY

0 0 0 0 111 9 nfg.c:freeX

The below gives a more detailed information about the callgraph and which source lines/calls have (directly
or indirectly) allocated or released memory. The below shows that the 770 bytes alocated by main have been
indirectly allocated by callsto f1 and f2. Similarly, we see that the 570 bytes allocated by f1 have been indirectly
allocated by callsto g11 and g12. Of the 330 bytes allocated by the 30 callsto g11, 168 bytes have not been freed.
The function freeY (called once by main) has released in total 10 blocks and 131 bytes.

-- Aut o-annot at ed source: /hone/philippe/valgrind/littleprogs/ + nfg.c

curB curBk totB totBk totFdB tot FdBk

static void freeY(void)

{ . .
int i;
for (i = 0; i < next_ptr; i++)
. if(i %5 ==0 && ptrs[i] != NULL)
0 0 0 0 131 10 free(ptrs[i]);
: }
static void f1(void)
{ . .
int i;
. for (i =0; i < 30; i++)
220 20 330 30 0 0 gl1();
. for (i = 0; i < 20; i++)
168 14 240 20 0 0 gl12();
int main()
. N |
388 34 570 50 0 0 f1();
140 7 200 10 0 0 f2(0);
0 0 0 0 111 9 freeX();

32

Using and understanding the Valgrind core

0 0 0 0 131 10 freeY();
return O;

}

Heap memory xtrees are helping to understand how your (big) program is using the heap. A full heap memory
xtree helps to pin point some code that allocates a lot of small objects : allocating such small objects might be
replaced by more efficient technique, such as allocating a big block using malloc, and then diviving thisblock into
smaller blocks in order to decrease the cpu and/or memory overhead of allocating alot of small blocks. Such full
xtree information complements e.g. what callgrind can show: callgrind can show the number of callsto afunction
(such as malloc) but does not indicate the volume of memory allocated (or freed).

A full heap memory xtree also can identify the code that allocates and frees alot of blocks : the total foot print of
the program might not reflect the fact that the same memory was over and over allocated then released.

Finally, Xtree visualizers such as kcachegrind are hel ping to identify big memory consumers, in order to possibly
optimise the amount of memory needed by your program.

2.11. Building and Installing Valgrind

Weusethestandard Unix . / conf i gur e, nmake, make i nst al | mechanism. Onceyou have completed nake
i nstal |l youmay then want to run the regression testswith make r egt est .

In addition to the usua - - prefi x=/path/to/install/tree, there are three options which affect how
Valgrind is built:

e --enabl e-i nner

This builds Valgrind with some special magic hacks which make it possible to run it on a standard build of
Valgrind (what the developers call "self-hosting”). Ordinarily you should not use this option as various kinds
of safety checks are disabled.

* --enabl e-onl y64bi t
--enabl e- onl y32bi t

On 64-bit platforms (amd64-linux, ppc64-linux, andé4-darwin), Valgrind is by default built in such away that
both 32-bit and 64-bit executables can be run. Sometimes this clevernessis a problem for a variety of reasons.
These two options allow for single-target builds in this situation. If you issue both, the configure script will
complain. Note they are ignored on 32-bit-only platforms (x86-linux, ppc32-linux, arm-linux, x86-darwin).

Theconfi gur e script teststhe version of the X server currently indicated by the current $DI SPLAY. Thisisa
known bug. The intention was to detect the version of the current X client libraries, so that correct suppressions
could be selected for them, but instead the test checks the server version. Thisisjust plain wrong.

If you are building a binary package of Valgrind for distribution, please read READNVE PACKAGERS Readme
Packagers. It contains some important information.

Apart from that, there's not much excitement here. Let us know if you have build problems.

2.12. If You Have Problems

Contact us at http://www.valgrind.org/.
See Limitationsfor the known limitationsof Valgrind, and for alist of programswhich are known not to work oniit.

All parts of the system make heavy use of assertions and internal self-checks. They are permanently enabled, and
we have no plansto disable them. If one of them breaks, please mail us!

If you get an assertion failureinm _mal | ocf r ee. ¢, thismay have happened because your program wrote off the
end of aheap block, or before its beginning, thus corrupting heap metadata. Valgrind hopefully will have emitted
amessage to that effect before dying in thisway.

33

http://www.valgrind.org/

Using and understanding the Valgrind core

Read the Valgrind FAQ for more advice about common problems, crashes, etc.

2.13. Limitations

The following list of limitations seems long. However, most programs actually work fine.

Vagrind will run programs on the supported platforms subject to the following constraints:

On Linux, Valgrind determines at startup the size of the 'brk segment’ using the RLIMIT_DATA rlim_cur,
with aminimum of 1 MB and a maximum of 8 MB. Valgrind outputs a message each time a program tries to
extend the brk segment beyond the size determined at startup. Most programswill work properly with thislimit,
typically by switching to the use of mmap to get more memory. If your program really needs a big brk segment,
you must change the 8 MB hardcoded limit and recompile Valgrind.

On x86 and amd64, there is no support for 3DNow! instructions. If the transator encounters these, Valgrind
will generate a SIGILL when the instruction is executed. Apart from that, on x86 and amd64, essentially all
instructions are supported, up to and including AV X and AES in 64-bit mode and SSSE3 in 32-bit mode. 32-
bit mode does in fact support the bare minimum SSE4 instructions needed to run programs on MacOSX 10.6
on 32-hit targets.

On ppc32 and ppc64, aimost all integer, floating point and Altivec instructions are supported. Specifically:
integer and FP insns that are mandatory for PowerPC, the "General-purpose optional” group (fsqrt, fsgrts,
stfiwx), the "Graphics optional” group (fre, fres, frsgrte, frsgrtes), and the Altivec (also known asVMX) SIMD
instruction set, are supported. Also, instructions from the Power 1SA 2.05 specification, as present in POWERG
CPUs, are supported.

On ARM, essentially the entire ARMV7-A instruction set is supported, in both ARM and Thumb mode.
ThumbEE and Jazelle are not supported. NEON, VFPv3 and ARMv6 media support is fairly complete.

If your program does its own memory management, rather than using malloc/new/free/delete, it should
still work, but Memcheck's error checking won't be so effective. If you describe your program’'s memory
management scheme using "client requests’ (see The Client Request mechanism), Memcheck can do better.
Nevertheless, using malloc/new and free/delete is still the best approach.

Valgrind's signal simulation is not as robust asit could be. Basic POSIX-compliant sigaction and sigprocmask
functionality issupplied, but it's conceivable that things could go badly awry if you do weird thingswith signals.
Workaround: don't. Programs that do non-POSIX signal tricks arein any case inherently unportable, so should
be avoided if possible.

Machineinstructions, and system calls, have been implemented on demand. So it's possible, although unlikely,
that a program will fall over with a message to that effect. If this happens, please report all the details printed
out, so we can try and implement the missing feature.

Memory consumption of your program is majorly increased whilst running under Valgrind's Memcheck tool.
This is due to the large amount of administrative information maintained behind the scenes. Another causeis
that Valgrind dynamically translatesthe original executable. Translated, instrumented codeis12-18 timeslarger
than the original so you can easily end up with 150+ MB of translations when running (eg) aweb browser.

Valgrind can handle dynamically-generated code just fine. If you regenerate code over the top of old code (ie.
at the same memory addresses), if the code is on the stack Valgrind will realise the code has changed, and
work correctly. Thisis necessary to handle the trampolines GCC uses to implemented nested functions. If you
regenerate code somewhere other than the stack, and you are running on an 32- or 64-bit x86 CPU, you will
needto usethe - - snt- check=al | option, and Valgrind will run more slowly than normal. Or you can add
client requests that tell Valgrind when your program has overwritten code.

On other platforms (ARM, PowerPC) Valgrind observes and honoursthe cache invalidation hintsthat programs
are obliged to emit to notify new code, and so self-modifying-code support should work automatically, without
the need for - - snt- check=al | .

Valgrind hasthe following limitationsin itsimplementation of x86/AM D64 floating point relative to |EEE754.

34

Using and understanding the Valgrind core

Precision: There is no support for 80 hit arithmetic. Internally, Valgrind represents all such "long double"
numbers in 64 bits, and so there may be some differences in results. Whether or not thisis critical remains to
be seen. Note, the x86/amd64 fldt/fstpt instructions (read/write 80-bit numbers) are correctly simulated, using
conversions to/from 64 bits, so that in-memory images of 80-bit numbers look correct if anyone wants to see.

The impression observed from many FP regression tests is that the accuracy differences aren't significant.
Generally speaking, if aprogram relieson 80-bit precision, there may be difficulties porting it to non x86/amd64
platforms which only support 64-bit FP precision. Even on x86/amd64, the program may get different results
depending on whether it is compiled to use SSE2 instructions (64-hits only), or x87 instructions (80-hit). The
net effect is to make FP programs behave as if they had been run on a machine with 64-bit IEEE floats, for
example PowerPC. On amd64 FP arithmetic is done by default on SSE2, so amd64 |ooks more like PowerPC
than x86 from an FP perspective, and there are far fewer noticeable accuracy differences than with x86.

Rounding: Valgrind does observe the 4 IEEE-mandated rounding modes (to nearest, to +infinity, to -infinity,
to zero) for the following conversions: float to integer, integer to float where there is a possibility of loss of
precision, and float-to-float rounding. For all other FP operations, only the | EEE default mode (round to nearest)
is supported.

Numeric exceptions in FP code: |IEEE754 defines five types of numeric exception that can happen: invalid
operation (sgrt of negative number, etc), division by zero, overflow, underflow, inexact (loss of precision).

For each exception, two courses of action are defined by |IEEE754: either (1) a user-defined exception handler
may be called, or (2) adefault action is defined, which "fixes things up" and allows the computation to proceed
without throwing an exception.

Currently Valgrind only supports the default fixup actions. Again, feedback on the importance of exception
support would be appreciated.

When Valgrind detects that the program istrying to exceed any of these limitations (setting exception handlers,
rounding mode, or precision control), it can print amessage giving atraceback of where this has happened, and
continue execution. This behaviour used to be the default, but the messages are annoying and so showing them
is now disabled by default. Use - - show emwar ns=yes to see them.

The above limitations define precisely the IEEE754 'default’ behaviour: default fixup on al exceptions, round-
to-nearest operations, and 64-bit precision.

Valgrind has the following limitations in its implementation of x86/AMD64 SSE2 FP arithmetic, relative to
|IEEE754.

Essentialy the same: no exceptions, and limited observance of rounding mode. Also, SSE2 has control bits
which make it treat denormalised numbers as zero (DAZ) and arelated action, flush denormals to zero (FTZ).
Both of these cause SSE2 arithmetic to be less accurate than | EEE requires. Valgrind detects, ignores, and can
warn about, attempts to enable either mode.

Valgrind has the following limitations in its implementation of ARM VFPv3 arithmetic, relative to IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, switching the VFP unit
into vector mode will cause Valgrind to abort the program -- it has no way to emulate vector uses of VFP at
a reasonable performance level. Thisis no big deal given that non-scalar uses of VFP instructions are in any
case deprecated.

Valgrind has the following limitations in its implementation of PPC32 and PPC64 floating point arithmetic,
relative to IEEE754.

Scalar (non-Altivec): Valgrind provides a bit-exact emulation of all floating point instructions, except for "fre"
and "fres', which are done more precisely than required by the PowerPC architecture specification. All floating
point operations observe the current rounding mode.

However, fpscr[FPRF] is not set after each operation. That could be done but would give measurable
performance overheads, and so far no need for it has been found.

35

Using and understanding the Valgrind core

Ason x86/AMD64, |IEEE754 exceptions are not supported: all floating point exceptions are handled using the
default |EEE fixup actions. Valgrind detects, ignores, and can warn about, attempts to unmask the 5 IEEE FP
exception kinds by writing to the floating-point status and control register (fpscr).

Vector (Altivec, VMX): essentially as with x86/AMD64 SSE/SSE2: no exceptions, and limited observance of
rounding mode. For Altivec, FP arithmetic is done in | EEE/Java mode, which is more accurate than the Linux
default setting. "More accurate” means that denormals are handled properly, rather than simply being flushed
to zero.

Programs which are known not to work are:

» emacs starts up but immediately concludes it is out of memory and aborts. It may be that Memcheck does
not provide a good enough emulation of the mal | i nf o function. Emacs works fine if you build it to use the
standard malloc/free routines.

2.14. An Example Run

Thisisthelog for arun of asmall program using Memcheck. The programisin fact correct, and the reported error
is astheresult of a potentially serious code generation bug in GNU g++ (snapshot 20010527).

sewar dj @hoeni x: ~/ newrat 10$ ~/ Val gri nd-6/val grind -v ./bogon
==25832== Val grind 0.10, a nenory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000-2001, and GNU GPL'd, by Julian Seward.
==25832== Startup, with flags:

==25832== - - suppr essi ons=/ hone/ sewar dj / Val gri nd/ redhat 71. supp
==25832== readi ng syns from/lib/ld-Iinux.so.2

==25832== readi ng syns from/lib/libc.so.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libgcc_s.so0.0
==25832== reading syns from/lib/libmso.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libstdc++. so0.3
==25832== readi ng syns from /hone/ sewardj/Val gri nd/ val gri nd. so
==25832== readi ng syns from/proc/sel f/exe

==25832==

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatri x:: ReSize(int,int,int) (bogon.cpp: 45)
==25832== by 0x80487AF:. mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, nalloc'd or free'd
==25832==

==25832== ERROR SUMVARY: 1 errors from1l contexts (suppressed: 0 from 0)
==25832== mall oc/free: in use at exit: 0O bytes in 0 bl ocks.

==25832== mal l oc/free: 0 allocs, O frees, 0 bytes all ocated.

==25832== For a detailed |eak analysis, rerun with: --I|eak-check=yes

The GCC folks fixed this about aweek before GCC 3.0 shipped.

2.15. Warning Messages You Might See

Some of these only appear if you run in verbose mode (enabled by - v):

« More than 100 errors detected. Subsequent errors will still be recorded,
but in | ess detail than before.

After 100 different errors have been shown, Valgrind becomes more conservative about collecting them. It then
requires only the program counters in the top two stack frames to match when deciding whether or not two
errors are really the same one. Prior to this point, the PCs in the top four frames are required to match. This
hack has the effect of slowing down the appearance of new errors after the first 100. The 100 constant can be
changed by recompiling Valgrind.

36

Using and understanding the Valgrind core

More than 1000 errors detected. |'m not reporting any nore. Final error
counts may be inaccurate. Go fix your progran

After 1000 different errors have been detected, Valgrind ignores any more. It seems unlikely that collecting
even more different ones would be of practical help to anybody, and it avoids the danger that Valgrind spends
more and more of itstime comparing new errors against an ever-growing collection. Asabove, the 1000 number
is a compile-time constant.

Warni ng: client swtching stacks?

Valgrind spotted such a large change in the stack pointer that it guesses the client is switching to a different
stack. At this point it makes a kludgey guess where the base of the new stack is, and sets memory permissions
accordingly. At the moment "large change" is defined as a change of more that 2000000 in the value of the
stack pointer register. If Valgrind guesses wrong, you may get many bogus error messages following this and/
or have crashesin the stack trace recording code. Y ou might avoid these problems by informing Valgrind about
the stack bounds using VALGRIND_STACK_REGISTER client request.

Warning: client attenpted to close Valgrind's logfile fd <nunber>

Valgrind doesn't allow the client to close the logfile, because you'd never see any diagnostic information after
that point. If you see this message, you may want to use the - - | og- f d=<nunber > option to specify a
different logfile file-descriptor number.

War ni ng: noted but unhandl ed ioctl <nunber>

Valgrind observed acall to one of thevast family of i oct | system calls, but did not modify its memory status
info (because nobody has yet written a suitable wrapper). The call will still have gone through, but you may get
spurious errors after this as aresult of the non-update of the memory info.

War ni ng: set address range perms: | arge range <number>

Diagnostic message, mostly for benefit of the Valgrind devel opers, to do with memory permissions.

37

3. Using and understanding the
Valgrind core: Advanced Topics

This chapter describes advanced aspects of the Valgrind core services, which are mostly of interest to power users
who wish to customise and modify Valgrind's default behavioursin certain useful ways. The subjects covered are:

e The"Client Request" mechanism
» Debugging your program using Valgrind's gdbserver and GDB

» Function Wrapping

3.1. The Client Request mechanism

Vagrind has a trapdoor mechanism via which the client program can pass all manner of requests and queries to
Vagrind and the current tool. Internally, thisis used extensively to make various things work, although that's not
visible from the outside.

For your convenience, a subset of these so-called client requests is provided to allow you to tell Valgrind facts
about the behaviour of your program, and also to make queries. In particular, your program can tell Valgrind about
things that it otherwise would not know, leading to better results.

Clients need to include a header file to make this work. Which header file depends on which client requests you
use. Some client requests are handled by the core, and are defined in the header fileval gri nd/ val gri nd. h.
Tool-specific header files are named after thetool, e.g. val gri nd/ mencheck. h. Each tool-specific header file
includesval gri nd/ val gri nd. h so you don't need to include it in your client if you include a tool-specific
header. All header files can befoundinthei ncl ude/ val gri nd directory of wherever Vagrind wasinstalled.

The macros in these header files have the magical property that they generate code in-line which Valgrind can
spot. However, the code does nothing when not run on Valgrind, so you are not forced to run your program under
Valgrind just because you use the macros in this file. Also, you are not required to link your program with any
extra supporting libraries.

The code added to your binary has negligible performance impact: on x86, amd64, ppc32, ppc64 and ARM, the
overhead is 6 simpleinteger instructions and is probably undetectable except in tight loops. However, if you really
wish to compile out the client requests, you can compile with - DNVALGRI ND (anal ogous to - DNDEBUGS effect
onassert).

Y ou are encouraged to copy theval gri nd/ *. h headersinto your project's include directory, so your program
doesn't have acompile-time dependency on Valgrind being installed. The Valgrind headers, unlike most of the rest
of thecode, areunder aBSD-stylelicense so you may include them without worrying about licenseincompatibility.

Hereisabrief description of the macrosavailableinval gri nd. h, which work with more than onetool (seethe
tool-specific documentation for explanations of the tool-specific macros).

RUNNI NG_ON_VALGRI ND:

Returns 1 if running on Valgrind, O if running on the real CPU. If you are running Valgrind on itself, returns
the number of layers of Valgrind emulation you're running on.

VALGRI ND_DI SCARD_TRANSLATI ONS:

Discards trandations of code in the specified address range. Useful if you are debugging a JIT compiler
or some other dynamic code generation system. After this call, attempts to execute code in the invalidated
address range will cause Valgrind to make new translations of that code, which is probably the semanticsyou
want. Note that code invalidations are expensive because finding al the relevant translations quickly is very

38

Using and understanding the Valgrind core: Advanced Topics

difficult, so try not to call it often. Note that you can be clever about this: you only need to call it when an
areawhich previously contained code is overwritten with new code. Y ou can choose to write code into fresh
memory, and just call this occasionally to discard large chunks of old code all at once.

Alternatively, for transparent self-modifying-code support, use- - snt- check=al | , or runon ppc32/Linux,
ppc64/Linux or ARM/Linux.

VALGRI ND_COUNT_ERRCRS:

Returns the number of errors found so far by Valgrind. Can be useful in test harness code when combined
with the - - | og- f d=- 1 option; this runs Valgrind silently, but the client program can detect when errors
occur. Only useful for toolsthat report errors, e.g. it'suseful for Memcheck, but for Cachegrind it will always
return zero because Cachegrind doesn't report errors.

VALGRI ND_MALLOCLI KE_BLOCK:

If your program manages its own memory instead of using the standard mal | oc / new/ new], tools that
track information about heap blocks will not do nearly as good a job. For example, Memcheck won't detect
nearly as many errors, and the error messages won't be as informative. To improve this situation, use this
macro just after your custom allocator allocates some new memory. See the commentsinval gri nd. h for
information on how to useit.

VALGRI ND_FREELI| KE_BLOCK:

This should be used in conjunction with VALGRI ND_MALLOCLI KE_BLOCK. Again, seeval gri nd. h for
information on how to useit.

VALGRI ND_RESI ZEI NPLACE_BLOCK:

Informs a Valgrind tool that the size of an alocated block has been modified but not its address. See
val gri nd. h for moreinformation on how to useit.

VALGRI ND_CREATE_MEMPOOL, VALGRI ND_DESTROY_MEMPOOL, VALGRI ND_MEMPOOL_ALLCC,
VALGRI ND_MEMPOOL _FREE, VALGRI ND_MOVE_MEMPOQL, VALGRI ND_MEMPOOL _ CHANGE,
VALGRI ND_MEMPOOL_EXI STS:

These are similar to VALGRI ND_MALLCCLI KE_BLOCK and VALGRI ND_FREEL| KE_BLOCK but are
tailored towards code that uses memory pools. See Memory Pools for a detailed description.

VALGRI ND_NON_SI MD_CALL[0123]:

Executes a function in the client program on the real CPU, not the virtual CPU that VValgrind normally runs
code on. The function must take an integer (holding athread ID) as the first argument and then O, 1, 2 or 3
more arguments (depending on which client request is used). These are used in various ways internally to
Valgrind. They might be useful to client programs.

Warning: Only usethese if you really know what you are doing. They aren't entirely reliable, and can cause
Vagrind to crash. Seeval gri nd. h for more details.

VALGRI ND_PRI NTF(format, ...):

Print a printf-style message to the Valgrind log file. The message is prefixed with the PID between a pair of
** markers. (Like all client requests, nothing is output if the client program is not running under Valgrind.)
Output is not produced until a newline is encountered, or subsequent Valgrind output is printed; this allows
you to build up asingle line of output over multiple calls. Returns the number of characters output, excluding
the PID prefix.

VALGRI ND_PRI NTF_BACKTRACE(f or mat, ...):

Like VALGRI ND_PRI NTF (in particular, the return value is identical), but prints a stack backtrace
immediately afterwards.

39

Using and understanding the Valgrind core: Advanced Topics

VALGRI ND_MONI TOR_COMMAND(conmand) :

Execute the given monitor command (a string). Returns 0 if command is recognised. Returns 1 if command
is not recognised. Note that some monitor commands provide access to a functionality also accessible viaa
specific client request. For example, memcheck leak search can be requested from the client program using
VALGRIND DO _LEAK_CHECK or viathe monitor command "leak_search”. Note that the syntax of the
command string is only verified at run-time. So, if it exists, it is preferable to use a specific client request to
have better compile time verifications of the arguments.

VALGRI ND_CLO_CHANGE(opti on):
Changes the value of a dynamically changeable option (astring). See Dynamically Change Options.
VALGRI ND_STACK_REQ STER(start, end):

Registers a new stack. Informs Valgrind that the memory range between start and end is a unique stack.
Returns a stack identifier that can be used with other VALGRI ND_STACK_* calls.

Valgrind will use this information to determine if a change to the stack pointer is an item pushed onto the
stack or a change over to a new stack. Use this if you're using a user-level thread package and are noticing
crashes in stack trace recording or spurious errors from Valgrind about uninitialized memory reads.

Warning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_DEREQ STER(i d) :

Deregisters a previously registered stack. Informs Valgrind that previously registered memory range with
stack idi d isno longer a stack.

War ning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_CHANGE(i d, start, end):

Changes apreviously registered stack. Informs Valgrind that the previously registered stack with stack id i d
has changed its start and end values. Use this if your user-level thread package implements stack growth.

War ning: Unfortunately, this client request is unreliable and best avoided.

3.2. Debugging your program using Valgrind
gdbserver and GDB

A program running under Valgrind is not executed directly by the CPU. Instead it runs on asynthetic CPU provided
by Valgrind. Thisiswhy adebugger cannot natively debug your program when it runs on Valgrind.

This section describes how GDB can interact with the Valgrind gdbserver to provide afully debuggable program
under Valgrind. Used in thisway, GDB a so provides an interactive usage of VValgrind core or tool functionalities,
including incremental leak search under Memcheck and on-demand Massif snapshot production.

3.2.1. Quick Start: debugging in 3 steps

The simplest way to get started isto run Valgrind with the flag - - vgdb- er r or =0. Then follow the on-screen
directions, which give you the precise commands needed to start GDB and connect it to your program.

Otherwise, here's a dlightly more verbose overview.

If you want to debug a program with GDB when using the Memcheck tool, start Vagrind like this:

val grind --vgdb=yes --vgdb-error=0 prog

In another shell, start GDB:

Using and understanding the Valgrind core: Advanced Topics

gdb prog

Then give the following command to GDB:

(gdb) target renote | vgdb
Y ou can now debug your program e.g. by inserting a breakpoint and then using the GDB cont i nue command.

This quick start information is enough for basic usage of the Valgrind gdbserver. The sections below describe
more advanced functionality provided by the combination of Vagrind and GDB. Note that the command line flag
- - vgdb=yes can be omitted, as thisis the default value.

3.2.2. Valgrind gdbserver overall organisation

The GNU GDB debugger is typically used to debug a process running on the same machine. In this mode, GDB
uses system calls to control and query the program being debugged. This works well, but only alows GDB to
debug a program running on the same computer.

GDB can also debug processes running on a different computer. To achieve this, GDB defines a protocol (that
is, aset of query and reply packets) that facilitates fetching the value of memory or registers, setting breakpoints,
etc. A gdbserver is an implementation of this"GDB remote debugging" protocol. To debug a process running on
aremote computer, a gdbserver (sometimes called a GDB stub) must run at the remote computer side.

The Valgrind core provides a built-in gdbserver implementation, which is activated using - - vgdb=yes or - -

vgdb=f ul | . This gdbserver allows the process running on Valgrind's synthetic CPU to be debugged remotely.
GDB sends protocol query packets (such as "get register contents") to the Valgrind embedded gdbserver. The
gdbserver executes the queries (for example, it will get the register values of the synthetic CPU) and gives the
results back to GDB.

GDB can use various kinds of channels (TCP/IP, seria line, etc) to communicate with the gdbserver. In the case
of Valgrind's gdbserver, communication is done via a pipe and a small helper program called vgdb, which acts as
anintermediary. If no GDB isin use, vgdb can also be used to send monitor commands to the Valgrind gdbserver
from ashell command line.

3.2.3. Connecting GDB to a Valgrind gdbserver

To debug a program "prog" running under Valgrind, you must ensure that the Valgrind gdbserver is
activated by specifying either - - vgdb=yes or - - vgdb=f ul | . A secondary command line option, - - vgdb-
err or =number , can be used to tell the gdbserver only to become active once the specified number of errors
have been shown. A value of zero will therefore cause the gdbserver to become active at startup, which allows
you to insert breakpoints before starting the run. For example:

val grind --tool =nentheck --vgdb=yes --vgdb-error=0 ./prog

The Valgrind gdbserver isinvoked at startup and indicatesit is waiting for a connection from a GDB:

==2418== Mentheck, a nmenory error detector

==2418== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2418== Using Valgrind-3.14.0.A T and Li bVEX; rerun with -h for copyright info
==2418== Command: ./prog

==2418==

==2418== (action at startup) vgdb nme ...

GDB (in another shell) can then be connected to the Valgrind gdbserver. For this, GDB must be started on the
program pr og:

41

Using and understanding the Valgrind core: Advanced Topics

gdb ./ prog

Y ou then indicate to GDB that you want to debug a remote target:

(gdb) target renote | vgdb

GDB then starts a vgdb relay application to communicate with the Valgrind embedded gdbserver:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

rel ayi ng data between gdb and process 2418

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so.debug...done.
Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2418]

0x001f 2850 in _start () from/lib/ld-1inux.so.2

(gdb)
Note that vgdb is provided as part of the Valgrind distribution. Y ou do not need to install it separately.

If vgdb detects that there are multiple Valgrind gdbservers that can be connected to, it will list al such servers
and their PIDs, and then exit. You can then reissue the GDB "target" command, but specifying the PID of the
process you want to debug:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

no --pid= arg given and nultiple valgrind pids found:

use --pid=2479 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2481 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2483 for valgrind --vgdb=yes --vgdb-error=0 ./another_prog

Renot e communi cati on error: Resource tenporarily unavail abl e.

(gdb) target renmpote | vgdb --pid=2479

Renot e debuggi ng using | vgdb --pid=2479

rel ayi ng data between gdb and process 2479

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so0.debug...done.

Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2479]

0x001f2850 in _start () from/lib/ld-1inux.so.2

(gdb)

If you want to use the - - mul t i mode which makes vgdb start in extended-remote mode, set the following in
GDB:

gdb prog

(gdb) set renote exec-file prog

(gdb) set sysroot /

(gdb) target extended-renmpte | vgdb --multi --vargs -¢
(gdb) start

Tenporary breakpoint 1 at 0x24e0

Starting program prog

rel ayi ng data between gdb and process 2999348

Tenporary breakpoint 1, 0x000000000010a4a0 in main ()
(gdb)

42

Using and understanding the Valgrind core: Advanced Topics

Note that in - - mul ti mode you don't have to start valgrind separately. vgdb will start valgrind for you. vgdb
--mul ti modeisexperimental and currently has some limitations like not being able to see program stdin and
stdout. Also you have to explicitly set the remote exec-file and sysroot to tell GDB the "remote” and local files
are the same.

Once GDB is connected to the Vagrind gdbserver, it can be used in the same way asif you were debugging the
program natively:

» Breakpoints can be inserted or deleted.

» Variables and register values can be examined or modified.
 Signal handling can be configured (printing, ignoring).

» Execution can be controlled (continue, step, next, stepi, etc).
* Program execution can be interrupted using Control-C.

And so on. Refer to the GDB user manual for a complete description of GDB's functionality.

3.2.4. Connecting to an Android gdbserver

When devel opping applications for Android, you will typically use a development system (on which the Android
NDK isinstaled) to compile your application. An Android target system or emulator will be used to run the
application. In this setup, Valgrind and vgdb will run on the Android system, while GDB will run on the
development system. GDB will connect to the vgdb running on the Android system using the Android NDK 'adb
forward' application.

Example: on the Android system, execute the following:

val grind --vgdb-error=0 --vgdb=yes prog
and then in another shell, run:
vgdb --port=1234

On the devel opment system, execute the following commands:

adb forward tcp: 1234 tcp: 1234
gdb prog
(gdb) target renote :1234

GDB will use a local tcpl/ip connection to connect to the Android adb forwarder. Adb will establish a relay
connection between the host system and the Android target system. Be sure to use the GDB delivered in the
Android NDK system (typically, arm-linux-androideabi-gdb), as the host GDB is probably not able to debug
Android arm applications. Note that the local port nr (used by GDB) must not necessarily be equal to the port
number used by vgdb: adb can forward tcp/ip between different port numbers.

In the current release, the GDB server is not enabled by default for Android, due to problems in establishing a
suitable directory in which Valgrind can create the necessary FIFOs (named pipes) for communication purposes.
You can stil try to use the GDB server, but you will need to explicitly enable it using the flag - - vgdb=yes or
--vgdb=fulI.

Additionally, you will need to select a temporary directory which is (a) writable by Valgrind, and (b) supports
FIFOs. Thisis the main difficult point. Often, / sdcar d satisfies requirement (a), but fails for (b) because it is
aVFAT file system and VFAT does not support pipes. Possibilities you could try are/ dat a/ | ocal ,/ dat a/

I ocal /I nst (if you installed Valgrind there), or / dat a/ dat a/ nane. of . my. app, if you are running a
specific application and it hasits own directory of that form. Thislast possibility may have the highest probability
of success.

You can specify the temporary directory to use either via the - - wi t h- t npdi r = configure time flag, or by
setting environment variable TMPDIR when running Valgrind (on the Android device, not on the Android NDK

43

Using and understanding the Valgrind core: Advanced Topics

development host). Another aternative is to specify the directory for the FIFOs using the - - vgdb- pr ef i x=
Vagrind command line option.

We hope to have a better story for temporary directory handling on Android in the future. The difficulty is that,
unlike in standard Unixes, there is no single temporary file directory that reliably works across al devices and
scenarios.

3.2.5. Monitor command handling by the Valgrind
gdbserver

The Valgrind gdbserver provides additional Valgrind-specific functionality via "monitor commands'. Such
monitor commands can be sent from the GDB command line or from the shell command line or requested by the
client program using the VALGRIND_MONITOR_COMMAND client request. See VValgrind monitor commands
for the list of the Valgrind core monitor commands available regardless of the Valgrind tool selected.

The following tools provide tool-specific monitor commands:
* Memcheck Monitor Commands

 Callgrind Monitor Commands

* Massif Monitor Commands

» Helgrind Monitor Commands

An example of atool specific monitor command is the Memcheck monitor command | eak_check full
reachabl e any. This requests a full reporting of the alocated memory blocks. To have this leak check
executed, use the GDB command:

(gdb) nonitor |eak _check full reachabl e any

GDB sends asasingle string al what follows 'monitor’ to the Valgrind gdbserver. The Valgrind gdbserver parses
the string and will execute the monitor command itself, if it recognisesit to be aValgrind core monitor command.
If it isnot recognised as such, it isassumed to be tool-specific and is handed to the tool for execution. For example:

(gdb) nonitor |eak check full reachabl e any

==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1
==2418== at Ox4006E9E: mal |l oc (vg _replace nall oc. c: 236)
==2418== by 0x804884F. main (prog.c: 88)

==2418==

==2418== LEAK SUMVARY

==2418== definitely lost: 0O bytes in O bl ocks

==2418== indirectly lost: 0 bytes in O bl ocks

==2418== possibly lost: 0 bytes in O bl ocks

==2418== still reachable: 100 bytes in 1 bl ocks
==2418== suppressed: 0 bytes in 0 bl ocks

==2418==

(gdb)

Similarly to GDB, the Valgrind gdbserver will accept abbreviated monitor command names and arguments, aslong
asthe given abbreviation is unambiguous. For example, the abovel eak _check command can also be typed as:

(gdb) mo | f r a

The letters no are recognised by GDB as being an abbreviation for noni t or . So GDB sends the string | f

r a tothe Vagrind gdbserver. The letters provided in this string are unambiguous for the Valgrind gdbserver.
This therefore gives the same output as the unabbreviated command and arguments. If the provided abbreviation
isambiguous, the Valgrind gdbserver will report the list of commands (or argument values) that can match:

Using and understanding the Valgrind core: Advanced Topics

(gdb) mo v. n

v. can match v.set v.info v.wait v.kill v.translate v.do
(gdb) mo v.i n

n_errs _found 0 n_errs_shown O (vgdb-error 0)

(gdb)

Instead of sending a monitor command from GDB, you can aso send these from a shell command line. For
example, the following command lines, when given in a shell, will cause the same leak search to be executed by
the process 3145:

vgdb --pi d=3145 | eak_check full reachabl e any
vgdb --pid=31451 f r a

Note that the Valgrind gdbserver automatically continues the execution of the program after a standalone
invocation of vgdb. Monitor commands sent from GDB do not cause the program to continue: the program
execution is controlled explicitly using GDB commands such as "continue" or "next".

Many monitor commands (e.g. v.info location, memcheck who_points at, ...) require an address argument and
an optional length: <addr > [<l en>] . The arguments can also be provided by using a'C array like syntax' by
providing the address followed by the length between square brackets.

For example, the following two monitor commands provide the same information:

(gdb) nmo xb 0x804a2f0 10

(gdb) o xb 0x804a2f 0[10]

3.2.6. GDB front end commands for Valgrind
gdbserver monitor commands

As explained in Monitor command handling by the Valgrind gdbserver, valgrind monitor commands consist in
strings that are not interpreted by GDB. GDB has no knowledge of these valgrind monitor commands. The GDB
‘command lineinterface' infrastructure however providesinteresting functionalitiesto help typing commands such
as auto-completion, command specific help, searching for acommand or command help matching a regexp, ...

To have a better integration of the valgrind monitor commands in the GDB command line interface, Valgrind
provides python code defining a GDB front end command for each valgrind monitor command. Similarly, for
each tool specific monitor command, the python code provides a matching GDB front end command.

Like other GDB commands, the GDB front end Valgrind monitor commands are hierarchically structured starting
from 5 "top" GDB commands. Subcommands are defined below these "top" commands. To ease typing, shorter
aliases are also provided.

» val gri nd (aliased by vg and v) is the top GDB command providing front end commands to the Valgrind
general monitor commands.

» nentheck (aliased by nt) isthe top GDB command providing the front end commands corresponding to the
memcheck specific monitor commands.

e cal I gri nd (aliased by cq) is the top GDB command providing the front end commands corresponding to
the callgrind specific monitor commands.

» massif (aliased by ns) is the top GDB command providing the front end commands corresponding to the
massif specific monitor commands.

« hel gri nd (aliased by hg) isthe top GDB command providing the front end commands corresponding to the
helgrind specific monitor commands.

Using and understanding the Valgrind core: Advanced Topics

The usage of aGDB front end command is compatible with adirect usage of the Valgrind monitor command. The
below example shows a direct usage of the Memcheck monitor command xb to examine the definedness status
of the some_mem array and equivalent usages based on the GDB front end commands.

(gdb) list
1 int main()
2 {

3 char sone_neni 5] ;
4 return O;
5}
(gdb) p &some_nmem
$2 = (char (*)[5]) Oxlffefffebb
(gdb) p sizeof (some_nem
$3 =5
(gdb) monitor xb Ox1ffefffebb 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) menctheck xb Ox1ffefffeb5b 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) nt xb &sone_nem si zeof (sone_nen)
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00

(gdb)

Itisworth noting down that the third command usesthe aliasnt. Thiscommand also showsasignificant advantage
of using the GDB front end commands: as GDB "understands" the structure of these front end commands, where
relevant, these front end commands will evaluate their arguments. In the case of the xb command, the GDB xb
command evaluates its second argument (which must be an address expression) and its optional second argument
(which must be an integer expression).

GDB will auto-load the python code defining the Valgrind front end commands as soon as GDB detects that
the executable being debugged is running under valgrind. This detection is based on observing that the Valgrind
process has loaded a specific Valgrind shared library. The loading of this library is done by the dynamic loader
very early oninthe execution of the process. If GDB isused to connect to aValgrind processthat hasnot yet started
its execution (such as when Valgrind was started with the option - - vgdb- st op- at =st art up or - - vgdb-
er r or =0), then the GDB front end commandswill not yet be auto-loaded. To havethe GDB front end commands
auto-loaded, you can put a breakpoint e.g. in main and use the GDB command cont i nue. Alternatively, you
can add in your .gdbinit aline that loads the python code at GDB startup such as:

source /path/to/val grind/pyt hon/ code/ val gri nd-noni tor. py

The exact path to use in the source command depends on your Valgrind installation. The output of the shell
command vgdb - - hel p contains the absolute path name for the python file you can source in your .gdbinit to
define the GDB valgrind front end monitor commands.

3.2.7. Valgrind gdbserver thread information

Vagrind's gdbserver enriches the output of the GDB i nfo threads command with Valgrind-specific
information. The operating system's thread number is followed by Vagrind'sinternal index for that thread ("tid")
and by the Valgrind scheduler thread state:

(gdb) info threads
4 Thread 6239 (tid 4 VgTs_Yielding) 0x001f2832 in _dl _sysinfo int80 () from/lib/ld-
* 3 Thread 6238 (tid 3 VgTs_Runnable) make error (s=0x8048b76 "called from London") at
2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001f2832 in _dl_sysinfo int80 () from/lib/ld-I]i

46

Using and understanding the Valgrind core: Advanced Topics

1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1, argv=0xbedcc274) at prog.c: 105
(gdb)

3.2.8. Examining and modifying Valgrind shadow
registers

When the option - - vgdb- shadow- r egi st er s=yes isgiven, the Valgrind gdbserver will let GDB examine
and/or modify Valgrind's shadow registers. GDB version 7.1 or later isneeded for thisto work. For x86 and amd64,
GDB version 7.2 or later is needed.

For each CPU register, the Valgrind core maintains two shadow register sets. These shadow registers can be
accessed from GDB by giving apostfix s 1 or s 2 for respectively thefirst and second shadow register. For example,
the x86 register eax and its two shadows can be examined using the following commands:

(gdb) p $eax
$1 =0

(gdb) p $eaxsl
$2 =0

(gdb) p $eaxs2
$3 =0

(gdb)

Float shadow registers are shown by GDB as unsigned integer values instead of float values, asit is expected that
these shadow values are mostly used for memcheck validity bits.

Intel/amd64 AV X registersy nm0 to y nriL5 have also their shadow registers. However, GDB presentsthe shadow
values using two "half" registers. For example, the half shadow registers for ynm® are xnmBs1 (lower half for
set 1), yymBhs 1 (upper half for set 1), xnmBs2 (lower half for set 2), ymmBhs2 (upper half for set 2). Note the
inconsistent notation for the names of the half registers: the lower part starts with an x, the upper part starts with
any and has an h before the shadow postfix.

The specia presentation of the AV X shadow registers is due to the fact that GDB independently retrieves the
lower and upper half of the ymmregisters. GDB does not however know that the shadow half registers have to
be shown combined.

3.2.9. Limitations of the Valgrind gdbserver

Debugging with the Valgrind gdbserver isvery similar to native debugging. Va grind's gdbserver implementation
is quite complete, and so provides most of the GDB debugging functionality. There are however some limitations
and peculiarities:

 Precision of "stop-at" commands.

GDB commands such as "step”, "next", "stepi, breakpoints and watchpoints, will stop the execution of the
process. With the option - - vgdb=yes, the process might not stop at the exact requested instruction. Instead, it
might continue execution of the current basic block and stop at one of the following basic blocks. Thisislinked
to thefact that VValgrind gdbserver hasto instrument a block to allow stopping at the exact instruction requested.
Currently, re-instrumentation of the block currently being executed is not supported. So, if the action requested
by GDB (e.g. single stepping or inserting abreakpoint) impliesre-instrumentation of the current block, the GDB
action may not be executed precisely.

This limitation applies when the basic block currently being executed has not yet been instrumented for
debugging. This typically happens when the gdbserver is activated due to the tool reporting an error or to a
watchpoint. If the gdbserver block has been activated following abreakpoint, or if abreakpoint has been inserted
in the block before its execution, then the block has already been instrumented for debugging.

If you use the option - - vgdb=f ul | , then GDB "stop-at" commands will be obeyed precisely. The downside
is that this requires each instruction to be instrumented with an additional call to a gdbserver helper function,

47

Using and understanding the Valgrind core: Advanced Topics

which gives considerable overhead (+500% for memcheck) compared to - - vgdb=no. Option - - vgdb=yes
has neglectible overhead compared to - - vgdb=no.

Processor registers and flags values.

When Valgrind gdbserver stops on an error, on a breakpoint or when single stepping, registers and flags values
might not be always up to date due to the optimisations done by the Valgrind core. The default value - -
vex-iropt-register-updat es=unwi ndregs-at - mem access ensures that the registers needed
to make a stack trace (typically PC/SP/FP) are up to date at each memory access (i.e. memory exception points).
Disabling some optimisations using the following valueswill increase the precision of registers and flags values
(atypical performance impact for memcheck is given for each option).

e --vex-iropt-regi ster-updates=allregs-at-nmemaccess (+10%) ensuresthat all registers
and flags are up to date at each memory access.

e --vex-iropt-regi ster-updates=allregs-at-each-insn (+25%) ensures that all registers
and flags are up to date at each instruction.

Note that - - vgdb=f ul | (+500%, see above Precision of "stop-at" commands) automatically activates - -

vex-iropt-regi ster-updates=allregs-at-each-insn.

Hardware watchpoint support by the Valgrind gdbserver.

The Valgrind gdbserver can smulate hardware watchpoints if the selected tool provides support for it.
Currently, only Memcheck provides hardware watchpoint simulation. The hardware watchpoint simulation
provided by Memcheck is much faster that GDB software watchpoints, which are implemented by GDB
checking the value of the watched zone(s) after each instruction. Hardware watchpoint simulation also provides
read watchpoints. The hardware watchpoint simulation by Memcheck has some limitations compared to real
hardware watchpoints. However, the number and length of simulated watchpoints are not limited.

Typically, the number of (real) hardware watchpointsis limited. For example, the x86 architecture supports a
maximum of 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 bytes. The Vagrind gdbserver
does not have any limitation on the number of simulated hardware watchpoints. It also has no limitation on the
length of the memory zone being watched. Using GDB version 7.4 or later allow full use of the flexibility of the
Valgrind gdbserver's simulated hardware watchpoints. Previous GDB versions do not understand that VValgrind
gdbserver watchpoints have no length limit.

Memcheck implements hardware watchpoint simulation by marking the watched address ranges as being
unaddressable. When a hardware watchpoint is removed, the range is marked as addressable and defined.
Hardware watchpoint simulation of addressable-but-undefined memory zones works properly, but has the
undesirable side effect of marking the zone as defined when the watchpoint is removed.

Write watchpoints might not be reported at the exact instruction that writes the monitored area, unless option
- -vgdb=f ul | isgiven. Read watchpointswill always be reported at the exact instruction reading the watched
memory.

It is better to avoid using hardware watchpoint of not addressable (yet) memory: in such a case, GDB will fall
back to extremely slow software watchpoints. Also, if you do not quit GDB between two debugging sessions,
the hardware watchpoints of the previous sessions will be re-inserted as software watchpoints if the watched
memory zone is not addressable at program startup.

Stepping inside shared libraries on ARM.

For unknown reasons, stepping inside shared libraries on ARM may fail. A workaround is to use the | dd
command to find the list of shared libraries and their loading address and inform GDB of the loading address
using the GDB command "add-symbol-file". Example:

(gdb) shell |dd ./prog
libc.so.6 => /lib/libc.so.6 (0x4002c000)
/1ib/ld-1inux.so.3 (0x40000000)

Using and understanding the Valgrind core: Advanced Topics

(gdb) add-synbol-file /lib/libc.so.6 0x4002c000
add synbol table fromfile "/lib/libc.so.6" at
.text _addr = 0x4002c000

(y or n) y
Readi ng synbols from/lib/libc.so.6...(no debuggi ng synbols found)...done.

(gdb)
GDB version needed for ARM and PPC32/64.

You must use a GDB version which is able to read XML target description sent by a gdbserver. This is the
standard setup if GDB was configured and built with the "expat" library. If your GDB was not configured with
XML support, it will report an error message when using the "target” command. Debugging will not work
because GDB will then not be ableto fetch the registers from the VValgrind gdbserver. For ARM programs using
the Thumb instruction set, you must use a GDB version of 7.1 or later, as earlier versions have problems with
next/step/breakpoints in Thumb code.

Stack unwinding on PPC32/PPC64.

On PPC32/PPC64, stack unwinding for leaf functions (functions that do not call any other functions) works
properly only when you give the option - - vex-i ropt -regi st er - updat es=al | r egs- at - nem
accessor--vex-iropt-register-updates=al |l regs-at-each-insn.Youmustaso passthis
option in order to get a precise stack when a signal is trapped by GDB.

Breakpoints encountered multiple times.

Some instructions (e.g. x86 "rep movsh") are trandated by Vagrind using a loop. If a breakpoint is placed on
such an instruction, the breakpoint will be encountered multiple times -- once for each step of the "implicit"
loop implementing the instruction.

Execution of Inferior function calls by the Valgrind gdbserver.

GDB alowsthe user to "call" functionsinside the process being debugged. Such callsare named "inferior calls"
in the GDB terminology. A typical use of an inferior call is to execute afunction that prints a human-readable
version of a complex data structure. To make an inferior cal, use the GDB "print" command followed by the
function to call and its arguments. As an example, the following GDB command causes an inferior call to the
libc "printf" function to be executed by the process being debugged:

(gdb) p printf("process being debugged has pid %\ n", getpid())
$5 = 36
(gdb)

The Valgrind gdbserver supports inferior function calls. Whilst an inferior call is running, the Valgrind tool
will report errors as usual. If you do not want to have such errors stop the execution of the inferior call, you
canusev. set vgdb-error toset ahig vaue before the cal, then manually reset it to its original value
when the call is complete.

To executeinferior calls, GDB changes registers such as the program counter, and then continues the execution
of the program. In a multithreaded program, all threads are continued, not just the thread instructed to make
theinferior call. If another thread reports an error or encounters a breakpoint, the evaluation of the inferior call
is abandoned.

Note that inferior function calls are a powerful GDB feature, but should be used with caution. For example,
if the program being debugged is stopped inside the function "printf”, forcing a recursive call to printf viaan
inferior call will very probably create problems. The Valgrind tool might also add another level of complexity
toinferior cals, e.g. by reporting tool errors during the Inferior call or due to the instrumentation done.

Connecting to or interrupting a Valgrind process blocked in a system call.

Connecting to or interrupting a Valgrind process blocked in a system call requires the "ptrace” system call to
be usable. This may be disabled in your kernel for security reasons.

49

Using and understanding the Valgrind core: Advanced Topics

When running your program, Valgrind's scheduler periodically checks whether thereis any work to be handled
by the gdbserver. Unfortunately this check isonly doneif at least one thread of the processisrunnable. If al the
threads of the process are blocked in a system call, then the checks do not happen, and the Valgrind scheduler
will not invoke the gdbserver. In such acase, thevgdb relay application will "force" the gdbserver to beinvoked,
without the intervention of the Valgrind scheduler.

Such forced invocation of the Valgrind gdbserver is implemented by vgdb using ptrace system calls. On a
properly implemented kernel, the ptrace calls done by vgdb will not influence the behaviour of the program
running under Valgrind. If however they do, giving the option - - max-i nvoke- ns=0 to the vgdb relay
application will disable the usage of ptrace calls. The consequence of disabling ptrace usage in vgdb is that a
Valgrind process blocked in asystem call cannot be woken up or interrupted from GDB until it executes enough
basic blocksto let the Valgrind scheduler's normal checking take effect.

When ptrace is disabled in vgdb, you can increase the responsiveness of the Valgrind gdbserver to commands
or interrupts by giving a lower value to the option - - vgdb- pol | . If your application is blocked in system
calls most of the time, using a very low value for - - vgdb- pol | will cause a the gdbserver to be invoked
sooner. The gdbserver polling done by Vagrind's scheduler is very efficient, so the increased polling frequency
should not cause significant performance degradation.

When ptrace is disabled in vgdb, a query packet sent by GDB may take significant time to be handled by the
Valgrind gdbserver. In such cases, GDB might encounter a protocol timeout. To avoid this, you can increase
the value of the timeout by using the GDB command "set remotetimeout”.

Ubuntu versions 10.10 and later may restrict the scope of ptrace to the children of the process calling ptrace. As
the Valgrind processis not achild of vgdb, such restricted scoping causes the ptrace callsto fail. To avoid that,
Valgrind will automatically allow al processes belonging to the same userid to "ptrace” a Valgrind process,
by using PR_SET_PTRACER.

Unblocking processes blocked in system callsis not currently implemented on Mac OS X and Android. So you
cannot connect to or interrupt a process blocked in a system call on Mac OS X or Android.

Unblocking processesblocked in system callsisimplemented viaagent thread on Solaris. Thisisquiteadifferent
approach than using ptrace on Linux, but leads to equivalent result - Valgrind gdbserver is invoked. Note that
agent thread is a Solaris OS feature and cannot be disabl ed.

» Changing register values.

TheValgrind gdbserver will only modify thevalues of thethread'sregisterswhen thethread isin status Runnable
or Yielding. In other states (typically, WaitSys), attempts to change register values will fail. Amongst other
things, this means that inferior calls are not executed for a thread which isin a system call, since the Valgrind
gdbserver does not implement system call restart.

» Unsupported GDB functionality.

GDB providesalot of debugging functionality and not all of it is supported. Specifically, the following are not
supported: reversible debugging and tracepoints.

» Unknown limitations or problems.

The combination of GDB, Valgrind and the Valgrind gdbserver probably has unknown other limitations and
problems. If you encounter strange or unexpected behaviour, feel free to report a bug. But first please verify
that the limitation or problem is not inherent to GDB or the GDB remote protocol. You may be able to do so
by checking the behaviour when using standard gdbserver part of the GDB package.

3.2.10. vgdb command line options
Usage:vgdb [OPTION] ... [[-c] COWAND] ...

vgdb ("Valgrind to GDB") is a small program that is used as an intermediary between Valgrind and GDB or a
shell. It has three usage modes:

50

Using and understanding the Valgrind core: Advanced Topics

1. Asastandalone utility, it is used from a shell command line to send monitor commands to a process running
under Valgrind. For this usage, the vgdb OPTION(s) must be followed by the monitor command to send. To
send more than one command, separate them with the - ¢ option.

2. In combination with GDB "target remote [command, it is used as the relay application between GDB and the
Valgrind gdbserver. For this usage, only OPTION(s) can be given, but no COMMAND can be given.

3. Inthe- - mul ti mode, vgdb uses the extended remote protocol to communicate with GDB. Thisallowsyouto
view output from both valgrind and GDB in the GDB session. This is accomplished via the "target extended-
remote | vgdb --multi”. In this mode you no longer need to start valgrind yourself. vgdb will start up valgrind
when gdb tellsit to run a new program. For this usage, the vgdb OPTIONS(s) can alsoinclude - - val gri nd
and - - var gs to describe how valgrind should be started.

vgdb accepts the following options:
- - pi d=<nunber >

Specifies the PID of the process to which vgdb must connect to. This option is useful in case more than one
Vagrind gdbserver can be connected to. If the- - pi d argument is not given and multiple Va grind gdbserver
processes are running, vgdb will report the list of such processes and then exit.

--vgdb- prefix

Must be given to both VValgrind and vgdb if you want to change the default prefix for the FIFOs (named pipes)
used for communication between the VValgrind gdbserver and vgdb.

--wai t =<nunber >

Instructs vgdb to search for available Valgrind gdbservers for the specified number of seconds. This makes
it possible start a vgdb process before starting the Valgrind gdbserver with which you intend the vgdb to
communicate. This option is useful when used in conjunction with a- - vgdb- pr ef i x that isunique to the
process you want to wait for. Also, if you usethe - - wai t argument in the GDB "target remote" command,
you must set the GDB remotetimeout to a value bigger than the --wait argument value. See option - - max-

i nvoke- ns (just below) for an example of setting the remotetimeout value.

- - max- i nvoke- ne=<nunber >

Gives the number of milliseconds after which vgdb will force the invocation of gdbserver embedded in
Vagrind. Thedefault valueis 100 milliseconds. A valueof 0 disablesforced invocation. Theforced invocation
is used when vgdb is connected to a Valgrind gdbserver, and the Vagrind process has al its threads blocked
inasystem call.

If you specify alarge value, you might need to increase the GDB "remotetimeout” value from its default value
of 2 seconds. Y ou should ensure that the timeout (in seconds) is bigger than the - - max- i nvoke- s value.
For example, for - - max- i nvoke- ns=5000, the following GDB command is suitable:

(gdb) set renotetineout 6

--cmd-ti me- out =<nunber >

Instructs a standalone vgdb to exit if the Valgrind gdbserver it is connected to does not process a command
in the specified number of seconds. The default value isto never time out.

- - port=<portnr>

Instructsvgdb to usetcp/ip and listen for GDB on the specified port nr rather than to use a pipeto communicate
with GDB. Using tcp/ip allows to have GDB running on one computer and debugging a Valgrind process
running on another target computer. Example:

51

Using and understanding the Valgrind core: Advanced Topics

On the target conputer, start your program under val grind using

val grind --vgdb-error=0 prog

and then in another shell, run:

vgdb --port=1234

On the computer which hosts GDB, execute the command:

gdb prog

(gdb) target renote targetip: 1234

where targetip is the ip address or hostname of the target computer.
--vgdb-nul ti

Makes vgdb start in extended-remote mode and to wait for gdb to tell us what to run.
--valgrind

The path to valgrind to use, in extended-remote mode. If not specified, the system valgrind will be launched.

--vargs

Options to run valgrind with, in extended-remote mode. For example - q. Everything following - - var gs
will be provided as argumentsto valgrind asis.

To give more than one command to a standal one vgdb, separate the commands by an option - ¢c. Example:

vgdb v.set log output -c |eak _check any
Instructs a standal one vgdb to report the list of the Valgrind gdbserver processes running and then exit.
Instructs vgdb to add timestamps to vgdb information messages.

Instructs a standal one vgdb to show the state of the shared memory used by the VValgrind gdbserver. vgdb will
exit after having shown the Valgrind gdbserver shared memory state.

Instructs vgdb to produce debugging output. Give multiple - d args to increase the verbosity. When giving -
d to arelay vgdb, you better redirect the standard error (stderr) of vgdb to afile to avoid interaction between
GDB and vgdb debugging output.

3.2.11. Valgrind monitor commands

This section describes the Valgrind monitor commands, available regardless of the Valgrind tool selected. For
the tool specific commands, refer to Memcheck Monitor Commands, Helgrind Monitor Commands, Callgrind
Monitor Commands and Massif Monitor Commands.

The monitor commands can be sent either from a shell command line, by using a standalone vgdb, or from GDB,
by using GDB's "monitor" command (see Monitor command handling by the Valgrind gdbserver) or by GDB's
"valgrind" front end commands (see GDB front end commands for Valgrind gdbserver monitor commands). They
can also be launched by the client program, using the VALGRIND_MONITOR_COMMAND client request.

52

Using and understanding the Valgrind core: Advanced Topics

Whatever the way the monitor command is launched, it will behave the same way. However, using the GDB's
valgrind front end commands allows to benefit from the GDB infrastructure, such as expression evaluation. When

relevant, the description of a monitor command below describes the additional flexibility provided by the GDB

valgrind front end command. To launch a valgrind monitor command via its GDB front end command, instead

of prefixing the command with "monitor", you must use the GDB val gri nd command (or the shorter aliases

vg orv). In GDB, you can use hel p val gri nd to get help about the valgrind front end monitor commands

and you can use apr opos val gri nd to get al the commands mentionning the word "valgrind” in their name
or on-line help.

e hel p [debug] instructs Vagrind's gdbserver to give the list of all monitor commands of the Valgrind core
and of the tool. The optiona "debug" argument tells to also give help for the monitor commands aimed at
Valgrind internals debugging.

Note that this monitor command produces the help information as provided by valgrind gdbserver. The GDB
help givene.g. by hel p val gri nd orhel p val grind v. i nf o providesthe help of the GDB front end
command for the equivalent valgrind gdbserver monitor command. This"GDB help" describes the additional
flexibility provided by the GDB front end command.

v.info all _errors [al so_suppressed] showsall errorsfound so far.
The optional "also_suppressed” argument indicates to also output the suppressed errors.
v.info |last_error showsthelast error found.

v.info location <addr> outputsinformation about the location <addr>. Possibly, the following are
described: global variables, local (stack) variables, allocated or freed blocks, ... The information produced
depends on the tool and on the options given to valgrind. Some tools (e.g. memcheck and helgrind) produce
more detailed information for client heap blocks. For example, these tools show the stacktrace where the heap
block was allocated. If atool does not replace the malloc/fredl... functions, then client heap blocks will not
be described. Use the option - - r ead- var - i nf o=yes to obtain more detailed information about global or
local (stack) variables.

(gdb) nonitor v.info | ocation 0x1130a0
Location 0x1130a0 is O bytes inside global var
decl ared at tcl19 shadowrem c: 19

(gdb) nmo v.in loc Ox1ffefffelO
Location Ox1lffefffelO is O bytes inside info.child,
decl ared at tcl1l9 shadowremc: 139, in frane #1 of thread 1

(gdb)

The GDB valgrind front end command val grind v.info |ocation ADDR accepts any address
expression for its ADDR argument. In the below examples, mx is a global struct and info is a pointer to a
structure. Instead of having to print the addresses of the structure and printing the pointer variable, you can
directly use the expressions in the GDB valgrind front end command argument.

nx

(gdb) valgrind v.info | ocation &rx

Location 0x1130a0 is O bytes inside global var "nx"
declared at tcl1l9 shadowrem c: 19
(gdb) v v.i lo info

Location Ox1ffefffelO is O bytes inside info.child,
declared at tcl9 shadowmremc: 139, in frame #1 of thread 1

(gdb)

v.info n_errs_found [nsg] showsthe number of errors found so far, the nr of errors shown so far
and the current value of the - - vgdb- er r or argument. The optional nsg (one or more words) is appended.
Typically, this can be used to insert markersin a process output file between several tests executed in sequence
by a process started only once. This allows to associate the errors reported by Valgrind with the specific test
that produced these errors.

53

Using and understanding the Valgrind core: Advanced Topics

e v.info open_fds shows the list of open file descriptors and details related to the file descriptor. This
only worksif - -t rack-fds=yesor--track-fds=al |l (toincludest di n,st dout andst derr)was
given at Valgrind startup.

e v.clo <cl o_option>. .. changesoneor moredynamic command line options. If no clo_optionisgiven,
lists the dynamically changeable options. See Dynamically Change Options. The below shows example of
changing the value of - - vgdb- er r or using directly the valgrind monitor command, using the equivalent
GDB valgrind front end command. It also shows how a more flexible setting can be done using the GDB eval
command.

(gdb) nmo v.clo --vgdb-error=10

==2808839== Handl i ng new val ue --vgdb-error=10 for option --vgdb-error
(gdb) v v.clo --vgdb-error=11

==2808839== Handl i ng new val ue --vgdb-error=11 for option --vgdb-error
(gdb) set var $nnn = 15

(gdb) eval "v v.clo --vgdb-error=%", $nnn + 1

==2808839== Handl i ng new val ue --vgdb-error=16 for option --vgdb-error

(gdb)

 v.set {gdb_output | |og_output | mn xed_output} alowsredirection of the Valgrind output
(e.0. the errors detected by the tool). The default settingismi xed_out put .

With m xed_out put , the Valgrind output goes to the Valgrind log (typically stderr) while the output of the
interactive GDB monitor commands (e.g.v. i nfo | ast _error) isdisplayed by GDB.

Withgdb_out put , both theVValgrind output and theinteractive GDB monitor commands output are displayed
by GDB.

With | og_out put, both the Valgrind output and the interactive GDB monitor commands output go to the
Valgrind log.

e v.wait [ns (default 0)] instructsValgrind gdbserver to sleep "ms"' milli-seconds and then continue.
When sent from a standalone vgdb, if thisisthelast command, the Valgrind processwill continue the execution
of the guest process. Thetypical usage of thisisto use vgdb to send a"no-op" command to aValgrind gdbserver
S0 asto continue the execution of the guest process.

The GDB valgrind front end command val gri nd v.wait MS acceptsany integer expression for its MS
argument, while the monitor command accepts only integer numbers.

* v. ki || requeststhe gdbserver to kill the process. This can be used from a standalone vgdb to properly kill a
Valgrind process which is currently expecting a vgdb connection.

 v.set vgdb-error <errornr> dynamicaly changes the value of the - - vgdb- err or valgrind
command line argument. A typical usage of thisisto start with - - vgdb- er r or =0 on the command line, then
set afew breakpoints, set the vgdb-error value to a huge value and continue execution. Note that you can also
changethisvalueusingeg.v. cl o --vgdb-error=12

The GDB valgrind front end command val grind v.set vgdb-error NUM accepts any integer
expression for its ERRORNR argument, while the monitor command accepts only integer numbers.

* v.set nerge-recursive-frames <nune dynamicaly changes the value of the - - ner ge-
recur si ve-frames valgrind command line argument. Note that you can also change this value using e.g.
v.clo --merge-recursive-franmes=5

The GDB valgrind front end command val gri nd v.set nerge-recursive-franes NUMaccepts
any integer expression for its NUM argument, while the monitor command accepts only integer numbers.

o xtmenory [<filenane> default xtmenory.kcg. %. %] requeststhetool (Memcheck, Massif,
Helgrind) to produce an xtree heap memory report. See Execution Trees for a detailed explanation about
execution trees.

Using and understanding the Valgrind core: Advanced Topics

Thefollowing Valgrind monitor commands are useful for investigating the behaviour of Valgrind or its gdbserver
in case of problems or bugs.

e v.do expensive_sanity check _general executes various sanity checks. In particular, the sanity
of the Valgrind heap is verified. This can be useful if you suspect that your program and/or Valgrind has a
bug corrupting Valgrind data structure. It can also be used when a Valgrind tool reports a client error to the
connected GDB, in order to verify the sanity of Valgrind before continuing the execution.

e v.info gdbserver_stat us showsthe gdbserver status. In case of problems (e.g. of communications),
this shows the values of some relevant Valgrind gdbserver internal variables. Note that the variables related to
breakpoints and watchpoints (e.g. the number of breakpoint addresses and the number of watchpoints) will be
zero, as GDB by default removes all watchpoints and breakpoints when execution stops, and re-inserts them
when resuming the execution of the debugged process. Y ou can change this GDB behaviour by using the GDB
command set breakpoi nt al ways-inserted on.

« v.info nenory [aspacengr] showsthestatistics of Valgrind'sinternal heap management. If option - -
profi | e- heap=yes wasgiven, detailed statistics will be output. With the optional argument aspacenyr .
the segment list maintained by valgrind address space manager will be output. Note that this list of segments
is always output on the Valgrind log.

 v.info exectxt shows information about the "executable contexts' (i.e. the stack traces) recorded by
Valgrind. For some programs, Valgrind can record a very high number of such stack traces, causing a high
memory usage. This monitor command shows all the recorded stack traces, followed by some statistics. This
can be used to analyse the reason for having abig number of stack traces. Typically, you will use this command
if v. i nfo menory hasshown significant memory usage by the "exectxt" arena.

» v.info schedul er showsvariousinformation about threads. First, it outputs the host stack trace, i.e. the
Valgrind code being executed. Then, for each thread, it outputs the thread state. For non terminated threads, the
state is followed by the guest (client) stack trace. Finally, for each active thread or for each terminated thread
slot not yet re-used, it shows the max usage of the valgrind stack.

Showing the client stack traces allows to compare the stack traces produced by the Vagrind unwinder with the
stack traces produced by GDB+Va grind gdbserver. Pay attention that GDB and Valgrind scheduler status have
their own thread numbering scheme. To make the link between the GDB thread number and the corresponding
Valgrind scheduler thread number, use the GDB command i nf o t hr eads. The output of this command
shows the GDB thread number and the valgrind 'tid'. The 'tid' is the thread number output by v. i nfo
schedul er . Whenusingthecallgrind tool, the callgrind monitor command st at us outputsinternal callgrind
information about the stack/call graph it maintains.

* v.info stats showsvariousvalgrind core and tool statistics. With this, Valgrind and tool statistics can be
examined while running, even without option - - st at s=yes.

e v.info unwi nd <addr> [<l en>] showsthe CFl unwind debug info for the address range [addr, addr
+len-1]. The default value of <len> is 1, giving the unwind information for the instruction at <addr>.

The GDB valgrind front end command val gri nd v.info unwi nd ADDR [LEN] acceptsany address
expression for its first ADDR argument, such as $pc. The second optional argument is any integer expression.
Note that these 2 arguments must be separated by a space.

* v.set debugl og <i nt val ue> setstheValgrind debugloglevel to <intvalue>. Thisallowsto dynamically
change the log level of Valgrind e.g. when a problem is detected.

The GDB valgrind front end command val grind v.set debuglog LEVEL accepts any address
expression for its LEVEL argument.

e v.set hostvisibility [yes*|no] Thevaue"yes" indicatesto gdbserver that GDB can look at the
Valgrind 'host' (internal) statusmemory. "no" disables this access. When hostvisibility is activated, GDB can
e.g. look at Valgrind global variables. As an example, to examine aValgrind global variable of the memcheck
tool on an x86, do the following setup:

55

Using and understanding the Valgrind core: Advanced Topics

(gdb) nonitor v.set hostvisibility yes

Enabl ed access to Val grind menory/status by GDB

If not yet done, tell GDB which valgrind file(s) to use, typically:

add- synbol -file /hone/philippe/val grind/git/inprove/lnst/l|ibexec/val grind/ nmencheck-an

(gdb) add-synbol -file /hone/philippe/val grind/git/inprove/lnst/|ibexec/val grind/ nmenche

add synbol table fromfile "/home/philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/
.text_addr = 0x58001000

(y or n) y
Readi ng synbol s from /home/ philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/ menchec

(gdb)

After that, variables defined in memcheck-x86-linux can be accessed, e.g.

(gdb) p /x vgPlain_threads[1].o0s_state
$3 = {Iwpid = 0x4688, threadgroup = 0x4688, parent = 0xO0,
val gri nd_stack_base = 0x62e78000, val grind_stack_ init_SP = 0x62f 79f e0,
exi tcode = 0x0, fatal sig = 0x0}
(gdb) p vex_control
$5 = {iropt_verbosity = 0, iropt_level = 2,
i ropt _regi ster_updates = VexRegUpdUnwi ndr egsAt MemAccess,
iropt _unroll _thresh = 120, guest_nax_insns = 60, guest_chase_thresh = 10}

(gdb)

e« v.transl ate <address> [<tracefl ags>] showsthetrandation of the block containing addr ess
withthegiventraceflags. Thet r acef | ags vauebit patterns have similar meaningto Valgrind's- -t r ace-
f 1 ags option. It can be given in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1s and Os bit (e.g.
0b00100000). Thedefault value of thetraceflagsis 0b00100000, corresponding to "show after instrumentation”.
The output of this command always goesto the Valgrind log.

The additional bit flag Ob100000000 (bit 8) has no equivalent in the - -t r ace- f | ags option. It enables
tracing of the gdbserver specific instrumentation. Note that this bit 8 can only enable the addition of gdbserver
instrumentation in the trace. Setting it to 0 will not disable the tracing of the gdbserver instrumentation if it is
active for some other reason, for example because there is a breakpoint at this address or because gdbserver
isin single stepping mode.

The GDB valgrind front end command val grind v.transl ate ADDR [TRACEFLAG accepts any
address expression for its first ADDR argument, such as $pc. The second optional argument is any integer
expression. Note that these 2 arguments must be separated by a space.

3.3. Function wrapping

Vagrind allows calls to some specified functions to be intercepted and rerouted to a different, user-supplied
function. This can do whatever it likes, typically examining the arguments, calling onwards to the original, and
possibly examining the result. Any number of functions may be wrapped.

Function wrapping is useful for instrumenting an APl in some way. For example, Helgrind wraps functions in
the POSIX pthreads API so it can know about thread status changes, and the core is able to wrap functionsin the
MPI (message-passing) APl so it can know of memory status changes associated with message arrival/departure.

Such information is usually passed to Valgrind by using client requests in the wrapper functions, although the
exact mechanism may vary.

3.3.1. A Simple Example

Supposing we want to wrap some function
int foo (int x, int y) { returnx +vy; }

56

Using and understanding the Valgrind core: Advanced Topics

A wrapper is a function of identical type, but with a special name which identifies it as the wrapper for f 0o.
Wrappers need to include supporting macros from val gri nd. h. Here is a simple wrapper which prints the
arguments and return value:

#i ncl ude <stdio. h>
#i ncl ude "val grind. h"
int | _WRAP_SONAME_FNNAME_ZU(NONE, foo) (int x, int y)
{
i nt result;
OigFn fn;
VALGRI ND_GET_ORI G FN(fn);
printf("foo's wapper: args % %\n", X, y);
CALL_FN WWN(result, fn, x,vy);
printf("foo's wapper: result %\n", result);
return result;

}

To become active, the wrapper merely needsto be present in atext section somewherein the same process' address
space as the function it wraps, and for its ELF symbol name to be visible to Valgrind. In practice, this means
either compilingto a. o and linking it in, or compilingto a. so and LD_PRELQADIng it in. The latter is more
convenient in that it doesn't require relinking.

All wrappers have approximately the above form. There are three crucial macros:

| VWRAP_SONAME_FNNANME ZU: this generates the real name of the wrapper. This is an encoded name which
Va grind notices when reading symbol tableinformation. What it saysis: | am the wrapper for any function named
f oo whichisfound in an ELF shared object with an empty ("NONE") soname field. The specification mechanism
is powerful in that wildcards are allowed for both sonames and function names. The details are discussed below.

VALGRI ND_GET_ORI G_FN: once in the wrapper, the first priority isto get hold of the address of the original
(and any other supporting information needed). Thisis stored in avalue of opaquetype Or i gFn. Theinformation
is acquired using VALGRI ND_GET_CORI G_FN. It is crucia to make this macro call before caling any other
wrapped function in the same thread.

CALL_FN_W WN eventually we will want to call the function being wrapped. Calling it directly does not work,
since that just gets us back to the wrapper and leads to an infinite loop. Instead, the result Ivalue, Or i gFn and
arguments are handed to one of a family of macros of the form CALL_FN_*. These cause Valgrind to call the
origina and avoid recursion back to the wrapper.

3.3.2. Wrapping Specifications

This scheme has the advantage of being self-contained. A library of wrappers can be compiled to object codein
the normal way, and does not rely on an external script telling Valgrind which wrappers pertain to which originals.

Each wrapper has a name which, in the most general case says. | am the wrapper for any function whose name
matches FNPATT and whose ELF "soname" matches SOPATT. Both FNPATT and SOPATT may contain
wildcards (asterisks) and other characters (spaces, dots, @, etc) which are not generally regarded as valid C
identifier names.

This flexibility is needed to write robust wrappers for POSIX pthread functions, where typically we are not
completely sureof either the function name or the soname, or alternatively wewant to wrap awhole set of functions
at once.

For example, pt hr ead_cr eat e in GNU libpthread is usually a versioned symbol - one whose name endsiin,

eg, @=L1 BC 2. 3. Hence we are not sure what its real name is. We also want to cover any soname of the form
['i bpt hr ead. so*. So the header of the wrapper will be

57

Using and understanding the Valgrind core: Advanced Topics

int | _WRAP_SONAME FNNAME ZZ(| i bpt hr eadZdsoZdO, pt hr eadZucr eat eZAZa)
(... formals ...)

{ ... body ...}

In order to write unusual characters as valid C function names, a Z-encoding scheme is used. Names are written
literally, except that a capital Z acts as an escape character, with the following encoding:

Za encodes *

Zp i

Zc :

Zd

Zu _

Zh -

Zs (space)

ZA @

7z z

ZL (# only in valgrind 3.3.0 and | ater

ZR) # only in valgrind 3.3.0 and | ater
Hence |i bpthreadZdsoZd0 is an encoding of the soname |ibpthread.so.0 and

pt hr eadZucr eat eZAZa is an encoding of the function name pt hread_create@.

The macro | _WRAP_SONAME_FNNAME _ZZ constructs a wrapper name in which both the soname (first
component) and function name (second component) are Z-encoded. Encoding the function name can be tiresome
and is often unnecessary, so a second macro, | _WWRAP_SONAME_FNNAME_ZU, can be used instead. The _ZU
variantisalso useful for writing wrappersfor C++ functions, in which thefunction nameisusually aready mangled
using some other convention in which Z plays an important role. Having to encode a second time quickly becomes
confusing.

Since the function name field may contain wildcards, it can be anything, including just * . The same is true for
the soname. However, some ELF objects - specifically, main executables - do not have sonames. Any object
lacking a soname is treated as if its soname was NONE, which is why the original example above had a name
| _V\RAP_SONAME_FNNAME_ZU(NONE, f 00) .

Note that the soname of an ELF object is not the same as its file name, although it is often similar. You can find
the soname of an object | i bf 0o. so usingthecommandr eadel f -a |i bfoo.so | grep sonane.

3.3.3. Wrapping Semantics

Theability for awrapper to replace an infinitefamily of functionsispowerful but brings complicationsin situations
where ELF objects appear and disappear (are dlopen'd and diclose'd) on thefly. Vagrind triesto maintain sensible
behaviour in such situations.

For example, suppose a process has dlopened (an ELF object with soname) obj ect 1. so, which contains
functionl. It startstousef uncti onl immediately.

After awhileit dlopenswr apper s. so, which containsawrapper for f unct i onl in(soname) obj ect 1. so.
All subsequent callsto f unct i onl arererouted to the wrapper.

If w apper s. so islater diclose'd, callstof unct i onl are naturally routed back to the original.

Alternatively, if obj ect 1. so is diclosed but wr appers. so remains, then the wrapper exported by
wWr apper s. so becomesinactive, sincethereisnoway to gettoit - thereisno original to call any more. However,
Vagrind remembers that the wrapper is still present. If obj ect 1. so iseventually dlopen'd again, the wrapper
will become active again.

In short, valgrind inspects all code loading/unloading events to ensure that the set of currently active wrappers
remains consistent.

58

Using and understanding the Valgrind core: Advanced Topics

A second possible problem isthat of conflicting wrappers. It is easily possible to load two or more wrappers, both
of which claim to be wrappers for some third function. In such cases Valgrind will complain about conflicting
wrappers when the second one appears, and will honour only the first one.

3.3.4. Debugging

Figuring out what's going on given the dynamic nature of wrapping can bedifficult. The- -t race-redi r =yes
option makes this possible by showing the compl ete state of the redirection subsystem after every mmap/nunnap
event affecting code (text).

There are two central concepts:

» A "redirection specification” is a binding of a (soname pattern, fnname pattern) pair to a code address. These
bindings are created by writing functionswith namesmadewiththel _WRAP_SONAME_FNNAMVE {ZZ, ZU}
macros.

* An"activeredirection" is acode-address to code-address binding currently in effect.

The state of the wrapping-and-redirection subsystem comprises a set of specifications and a set of active bindings.
The specifications are acquired/discarded by watching all nmap/nmunmap events on code (text) sections. The
active binding set is (conceptually) recomputed from the specifications, and all known symbol names, following
any change to the specification set.

--trace-redir =yes showsthe contents of both sets following any such event.
- v prints aline of text each time an active specification is used for the first time.
Hence for maximum debugging effectiveness you will need to use both options.

One final comment. The function-wrapping facility is closely tied to Valgrind's ability to replace (redirect)
specified functions, for example to redirect calls to mal | oc to its own implementation. Indeed, a replacement
function can be regarded as a wrapper function which does not call the original. However, to make the
implementation more robust, the two kinds of interception (wrapping vs replacement) are treated differently.

--trace-redir=yes shows specifications and bindings for both replacement and wrapper functions. To
differentiate the two, replacement bindings are printed using R- > whereas wraps are printed using W >.

3.3.5. Limitations - control flow

For the most part, the function wrapping implementation isrobust. The only important caveat is: in awrapper, get
hold of the Or i gFn information using VALGRI ND_GET_ORI G_FN before calling any other wrapped function.
Once you have the Or i gFn, arbitrary calls between, recursion between, and longjumps out of wrappers should
work correctly. There is never any interaction between wrapped functions and merely replaced functions (eg
mal | oc), soyou cancall mal | oc etc safely from within wrappers.

The above comments are true for { x86,amd64,ppc32,arm,mips32,s390} -linux. On ppc64-linux function wrapping
is more fragile due to the (arguably poorly designed) ppc64-linux ABI. This mandates the use of a shadow
stack which tracks entries/exits of both wrapper and replacement functions. This gives two limitations: firstly,
longjumping out of wrappers will rapidly lead to disaster, since the shadow stack will not get correctly cleared.
Secondly, sincethe shadow stack hasfinite size, recursion between wrapper/replacement functionsisonly possible
to alimited depth, beyond which Valgrind has to abort the run. This depth is currently 16 calls.

For all platforms ({x86,amd64,ppc32,ppc64,arm,mips32,s390} -linux) all the above comments apply on a per-
thread basis. In other words, wrapping isthread-safe: each thread must individually observe the above restrictions,
but there is no need for any kind of inter-thread cooperation.

3.3.6. Limitations - original function signatures

As shown in the above example, to call the original you must use amacro of theform CALL_FN_* . For technical
reasonsit isimpossibleto create asingle macro to deal with all argument types and numbers, so afamily of macros

59

Using and understanding the Valgrind core: Advanced Topics

covering the most common casesis supplied. In what follows, "W' denotes a machine-word-typed value (a pointer
oraCl ong), and 'v' denotes C'svoi d type. The currently available macros are;

CALL_FN v_v -- call an original of type void fn (void)
CALL_FN WV -- call an original of type long fn (void)
CALL_FN v_W -- call an original of type void fn (long)
CALL_FN W W -- call an original of type long fn (long)
CALL FN v.WW -- call an original of type void fn (long, long)
CALL_ FN WWWV -- call an original of type long fn (long, long)

CALL_ FN v.WMWV -- call an original of type void fn (long, long, long)
CALL_ FN WWMWV -- call an original of type long fn (long, long, long)

CALL_FN W WMWYV -- call an original of type long fn (long, long, long, long)

CALL_FN W5W -- call an original of type long fn (long, long, |long, |ong,
CALL_FN W6W -- call an original of type long fn (long, long, |long, |ong,
and so on, up to

CALL_FN W 12w

The set of supported types can be expanded as needed. It is regrettable that this limitation exists. Function
wrapping has proven difficult to implement, with a certain apparently unavoidable level of ickiness. After several
implementation attempts, the present arrangement appears to be the least-worst tradeoff. At least it works reliably
in the presence of dynamic linking and dynamic code |oading/unloading.

Y ou should not attempt to wrap a function of one type signature with a wrapper of a different type signature.
Such trickery will surely lead to crashes or strange behaviour. Thisis not a limitation of the function wrapping
implementation, merely areflection of the fact that it gives you sweeping powers to shoot yourself in the foot if
you are not careful. Imagine the instant havoc you could wreak by writing awrapper which matched any function
name in any soname - in effect, one which claimed to be awrapper for all functionsin the process.

3.3.7. Examples

In the sourcetree, nentheck/ t est s/ wr ap[1- 8] . ¢ provide a series of examples, ranging from very simple
to quite advanced.

npi /i bnpi wr ap. ¢ is an example of wrapping a big, complex API (the MPI-2 interface). This file defines
almost 300 different wrappers.

60

| ong)
| ong,

| on

4. Memcheck: a memory error
detector

To usethistool, youmay specify - - t ool =nentheck ontheVagrind command line. Y ou don't haveto, though,
since Memcheck is the default tool.

4.1. Overview

Memcheck is a memory error detector. It can detect the following problems that are common in C and C++
programs.

» Accessing memory you shouldn't, e.g. overrunning and underrunning heap blocks, overrunning the top of the
stack, and accessing memory after it has been freed.

» Using undefined values, i.e. valuesthat have not been initialised, or that have been derived from other undefined
values.

* Incorrect freeing of heap memory, such as double-freeing heap blocks, or mismatched use of mal | oc/new/
new] versusfree/del et e/del et e[]

Mismatches will also be reported for si zed and al i gned allocation and dealocation functions if the
deallocation value does not match the allocation value.

» Overlapping sr ¢ and dst pointersin mentpy and related functions.

» Passing afishy (presumably negative) value to the si ze parameter of a memory allocation function.
» Using asi ze vaue of O with realloc.

» Usinganal i gnment value that is not a power of two.

* Memory lesks.

Problems like these can be difficult to find by other means, often remaining undetected for long periods, then
causing occasional, difficult-to-diagnose crashes.

Memcheck also provides Execution Trees memory profiling using the command line option - - xt r ee- nenory
and the monitor command xt nenory.

4.2. Explanation of error messages from
Memcheck

Memcheck issues arange of error messages. This section presents aquick summary of what error messages mean.
The precise behaviour of the error-checking machinery isdescribed in Detail s of Memcheck's checking machinery.

4.2.1. lllegal read / lllegal write errors

For example:

Invalid read of size 4
at Ox40F6BBCC. (within /usr/lib/libpng.so.2.1.0.9)
by Ox40F6B804: (within /usr/lib/libpng.so.2.1.0.9)
by Ox40BO7FF4: read_png_i mage(Q nagel O *) (kernel/gpngi 0. cpp: 326)
by Ox40AC751B: Q magel O :read() (kernel/qi mage. cpp: 3621)

61

Memcheck: amemory error detector

Addr ess OxBFFFFOEO is not stack'd, nalloc'd or free'd

This happens when your program reads or writes memory at a place which Memcheck reckons it shouldn't. In
this example, the program did a 4-byte read at address OxBFFFFOEO, somewhere within the system-supplied
library libpng.s0.2.1.0.9, which was called from somewhere else in the same library, called from line 326 of
gpngi o. cpp, and so on.

Memcheck tries to establish what the illegal address might relate to, since that's often useful. So, if it pointsinto
ablock of memory which has already been freed, you'll be informed of this, and also where the block was freed.
Likewise, if it should turn out to be just off the end of a heap block, acommon result of off-by-one-errorsin array
subscripting, you'll beinformed of thisfact, and al so where the block was allocated. If you usethe- - r ead- var -
i nf o option Memcheck will run more slowly but may give amore detailed description of any illegal address.

In this example, Memcheck can't identify the address. Actually the address is on the stack, but, for some reason,
thisis not a valid stack address -- it is below the stack pointer and that isn't allowed. In this particular case it's
probably caused by GCC generating invalid code, a known bug in some ancient versions of GCC.

Note that Memcheck only tells you that your program is about to access memory at anillegal address. It can't stop
the access from happening. So, if your program makes an access which normally would result in a segmentation
fault, you program will still suffer the same fate -- but you will get a message from Memcheck immediately prior
to this. In this particular example, reading junk on the stack is non-fatal, and the program stays alive.

4.2.2. Use of uninitialised values

For example:

Condi tional junp or nobve depends on uninitialised value(s)
at 0x402DFA94: 1O vfprintf (_itoa.h:49)
by 0x402E8476: _10O printf (printf.c:36)
by 0x8048472: main (tests/manuel 1.c: 8)

An uninitialised-value use error is reported when your program uses a value which hasn't been initialised -- in
other words, is undefined. Here, the undefined value is used somewhere inside the pr i nt f machinery of the C
library. This error was reported when running the following small program:

int main()
{

int Xx;

printf ("x = %\n", x);
}

It is important to understand that your program can copy around junk (uninitialised) data as much as it likes.
Memcheck observes this and keepstrack of the data, but does not complain. A complaint isissued only when your
program attempts to make use of uninitialised datain a way that might affect your program's externally-visible
behaviour. In this example, x is uninitialised. Memcheck observes the value being passedto _1 O pri ntf and
thenceto _I O _vf pri nt f, but makes no comment. However, _| O vf pri nt f hasto examine the value of x
so it can turn it into the corresponding ASCII string, and it is at this point that Memcheck complains.

Sources of uninitialised data tend to be:
» Local variablesin procedures which have not been initialised, as in the example above.

» The contents of heap blocks (allocated with mal | oc, new, or asimilar function) before you (or a constructor)
write something there.

To see information on the sources of uninitialised data in your program, use the - -t rack- ori gi ns=yes
option. This makes Memcheck run more slowly, but can make it much easier to track down the root causes of
uninitialised value errors.

62

Memcheck: amemory error detector

4.2.3. Use of uninitialised or unaddressable values in
system calls

Memcheck checks all parametersto system calls:
* It checks all the direct parameters themselves, whether they are initialised.

» Also, if asystem call needs to read from a buffer provided by your program, Memcheck checks that the entire
buffer is addressable and its contents are initialised.

» Also, if the system call needsto writeto auser-supplied buffer, Memcheck checksthat the buffer isaddressable.

After the system call, Memcheck updates its tracked information to precisely reflect any changesin memory state
caused by the system call.

Here's an example of two system calls with invalid parameters:

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(void)

{
char* arr mal | oc(10);
int* arr2 mal | oc(si zeof (int));
wite(1 /* stdout */, arr, 10);
exit(arr2[0]);

}

Y ou get these complaints ...

Syscall paramwite(buf) points to uninitialised byte(s)
at 0x25A48723: _ wite _nocancel (in /lib/tls/libc-2.3.3.5s0)
by Ox259AFAD3: _ libc_start _main (in /lib/tls/libc-2.3.3.5s0)
by 0x8048348: (within /auto/honmes/njn25/grind/ head4/ a. out)
Addr ess 0x25AB8028 is 0 bytes inside a block of size 10 alloc'd
at 0x259852B0: nall oc (vg_replace nalloc.c: 130)
by 0x80483F1: main (a.c:5)

Syscal |l paramexit(error_code) contains uninitialised byte(s)
at 0x25A21B44: QA __exit (in /lib/tls/libc-2.3.3.5s0)
by 0x8048426: main (a.c:8)

... because the program has (a) written uninitialised junk from the heap block to the standard output, and (b) passed
an uninitialised value to exi t . Note that the first error refers to the memory pointed to by buf (not buf itself),
but the second error refers directly to exi t 'sargument ar r 2[0] .

4.2.4. lllegal frees

For example:

Invalid free()
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)
Addr ess 0x3807F7B4 is 0 bytes inside a bl ock of size 177 free'd
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)

63

Memcheck: amemory error detector

Memcheck keepstrack of the blocksallocated by your programwithmal | oc/new, soit can know exactly whether
or not theargument to f r ee/del et e islegitimate or not. Here, thistest program has freed the same block twice.
Aswiththeillegal read/write errors, Memcheck attemptsto make sense of the addressfreed. If, ashere, the address
is one which has previously been freed, you wil be told that -- making duplicate frees of the same block easy to
spot. You will also get this message if you try to free a pointer that doesn't point to the start of a heap block.

4.2.5. When a heap block is freed with an inappropriate
deallocation function

In the following example, ablock allocated with new{] haswrongly been deallocated with f r ee:

M smat ched free() / delete / delete []

at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray:: ~QGArray(void) (tools/qgarray.cpp: 149)
by 0x4C261C41: Ppt Doc: : ~Ppt Doc(voi d) (include/ gnenmarray. h: 60)
by 0x4C261FOE: Ppt Xm :: ~Ppt Xm (voi d) (pptxmn.cc: 44)

Addr ess 0x4BB292A8 is 0 bytes inside a bl ock of size 64 alloc'd
at 0x4004318C. operator new] (unsigned int) (vg _clientfuncs.c: 152)
by 0x4C21BCl5: KLaol a::readSBStrean(int) const (klaola.cc:314)
by 0x4C21C155: KLaol a:: strean{KLaol a: : O_LENode const *) (klaol a.cc: 416)
by 0x4C21788F: OLEFilter::convert(QCString const & (olefilter.cc:272)

In C++ it'simportant to deallocate memory in away compatible with how it was allocated.

Most of the time in C++ you will write code that uses new expr essi on and del et e expressi on (see
cppreference new expression and cppreference delete expression). A new expression will call oper at or new
to perform the allocation and then call the constructor (if one exists) on the object. Similarly a delete expression
will call the destructor on the object (if one exists) and then call oper at or del et e. The array overloads call
constructors/destructors for each object in the array.

Thededl is:

« If dlocated withmal | oc, cal | oc,real | oc,val | oc or nenal i gn, you must deallocate withf r ee.
« If alocated with new, you must deallocate with del et e.

« If alocated with new], you must deallocate with del et e[] .

Mixing types of allocators and deall ocatorsis undefined behaviour. That means that on some platforms you might
not have any problems, but the same program may then crash on a different platform, Solaris for example. So it's
best to fix it properly. According to the KDE folks "it's amazing how many C++ programmers don't know this".

The reason behind the requirement is as follows. In some C++ implementations, del et e[] must be used for
objects allocated by new{] because the compiler stores the size of the array and the pointer-to-member to the
destructor of the array's content just before the pointer actually returned. del et e doesn't account for thisand will
get confused, possibly corrupting the heap. Even if thereisno corruption there are likely to be resource leaks since
using the wrong delete may result in the wrong number of destructors being called.

C++ digned allocations need to be freed using aligned delete with the same alignment.

4.2.6. Overlapping source and destination blocks

The following C library functions copy some data from one memory block to another (or something similar):
nmencpy, strcpy,strncpy,strcat,strncat . Theblocks pointed to by their sr ¢ and dst pointersaren't
allowed to overlap. The POSIX standards have wording along the lines "If copying takes place between objects
that overlap, the behavior is undefined." Therefore, Memcheck checks for this.

For example:

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete

Memcheck: amemory error detector

==27492== Sour ce and destination overlap in nmencpy(Oxbffff294, Oxbffff280, 21)

==27492== at 0x40026CDC. nentpy (nct_replace_strmemc: 71)
==27492== by 0x804865A: main (overl ap.c: 40)

Y ou don't want the two blocks to overlap because one of them could get partially overwritten by the copying.

Y ou might think that Memcheck is being overly pedantic reporting this in the case where dst islessthan sr c.
For example, the obvious way to implement mentpy is by copying from the first byte to the last. However, the
optimisation guides of some architectures recommend copying from the last byte down to the first. Also, some
implementations of mentpy zerodst before copying, because zeroing the destination's cache ling(s) canimprove
performance.

Themoral of thestory is: if you want to writetruly portable code, don't make any assumptions about the language
implementation.

4.2.7. Fishy argument values

All memory allocation functionstake an argument specifying the size of the memory block that should beall ocated.
Clearly, the requested size should be a non-negative value and is typically not excessively large. For instance, it
is extremely unlikly that the size of an allocation request exceeds 2**63 bytes on a 64-bit machine. It is much
more likely that such avalue is the result of an erroneous size calculation and is in effect a negative value (that
just happens to appear excessively large because the hit pattern is interpreted as an unsigned integer). Such a
value is called a "fishy value". The si ze argument of the following alocation functions is checked for being
fishy: mal | oc, cal | oc, real | oc, menal i gn, posi x_menal i gn, al i gned_al | oc, new, new [].
__builtin_new, builtin_vec_new, Forcal | oc both arguments are checked.

For example:

==32233== Argunent 'size' of function nalloc has a fishy (possibly negative) val ue:

==32233== at Ox4C2CFA7: malloc (vg replace nall oc. c: 298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

In earlier Vagrind versions those values were being referred to as "silly arguments’ and no back-trace was
included.

4.2.8. Realloc size zero

The (ab)use or realloc to also do the job of f r ee has been poorly understood for along time. In the C17 standard
ISO/IEC 9899:2017] the behaviour of realloc when the size argument is zero is specified as implementation
defined. Memcheck warns about the non-portable use or realloc.

For example:

==77609== realloc() with size O

==77609== at 0x48502B8: reall oc (vg_replace_malloc.c: 1450)

==77609== by 0x201989: nmin (realloczero.c: 8)

==77609== Address 0x5464040 is 0 bytes inside a block of size 4 alloc'd
==77609== at 0x484CBB4: malloc (vg_replace_nall oc. c: 397)

==77609== by 0x201978: main (realloczero.c:7)

4.2.9. Alignment Errors

C and C++ have severa functions that alow the user to obtain aligned memory. Typicaly this is done for
performance reasons so that the memory will be cache line or memory page aligned. C has the functions
menmal i gn, posi x_nenal i gn and al i gned_al | oc. C++ has numerous overloads of oper at or new
and operator del ete. Of these, posix_memalign is quite clearly specified, the others vary quite widely
between implementations. Valgrind will generate errors for values of alignment that are invalid on any platform.

65

-3

Memcheck: amemory error detector

nmemal i gn will produce errorsif the alignment is zero or not amultiple of two.

posi x_nmemal i gn will produce errors if the alignment is less than sizeof(size t), not a multiple of two or if
thesizeis zero.

al i gned_al | oc will produce errorsif the alignment is not a multiple of two , if the size is zero or if the size
isnot an integral multiple of the alignment.

al i gned newwill produce errors if the alignment is zero or not a multiple of two. The not hr ow overloads
will return aNULL pointer. The non-nothrow overloads will abort Valgrind.

al i gned del et e will produce errors if the alignment is zero or not a multiple of two or if the alignment is
not the same asthat used by al i gned new.

si zed del et e will produce errors if the size is not the same as that used by new.
si zed al i gned del et e combinesthe error conditions of the individual sized and aligned del ete operators.

Example output:

==65825== I nvalid alignnment value: 3 (should be power of 2)
==65825== at 0x485197E: nenmlign (vg_replace_malloc.c: 1740)
==65825== by 0x201CD2: nmain (nemalign.c: 39)

4.2.10. Memory leak detection

Memcheck keeps track of all heap blocksissued in responseto callsto mal | oc/newet a. So when the program
exits, it knows which blocks have not been freed.

If - - | eak- check isset appropriately, for each remaining block, Memcheck determinesif the block isreachable
from pointers within the root-set. The root-set consists of (a) general purpose registers of all threads, and (b)
initialised, aligned, pointer-sized data words in accessible client memory, including stacks.

There are two ways ablock can be reached. Thefirstiswith a"start-pointer”, i.e. apointer to the start of the block.
The second iswith an "interior-pointer”, i.e. apointer to the middle of the block. There are several ways we know
of that an interior-pointer can occur:

» The pointer might have originally been a start-pointer and have been moved aong deliberately (or not
deliberately) by the program. In particular, this can happen if your program uses tagged pointers, i.e. if it uses
the bottom one, two or three bits of a pointer, which are normally always zero due to alignment, in order to
store extrainformation.

* It might be arandom junk value in memory, entirely unrelated, just a coincidence.

* It might beapointer totheinner char array of aC++ st d: : st ri ng. For example, some compilersadd 3 words
at the beginning of the std::string to store the length, the capacity and a reference count before the memory
containing the array of characters. They return a pointer just after these 3 words, pointing at the char array.

» Some code might allocate ablock of memory, and usethefirst 8 bytesto store (block size - 8) asa64bit number.
sql i t e3MenMal | oc doesthis.

* It might be apointer to an array of C++ objects (which possess destructors) allocated with new|] . Inthis case,
some compilers store a"magic cookie" containing the array length at the start of the allocated block, and return
apointer to just past that magic cookie, i.e. an interior-pointer. See this page for more information.

* It might be a pointer to an inner part of a C++ object using multiple inheritance.

You can optionally activate heuristics to use during the leak search to detect the interior pointers corresponding
tothest dstri ng,l engt h64, newar ray andnul ti pl ei nherit ance cases. If the heuristic detects that
an interior pointer corresponds to such a case, the block will be considered as reachable by the interior pointer. In
other words, the interior pointer will be treated as if it were a start pointer.

66

https://docs.freebsd.org/info/gxxint/gxxint.info.Free_Store.html

Memcheck: amemory error detector

With that in mind, consider the nine possible cases described by the following figure.

Poi nter chain AAA Leak Case BBB Leak Case
(1) RRR ---=--cmmu-- > BBB DR
(2) RRR ---> AAA ---> BBB DR I R
(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5 RRR ------ P > BBB (y)DR, (n)DL
(6) RRR ---> AAA -?-> BBB DR (y)IR (n)DL

(7) RRR -?-> AAA ---> BBB (y)DR, (n)DL (y)IR (n)IL
(8) RRR-?-> AMA -?-> BBB (y)DR (n)DL (y,y)IR (n,y)IL, (_,nDL
(9) RRR AAA -?-> BBB DL (y)IL, (n)DL

Poi nter chain | egend:

- RRR a root set node or DR bl ock
- AAA, BBB: heap bl ocks

- ---> a start-pointer

- -?-> an interior-pointer

Leak Case | egend:

- DR Directly reachable

- IR Indirectly reachable

- DL: Directly I ost

- IL: Indirectly | ost

- (y)XY: it's XY if the interior-pointer is a real pointer

- (nN)XY: it's XY if the interior-pointer is not a real pointer
- (XY it's XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these casesin its output,
resulting in the following four leak kinds.

o "Still reachable". Thiscoverscases 1 and 2 (for the BBB blocks) above. A start-pointer or chain of start-pointers
to the block is found. Since the block is still pointed at, the programmer could, at least in principle, have freed
it before program exit. "Still reachable" blocks are very common and arguably not a problem. So, by defaullt,
Memcheck won't report such blocks individually.

» "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no pointer to the block can
be found. The block is classified as"lost", because the programmer could not possibly have freed it at program
exit, since no pointer to it exists. Thisislikely a symptom of having lost the pointer at some earlier point in the
program. Such cases should be fixed by the programmer.

* "Indirectly lost". This covers cases 4 and 9 (for the BBB blocks) above. This means that the block is lost, not
because there are no pointers to it, but rather because all the blocks that point to it are themselves lost. For
example, if you have abinary tree and the root nodeislost, al its children nodeswill be indirectly lost. Because
the problem will disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck won't
report such blocks individually by default.

e "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a chain of one or more
pointers to the block has been found, but at least one of the pointersis an interior-pointer. This could just be a
random value in memory that happens to point into a block, and so you shouldn't consider this ok unless you
know you have interior-pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best way that leaks
could be reported; in particular, interior-pointers are treated inconsistently. It is possible the categorisation may
be improved in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed” no matter what which of the
above four kinds it belongs to.

67

Memcheck: amemory error detector

The following is an example leak summary.

LEAK SUMVARY:
definitely lost: 48 bytes in 3 bl ocks.
indirectly lost: 32 bytes in 2 bl ocks.
possi bly lost: 96 bytes in 6 bl ocks.
still reachable: 64 bytes in 4 bl ocks.
suppressed: 0 bytes in O bl ocks.

If heuristics have been used to consider some blocks as reachable, the leak summary details the heuristically
reachable subset of 'still reachable:’ per heuristic. In the below example, of the 95 bytes still reachable, 87 bytes
(56+7+8+16) have been considered heuristically reachable.

LEAK SUMVARY
definitely lost: 4 bytes in 1 bl ocks
indirectly lost: 0 bytes in O bl ocks
possibly lost: O bytes in O bl ocks

still reachable: 95 bytes in 6 bl ocks
of which reachabl e via heuristic:
stdstring : 56 bytes in 2 bl ocks
| engt h64 : 16 bytes in 1 bl ocks
newar r ay : 7 bytes in 1 bl ocks

mul ti pl ei nheritance: 8 bytes in 1 bl ocks
suppressed: 0 bytes in O bl ocks

If - -1 eak- check=f ul | isspecified, Memcheck will give detailsfor each definitely lost or possibly lost block,
including where it was allocated. (Actually, it merges results for al blocks that have the same leak kind and
sufficiently similar stack traces into a single "loss record”. The - - | eak-r esol uti on lets you control the
meaning of "sufficiently similar”.) It cannot tell you when or how or why the pointer to a leaked block was lost;
you have to work that out for yourself. In general, you should attempt to ensure your programs do hot have any
definitely lost or possibly lost blocks at exit.

For example:

8 bytes in 1 blocks are definitely lost in loss record 1 of 14

at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:39)
88 (8 direct, 80 indirect) bytes in 1 blocks are definitely lost in |Ioss record 13 of
at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:25)

The first message describes a simple case of a single 8 byte block that has been definitely lost. The second case
mentions another 8 byte block that has been definitely lost; the differenceisthat afurther 80 bytesin other blocks
are indirectly lost because of this lost block. The loss records are not presented in any notable order, so the loss
record numbers aren't particularly meaningful. The loss record numbers can be used in the Valgrind gdbserver to
list the addresses of the leaked blocks and/or give more details about how a block is still reachable.

The option --show | eak- ki nds=<set > controls the set of leak kinds to show when - -1 eak-
check=f ul | isspecified.

The <set > of leak kindsis specified in one of the following ways:
» acommaseparated list of one or more of def i nite i ndirect possible reachable.

» al | to specify the complete set (all leak kinds).

68

Memcheck: amemory error detector

* none for the empty set.
The default value for the leak kinds to show is- - show- | eak- ki nds=defi ni t e, possi bl e.

To also show the reachable and indirectly lost blocksin addition to the definitely and possibly lost blocks, you can
use- - show | eak- ki nds=al | . To only show the reachable and indirectly lost blocks, use- - show | eak-
ki nds=i ndi rect, reachabl e. The reachable and indirectly lost blocks will then be presented as shown in
the following two examples.

64 bytes in 4 blocks are still reachable in |oss record 2 of 4
at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c:74)

32 bytes in 2 blocks are indirectly lost in loss record 1 of 4

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|leak-cases.c: 80)

Because there are different kinds of leaks with different severities, an interesting question is: which leaks should
be counted as true "errors" and which should not?

The answer to this question affectsthe numbers printed in the ERROR SUMMARY line, and al so the effect of the - -
error - exit code option. First, aleak isonly counted asatrue"error" if - - | eak- check=f ul | isspecified.
Then, the option - - err or s-f or - | eak- ki nds=<set > controls the set of leak kinds to consider as errors.
The default valueis- - error s- f or - | eak- ki nds=defi nite, possible

4.3. Memcheck Command-Line Options

- -l eak- check=<no| summary| yes|ful | > [default: summary]

When enabled, search for memory leaks when the client program finishes. If set to summary, it says how
many leaks occurred. If settof ul | or yes, each individual leak will be shown in detail and/or counted as
an error, as specified by the options - - show | eak- ki nds and - - err ors-f or - | eak- ki nds.

If - - xm =yes isgiven, memcheck will automatically usethevalue- - | eak- check=f ul | . You can use
- -show | eak- ki nds=none to reduce the size of the xml output if you are not interested in the leak
results.

eak-resol uti on=<| ow nmed| hi gh> [defaul t: high]

When doing leak checking, determines how willing Memcheck is to consider different backtraces to be the
same for the purposes of merging multiple leaksinto asingle leak report. When set to | ow, only the first two
entries need match. When med, four entries have to match. When hi gh, all entries need to match.

For hardcore leak debugging, you probably want to use - - | eak-r esol ut i on=hi gh together with - -
num cal | er s=40 or some such large number.

Notethat the- - | eak- r esol ut i on setting doesnot affect Memcheck'sability tofindleaks. It only changes
how the results are presented.

- -show | eak- ki nds=<set > [default: definite, possible]
Specifiesthe leak kindsto show inaf ul | leak search, in one of the following ways:
» acommaseparated list of one or more of defi nite i ndirect possible reachable.

« all to specify the complete set (al leak kinds). It is equivdent to --show | eak-
ki nds=definite,indirect, possibl e, reachabl e.

* none for the empty set.

69

Memcheck: amemory error detector

--errors-for-1eak-kinds=<set> [default: definite, possible]

Specifies the leak kinds to count as errorsin af ul | leak search. The <set > is specified similarly to - -
show | eak- ki nds

- -l eak-check-heuristics=<set> [default: all]

Specifiesthe set of leak check heuristicsto be used during leak searches. The heuristics control which interior
pointersto ablock causeit to be considered as reachable. The heuristic set is specified in one of the following

ways:

e a comma separated list of one or more of stdstring | engt h64 newar r ay
mul ti pl ei nheritance.

« all to activate the complete set of heuristics. It is equivaent to --Ieak-check-
heuri stics=stdstring, | ength64, newarray, nul tipl ei nheritance.

* none for the empty set.

Note that these heuristics are dependent on the layout of the objects produced by the C++ compiler. They have
been tested with somegcc versions (e.g. 4.4 and 4.7). They might not work properly with other C++ compilers.

--show r eachabl e=<yes| no> , --show possi bl y-I ost =<yes| no>
These options provide an aternative way to specify the leak kinds to show:

e --showreachabl e=no --show possi bl y-I ost=yes is equivalent to --show- | eak-
ki nds=definite, possi bl e.

e --showreachabl e=no --show possi bl y-1ost=no is equivalent to --show- | eak-
ki nds=definite.

» --show reachabl e=yes isequivalentto- - show | eak- ki nds=al | .
Note that - - show possi bl y-1 ost =no hasno effect if - - show r eachabl e=yes is specified.
--xtree-1| eak=<no| yes> [no]

If set toyes, theresultsfor theleak search doneat exit will be output in a'Callgrind Format' execution treefile.
Note that this automatically sets the options - - | eak- check=f ul | and - - show | eak- ki nds=al |,
to allow xtree visualisation tools such as kcachegrind to select what kind to leak to visualize. The produced
file will contain the following events:

* RB: Reachable Bytes

PB : Possibly lost Bytes
» | B: Indirectly lost Bytes
» DB: Definitely lost Bytes (direct plus indirect)

DI B: Definitely Indirectly lost Bytes (subset of DB)
* RBk : reachable Blocks

e PBK : Possibly lost Blocks

* | Bk : Indirectly lost Blocks

» DBk : Definitely lost Blocks

The increase or decrease for all events above will also be output in the file to provide the delta (increase
or decrease) between 2 successive leak searches. For example, i RB is the increase of the RB event, dPBk
is the decrease of PBk event. The values for the increase and decrease events will be zero for the first leak
search done.

70

Memcheck: amemory error detector

See Execution Trees for a detailed explanation about execution trees.
--xtree-leak-file=<filename> [default: xtleak.kcg. %p]

Specifiesthat VValgrind should produce the xtree leak report in the specified file. Any %p, %g or % sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.

See Execution Trees for a detailed explanation about execution trees formats.
--undef -val ue- errors=<yes| no> [default: yes]

Controls whether Memcheck reports uses of undefined value errors. Set thisto no if you don't want to see
undefined value errors. It also has the side effect of speeding up Memcheck somewhat. AddrCheck (removed
in Valgrind 3.1.0) functioned like Memcheck with - - undef - val ue- err or s=no.

--track-origi ns=<yes| no> [default: no]

Controls whether Memcheck tracks the origin of uninitialised values. By default, it does not, which means
that although it can tell you that an uninitialised value is being used in a dangerous way, it cannot tell you
where the uninitialised value came from. This often makesit difficult to track down the root problem.

When set toyes, Memcheck keepstrack of the origins of all uninitialised values. Then, when an uninitialised
valueerror isreported, Memcheck will try to show theorigin of thevalue. An origin can be one of thefollowing
four places: aheap block, astack allocation, aclient request, or miscellaneous other sources(eg, acall tobr k).

For uninitialised values originating from a heap block, Memcheck shows where the block was allocated. For
uninitialised values originating from a stack allocation, Memcheck can tell you which function allocated the
value, but no more than that -- typically it shows you the source location of the opening brace of the function.
So you should carefully check that all of the function's local variables are initialised properly.

Performance overhead: origin tracking is expensive. It halves Memcheck's speed and increases memory use
by a minimum of 100MB, and possibly more. Nevertheless it can drastically reduce the effort required to
identify the root cause of uninitialised value errors, and so is often a programmer productivity win, despite
running more slowly.

Accuracy: Memcheck tracks origins quite accurately. To avoid very large space and time overheads, some
approximations are made. It is possible, although unlikely, that Memcheck will report an incorrect origin, or
not be able to identify any origin.

Notethat thecombination- - t r ack- or i gi ns=yes and- - undef - val ue- err or s=noisnonsensical.
Memcheck checks for and rejects this combination at startup.

--partial -1 oads- ok=<yes| no> [defaul t: yes]

Controls how Memcheck handles 32-, 64-, 128- and 256-bit naturally aligned loads from addresses for which
some bytes are addressable and others are not. Wheny es, such loadsdo not produce an address error. Instead,
loaded bytes originating from illegal addresses are marked as uninitialised, and those corresponding to legal
addresses are handled in the normal way.

When no, loads from partially invalid addresses are treated the same as loads from completely invalid
addresses: an illegal-address error isissued, and the resulting bytes are marked as initialised.

Note that code that behavesin thisway isin violation of the SO C/C++ standards, and should be considered
broken. If at al possible, such code should be fixed.

- -expensi ve- def i nedness- checks=<no| aut o] yes> [defaul t: auto]

Controls whether Memcheck should employ more precise but also more expensive (time consuming)
instrumentati on when checking the definedness of certain values. In particular, this affectsthe instrumentation
of integer adds, subtracts and equality comparisons.

Selecting - - expensi ve- def i nedness- checks=yes causes Memcheck to use the most accurate
analysis possible. This minimises false error rates but can cause up to 30% performance degradation.

71

Memcheck: amemory error detector

Selecting - - expensi ve- defi nedness-checks=no causes Memcheck to use the cheapest
instrumentation possible. This maximises performance but will normally give an unusably high false error
rate.

The default setting, - - expensi ve- def i nedness- checks=aut o, is strongly recommended. This
causes Memcheck to use the minimum of expensive instrumentation needed to achieve the same false error
rate as - - expensi ve- def i nedness- checks=yes. It also enables an instrumentation-time analysis
pass which aims to further reduce the costs of accurate instrumentation. Overall, the performance loss is
generaly around 5% relative to - - expensi ve- def i nedness- checks=no, athough this is strongly
workload dependent. Note that the exact instrumentation settings in this mode are architecture dependent.

--keep-stacktraces=al l oc|free|alloc-and-free|alloc-then-free| none [default:
al | oc-and-free]

Controls which stack trace(s) to keep for malloc'd and/or free'd blocks.

With al | oc-t hen-fr ee, astack trace is recorded at allocation time, and is associated with the block.
When the block is freed, a second stack trace is recorded, and this replaces the allocation stack trace. As a
result, any "use after free" errors relating to this block can only show a stack trace for where the block was
freed.

With al | oc- and- f r ee, both allocation and the deallocation stack traces for the block are stored. Hence
a"use after free" error will show both, which may make the error easier to diagnose. Comparedto al | oc-
t hen-fr ee, this setting dlightly increases Valgrind's memory use as the block contains two references
instead of one.

With al | oc, only the allocation stack trace is recorded (and reported). With f r ee, only the deallocation
stack trace is recorded (and reported). These values somewhat decrease Valgrind's memory and cpu usage.
They can be useful depending on the error types you are searching for and the level of detail you need to
analyse them. For example, if you are only interested in memory leak errors, it is sufficient to record the
allocation stack traces.

With none, no stack traces are recorded for malloc and free operations. If your program allocates a lot
of blocks and/or allocates/frees from many different stack traces, this can significantly decrease cpu and/or
memory required. Of course, few details will be reported for errors related to heap blocks.

Note that once a stack trace isrecorded, Valgrind keeps the stack trace in memory even if it is not referenced
by any block. Some programs (for example, recursive algorithms) can generate a huge number of stack traces.
If Valgrind uses too much memory in such circumstances, you can reduce the memory required with the
options - - keep- st ackt r aces and/or by using asmaller value for the option - - nunt cal | er s.

If you want to use - - xt r ee- menor y=f ul | memory profiling (see Execution Trees), then you cannot
specify - - keep- st ackt races=free or - - keep- st ackt races=none.

--freelist-vol =<nunber> [default: 20000000]

When the client program releases memory using free (in C) or del et e (C++), that memory is not
immediately made availablefor re-allocation. Instead, it is marked inaccessible and placed in aqueue of freed
blocks. The purpose is to defer as long as possible the point at which freed-up memory comes back into
circulation. This increases the chance that Memcheck will be able to detect invalid accesses to blocks for
some significant period of time after they have been freed.

This option specifies the maximum total size, in bytes, of the blocksin the queue. The default value is twenty
million bytes. Increasing thisincreasesthe total amount of memory used by Memcheck but may detect invalid
uses of freed blocks which would otherwise go undetected.

--freelist-big-bl ocks=<nunber> [default: 1000000]

When making blocks from the queue of freed blocks available for re-allocation, Memcheck will in priority re-
circulate the blocks with a size greater or equal to - - f r eel i st - bi g- bl ocks. This ensures that freeing
big blocks (in particular freeing blocks bigger than - - f r eel i st - vol) does not immediately lead to are-

72

Memcheck: amemory error detector

circulation of al (or alot of) thesmall blocksin thefreelist. In other words, thisoptionincreasesthelikelihood
to discover dangling pointers for the "small" blocks, even when big blocks are freed.

Setting avalue of 0 meansthat all the blocks are re-circulated in a FIFO order.
- -wor kar ound- gcc296- bugs=<yes| no> [defaul t: no]

When enabled, assume that reads and writes some small distance below the stack pointer are due to bugsin
GCC 2.96, and does not report them. The "small distance” is 256 bytes by default. Note that GCC 2.96 isthe
default compiler on some ancient Linux distributions (RedHat 7.X) and so you may need to use this option.
Do not useit if you do not have to, asit can cause real errors to be overlooked. A better alternative is to use
amore recent GCC in which thisbug is fixed.

Y ou may also need to use this option when working with GCC 3.X or 4.X on 32-bit PowerPC Linux. Thisis
because GCC generates code which occasionally accesses below the stack pointer, particularly for floating-
point to/from integer conversions. Thisisin violation of the 32-bit PowerPC EL F specification, which makes
no provision for locations below the stack pointer to be accessible.

This option isdeprecated as of version 3.12 and may be removed from future versions. Y ou should instead use
--i gnor e-range- bel ow sp to specify the exact range of offsets below the stack pointer that should be
ignored. A suitable equivalentis- - i gnor e-r ange- bel ow sp=1024- 1.

gnor e-r ange- bel ow sp=<nunber >- <nunber >

This is a more general replacement for the deprecated - - wor kar ound- gcc296- bugs option. When
specified, it causes Memcheck not to report errorsfor accesses at the specified offsets below the stack pointer.
The two offsets must be positive decimal numbers and -- somewhat counterintuitively -- the first one must be
larger, in order to imply a non-wraparound address range to ignore. For example, to ignore 4 byte accesses
at 8192 bytes below the stack pointer, use- - i gnor e- r ange- bel ow sp=8192- 8189. Only one range
may be specified.

--show m smat ched- f rees=<yes| no> [defaul t: yes]

When enabled, Memcheck checksthat heap blocks are deall ocated using afunction that matchesthe all ocating
function. That is, it expectsf r ee to be used to deallocate blocks allocated by mal | oc, del et e for blocks
allocated by new, and del et e[] for blocks alocated by new] . If a mismatch is detected, an error is
reported. Thisisin general important because in some environments, freeing with a non-matching function
can cause crashes.

There is however a scenario where such mismatches cannot be avoided. That is when the user provides
implementations of newnew|] that call mal | oc and of del et e/del et e[] that cal f r ee, and these
functions are asymmetricaly inlined. For example, imaginethat del et e[] isinlined but new{] isnot. The
result is that Memcheck "sees' all del et e[] callsasdirect callsto f r ee, even when the program source
contains no mismatched calls.

This causes a lot of confusing and irrelevant error reports. - - show ni smat ched- f r ees=no disables
these checks. It isnot generally advisableto disable them, though, because you may missreal errorsasaresult.

--showreal |l oc-si ze-zero=<yes| no> [defaul t: yes]

When enabled, Memcheck checksfor usesof r eal | oc withasize of zero. Thisusageof r eal | oc isunsafe
sinceit is not portable. On some systems it will behave likef r ee. On other systemsit will either do nothing
or else behavelikeacall tof r ee followed by acall to mal | oc with asize of zero.

--i gnore-ranges=0xPP- 0xQJ , OXRR- 0xSS]

Any ranges listed in this option (and multiple ranges can be specified, separated by commas) will be ignored
by Memcheck's addressability checking.

--mal l oc-fill =<hexnunber >

Fills blocks allocated by mal | oc, new, etc, but not by cal | oc, with the specified byte. This can be
useful when trying to shake out obscure memory corruption problems. The allocated area is still regarded

73

Memcheck: amemory error detector

by Memcheck as undefined -- this option only affects its contents. Note that - - mal | oc-fi | | does not
affect ablock of memory when it is used as argument to client requests VALGRIND _MEMPOOL_ALLOC
or VALGRIND_MALLOCLIKE_BLOCK.

--free-fill =<hexnunber >

Fills blocks freed by f r ee, del et e, etc, with the specified byte value. This can be useful when trying
to shake out obscure memory corruption problems. The freed area is still regarded by Memcheck as
not valid for access -- this option only affects its contents. Note that - -free-fil | does not affect
a block of memory when it is used as argument to client requests VALGRIND_MEMPOOL _FREE or
VALGRIND_FREELIKE_BLOCK.

4.4. Writing suppression files

The basic suppression format is described in Suppressing errors.

The suppression-type (second) line should have the form:

Mentheck: suppressi on_t ype
The Memcheck suppression types are as follows:

e Val uel, Val ue2, Val ue4, Val ue8, Val uel6, meaning an uninitialised-value error when using a value
of 1, 2, 4, 8 or 16 bytes.

» Cond (or itsold name, Val ue0), meaning use of an uninitialised CPU condition code.

* Addr 1, Addr 2, Addr 4, Addr 8, Addr 16, meaning an invalid address during a memory access of 1, 2, 4,
8 or 16 bytes respectively.

» Junp, meaning an jJump to an unaddressable location error.

e Par am meaning an invalid system call parameter error.

* Fr ee, meaning aninvalid or mismatching free.

e Overl ap, meaningasr c /dst overlapinmencpy or asimilar function.
» Leak, meaning a memory leak.

Par amerrors have a mandatory extra information line at this point, which is the name of the offending system
call parameter.

Leak errors have an optional extrainformation line, with the following format:

mat ch- | eak- ki nds: <set >

where <set > specifies which leak kinds are matched by this suppression entry. <set > is specified in the same
way aswith the option - - show- | eak- ki nds, that is, one of the following:

» acommaseparated list of one or more of defi nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

» none for the empty set.

If this optional extralineis not present, the suppression entry will match all leak kinds.

Be aware that leak suppressions that are created using - - gen- suppr essi ons will contain this optional extra
line, and therefore may match fewer leaks than you expect. You may want to remove the line before using the
generated suppressions.

The other Memcheck error kinds do not have extralines.

74

Memcheck: amemory error detector

If you give the - v option, Valgrind will print the list of used suppressions at the end of execution. For a leak
suppression, this output gives the number of different loss records that match the suppression, and the number
of bytes and blocks suppressed by the suppression. If the run contains multiple leak checks, the number of bytes
and blocks are reset to zero before each new leak check. Note that the number of different loss records is not
reset to zero.

In the example below, in the last leak search, 7 blocks and 96 bytes have been suppressed by a suppression with
thenamesone_| eak_suppr essi on:

--21041-- used_suppressi on: 10 sone_ot her | eak_suppressi on s.supp: 14 suppressed: 12
--21041-- used_suppressi on: 39 sone_| eak_suppression s.supp: 2 suppressed: 96 bytes |

For Val ueN and Addr N errors, the first line of the calling context is either the name of the function in which
the error occurred, or, failing that, the full path of the . so file or executable containing the error location. For
Fr ee errors, thefirst line isthe name of the function doing thefreeing (eg,free, _builtin_vec_del et e,
etc). For Over | ap errors, thefirst lineisthe name of the function with the overlapping arguments (eg. nencpy,
st rcpy, etc).

The last part of any suppression specifies the rest of the calling context that needs to be matched.

4.5. Details of Memcheck's checking
machinery

Read this section if you want to know, in detail, exactly what and how Memcheck is checking.

4.5.1. Valid-value (V) bits

It is simplest to think of Memcheck implementing a synthetic CPU which is identical to a real CPU, except for
one crucia detail. Every bit (literally) of data processed, stored and handled by the real CPU has, in the synthetic
CPU, an associated "valid-value' bit, which says whether or not the accompanying bit has alegitimate value. In
the discussions which follow, thisbit isreferred to asthe V (valid-value) hit.

Each byte in the system therefore has a 8 V bits which follow it wherever it goes. For example, when the CPU
loads a word-size item (4 bytes) from memory, it also loads the corresponding 32 V bits from a bitmap which
storesthe V bitsfor the process' entire address space. If the CPU should later write the whole or some part of that
value to memory at a different address, the relevant V bits will be stored back in the V-bit bitmap.

In short, each bit in the system has (conceptually) an associated V bit, which follows it around everywhere, even
inside the CPU. Yes, all the CPU'sregisters (integer, floating point, vector and condition registers) have their own
V bit vectors. For this to work, Memcheck uses a great deal of compression to represent the V bits compactly.

Copying values around does not cause Memcheck to check for, or report on, errors. However, when a value is
used in away which might conceivably affect your program's externally-visible behaviour, the associated V bits
areimmediately checked. If any of these indicate that the value is undefined (even partially), an error is reported.

Here's an (admittedly nonsensical) example:

int i, j;

int a[10], b[10];

for (i =0; i <10; i++) {
j = a[i];
b[i] =j;

}

Memcheck emits no complaints about this, since it merely copies uninitiaised values from a[] into b[], and
doesn't use them in away which could affect the behaviour of the program. However, if the loop is changed to:

75

Memcheck: amemory error detector

for (i =0; i <10; i++) {
jo+=alil];

}

if (] ==77)
printf("hello there\n");

then Memcheck will complain, at thei f , that the condition depends on uninitialised values. Note that it doesn't
complainatthej += a[i];,sinceat that point the undefinednessis not "observable". It's only when adecision
has to be made as to whether or not to dothepr i nt f -- an observable action of your program -- that Memcheck

complains.

Most low level operations, such as adds, cause Memcheck to usethe V bitsfor the operandsto calculate the V bits
for the result. Even if the result is partially or wholly undefined, it does not complain.

Checks on definedness only occur in three places. when a value is used to generate a memory address, when
control flow decision needs to be made, and when a system call is detected, Memcheck checks definedness of
parameters as required.

If acheck should detect undefinedness, an error message isissued. Theresulting value is subsequently regarded as
well-defined. To do otherwise would give long chains of error messages. In other words, once Memcheck reports
an undefined value error, it tries to avoid reporting further errors derived from that same undefined value.

This sounds overcomplicated. Why not just check all reads from memory, and complain if an undefined value
is loaded into a CPU register? Well, that doesn't work well, because perfectly legitimate C programs routinely
copy uninitialised valuesaround in memory, and we don't want endless complaints about that. Here'sthe canonical
example. Consider astruct like this:

struct S{ int x; char c; };
struct S sl1, s2;

sl.x = 42;
sl.c ='z2";
s2 = sli;

The question to ask is: how largeisstruct S, inbytes? Ani nt is4 bytesand achar one byte, so perhapsa
struct S occupies5 bytes? Wrong. All non-toy compilers we know of will round the size of st ruct Sup
to awhole number of words, in this case 8 bytes. Not doing this forces compilers to generate truly appalling code
for accessing arrays of st r uct S'son some architectures.

So s1 occupies 8 bytes, yet only 5 of them will be initialised. For the assignment s2 = s1, GCC generates
codeto copy al 8 byteswholesaleinto s2 without regard for their meaning. If Memcheck simply checked values
as they came out of memory, it would yelp every time a structure assignment like this happened. So the more
complicated behaviour described above is necessary. This allows GCC to copy s1 into s2 any way it likes, and
awarning will only be emitted if the uninitialised values are later used.

As explained above, Memcheck maintains 8 V bits for each byte in your process, including for bytes that are in
shared memory. However, the same piece of shared memory can be mapped multiple times, by several processes
or even by the same process (for example, if the process wants a read-only and a read-write mapping of the same
page). For such multiple mappings, Memcheck tracks the V bits for each mapping independently. This can lead
to false positive errors, as the shared memory can be initialised via a first mapping, and accessed via another
mapping. The access via this other mapping will have its own V bits, which have not been changed when the
memory was initialised via the first mapping. The bypass for these false positives is to use Memcheck's client
requests VALGRI ND_MAKE_MEM DEFI NED and VALGRI ND_MAKE_MEM UNDEFI NED to inform Memcheck
about what your program does (or what another process does) to these shared memory mappings.

4.5.2. Valid-address (A) bits

Notice that the previous subsection describes how the validity of values is established and maintained without
having to say whether the program does or does not have the right to access any particular memory location. We
now consider the latter question.

76

Memcheck: amemory error detector

Asdescribed above, every hitin memory or in the CPU has an associated valid-value (V) bit. In addition, al bytes
in memory, but not in the CPU, have an associated valid-address (A) bit. Thisindicates whether or not the program
can legitimately read or writethat location. It does not give any indication of the validity of the data at that location
-- that's the job of the V bits -- only whether or not the location may be accessed.

Every timeyour program reads or writes memory, Memcheck checksthe A bits associated with the address. If any
of them indicate an invalid address, an error is emitted. Note that the reads and writes themselves do not change
the A bits, only consult them.

So how do the A bits get set/cleared? Like this:
* When the program starts, al the global data areas are marked as accessible.

* Whentheprogram doesmal | oc/new, the A bitsfor exactly the areaallocated, and not abyte more, are marked
as accessible. Upon freeing the areathe A bits are changed to indicate inaccessibility.

* When the stack pointer register (SP) moves up or down, A bits are set. The rule is that the area from SP up
to the base of the stack is marked as accessible, and below SP isinaccessible. (If that soundsillogical, bear in
mind that the stack grows down, not up, on almost al Unix systems, including GNU/Linux.) Tracking SP like
this has the useful side-effect that the section of stack used by afunction for local variables etc is automatically
marked accessible on function entry and inaccessible on exit.

» When doing system calls, A bits are changed appropriately. For example, mmap magically makes files appear
in the process' address space, so the A bits must be updated if mmap succeeds.

» Optionally, your program can tell Memcheck about such changes explicitly, using the client request mechanism
described above.

4.5.3. Putting it all together

Memcheck's checking machinery can be summarised as follows:

» Each byte in memory has 8 associated V (valid-value) bits, saying whether or not the byte has a defined value,
and asingle A (valid-address) bit, saying whether or not the program currently has the right to read/write that
address. As mentioned above, heavy use of compression means the overhead is typically around 25%.

» When memory isread or written, therelevant A bitsare consulted. If they indicate an invalid address, Memcheck
emits an Invalid read or Invalid write error.

» When memory is read into the CPU's registers, the relevant V bits are fetched from memory and stored in the
simulated CPU. They are not consulted.

» When aregister iswritten out to memory, the V bitsfor that register are written back to memory too.

» When values in CPU registers are used to generate a memory address, or to determine the outcome of a
conditional branch, the V bits for those values are checked, and an error emitted if any of them are undefined.

» When valuesin CPU registers are used for any other purpose, Memcheck computes the V bits for the result,
but does not check them.

» OncetheV bits for avalue in the CPU have been checked, they are then set to indicate validity. This avoids
long chains of errors.

* When values are loaded from memory, Memcheck checks the A bits for that location and issues an illegal-
addresswarning if needed. In that case, the V bitsloaded areforced to indicate Valid, despite the location being
invalid.

This apparently strange choice reduces the amount of confusing information presented to the user. It avoids
the unpleasant phenomenon in which memory is read from a place which is both unaddressable and contains

77

Memcheck: amemory error detector

invalid values, and, asaresult, you get not only an invalid-address (read/write) error, but also apotentially large
set of uninitialised-value errors, one for every time the valueis used.

Thereisahazy boundary case to do with multi-byte loads from addresses which are partialy valid and partialy
invalid. See details of the option - - par ti al - | oads- ok for details.

Memcheck intercepts calls to mal | oc, cal | oc, real | oc, val | oc, neral i gn, free, new, new],
del et e and del et e[] . The behaviour you get is:

e mal | oc/newnew] : the returned memory is marked as addressable but not having valid values. This means
you haveto write to it before you can read it.

e cal | oc: returned memory is marked both addressable and valid, since cal | oc clearsthe areato zero.

e real | oc:if thenew sizeislarger than the old, the new sectionis addressable but invalid, aswithmal | oc. If
the new size is smaller, the dropped-off section is marked as unaddressable. Y ou may only passtor eal | oc
apointer previously issued to you by mal | oc/cal | oc/real | oc.

» freeldel et e/del et e[] : you may only pass to these functions a pointer previously issued to you by the
corresponding alocation function. Otherwise, Memcheck complains. If the pointer isindeed valid, Memcheck
marks the entire area it points at as unaddressable, and places the block in the freed-blocks-queue. Theaimis
to defer aslong as possible reallocation of this block. Until that happens, all attempts to access it will elicit an
invalid-address error, as you would hope.

4.6. Memcheck Monitor Commands

The Memcheck tool provides monitor commands handled by VVal grind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver). Valgrind python code provides GDB front end commands giving an easier
usage of the memcheck monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch a memcheck monitor command viaits GDB front end command, instead of prefixing the
command with "monitor", you must use the GDB mentheck command (or the shorter aiases nt). Using the
memcheck GDB front end command provide a more flexible usage, such as evaluation of address and length
arguments by GDB. In GDB, you can use hel p nentheck to get help about the memcheck front end monitor
commands and you can use apr opos nentheck to get all the commands mentionning the word "memcheck"
in their name or on-line help.

 xb <addr> [<l en>] shows the definedness (V) bits and values for <len> (default 1) bytes starting at
<addr>. For each 8 bytes, two lines are output.

The first line shows the validity bits for 8 bytes. The definedness of each byte in the range is given using two
hexadecimal digits. These hexadecimal digits encode the validity of each bit of the corresponding byte, using
0if the bit is defined and 1 if the bit is undefined. If abyte is not addressable, its validity bits are replaced by
___ (adouble underscore).

The second line shows the values of the bytes below the corresponding validity bits. The format used to show
the bytes data is similar to the GDB command 'x /<len>xb <addr>". The value for a non addressable bytes is
shown as ?? (two question marks).

In the following example, st ri ngl0 is an array of 10 characters, in which the even numbered bytes are
undefined. In the below example, the byte corresponding to st ri ng10[5] is not addressable.

(gdb) p &stringlO
$4 = (char (*)[10]) 0x804a2f0
(gdb) nmo xb 0x804a2f0 10

ff 00 ff 00 ff . ff 00
0x804A2F0: Ox 3f Ox6e Ox 3f 0x65 Ox 3f 0x?? Ox 3f 0x65
ff 00
0x804A2F8: Ox 3f 0x00

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

78

Memcheck: amemory error detector

(gdb)

The GDB memcheck front end command mencheck xb ADDR [LEN] acceptsany address expression for
itsfirst ADDR argument. The second optional argument is any integer expression. Note that these 2 arguments
must be separated by a space. The following example shows how to get the definedness of st ri ng10 using
the memcheck xb front end command.

(gdb) nt xb &stringl0 sizeof (stringlO0)

ff 00 ff 00 ff . ff 00
0x804A2FO0: Ox3f Ox6e Ox3f 0x65 Ox3f 0x?? Ox3f 0x65
ff 00
0x804A2F8: Ox3f 0x00
Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

(gdb)

The command xb cannot be used with registers. To get the validity bits of a register, you must start Valgrind
with the option - - vgdb- shadow- r egi st er s=yes. The validity bits of a register can then be obtained
by printing the 'shadow 1' corresponding register. In the below x86 example, the register eax has al its hits
undefined, while the register ebx isfully defined.

(gdb) p /x $eaxsl
$9 = Oxffffffff
(gdb) p /x $ebxsl
$10 = 0x0

(gdb)

get _vbits <addr> [<l en>] showsthedefinedness (V) bitsfor <len> (default 1) bytes starting at <addr>
using the same convention as the xb command. get _vbi t s only shows the V bits (grouped by 4 bytes). It
does not show the values. If you want to associate V bits with the corresponding byte values, the xb command
will be easier to use, in particular on little endian computers when associating undefined parts of an integer
with their V bits values.

The following example shows the result of get _vbits on the stringl0 used in the xb command
explanation. The GDB memcheck equivalent front end command nencheck get_vbits ADDR
[LEN] accepts any ADDR expression and any LEN expression (separated by a space).

(gdb) nonitor get vbits 0x804a2f0 10

ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e
(gdb) menctheck get vbits &stringlO sizeof(stringl0Q)
ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

make_nenory [noaccess| undefi ned| def i ned| Def i nedi f addr essabl e] <addr >
[<l en>] marks the range of <len> (default 1) bytes at <addr> as having the given status. Parameter
noaccess marks the range as non-accessible, so Memcheck will report an error on any access to it.
undef i ned or def i ned mark the area as accessible, but Memcheck regards the bytes in it respectively as
having undefined or defined values. Def i nedi f addr essabl e marks as defined, bytes in the range which
are aready addressible, but makes no change to the status of bytesin the range which are not addressible. Note
that the first letter of Def i nedi f addr essabl e isan uppercase D to avoid confusion with def i ned.

The GDB equivalent memcheck front end commands nentheck nake_nenory [noaccess|
undef i ned| def i ned| Def i nedi f addr essabl e] ADDR [LEN] accept any address expression for
their first ADDR argument. The second optional argument isany integer expression. Notethat these 2 arguments
must be separated by a space.

In the following example, the first byte of the st ri ng10 ismarked as defined and then is marked noaccess:

79

Memcheck: amemory error detector

(gdb) nonitor make_nenory defi ned 0x8049e28 1
(gdb) nonitor get_vbits 0x8049e28 10

0000f f 00 ffOOff00 ffOO

(gdb) nmencheck nmake nenory noaccess &stringlO[0]
(gdb) nmenctheck get _vbits &stringlO sizeof (stringl0)
__ooffoo ffooffoo ffoO

Addr ess 0x8049E28 | en 10 has 1 bytes unaddressabl e

(gdb)

check_nmenory [addressabl e|defined] <addr> [<len>] checks that the range of <len>
(default 1) bytes at <addr> has the specified accessibility. It then outputs a description of <addr>. In the
following example, adetailed descriptionisavailable becausetheoption- - r ead- var - i nf o=yes wasgiven
at Valgrind startup:

(gdb) rnonitor check nenory defined 0x8049e28 1

Addr ess 0x8049E28 | en 1 defi ned

==14698== Locati on 0x8049e28 is 0 bytes inside stringl0O[O0],
==14698== declared at prog.c:10, in frame #0 of thread 1

(gdb)

The GDB equivalent memcheck front end commands nenctheck check nenory [addressabl e|
defined] ADDR [LEN] accept any addressexpression for their first ADDR argument. The second optional
argument is any integer expression. Note that these 2 arguments must be separated by a space.

| eak_check [full*]|summary|xtleak] [kinds <set>|reachabl e|possibleleak*|

definitel eak] [heuristics heurl,heur2,...] [newincreased*|changed|any]

[unlimted*|limted <max_loss_records_output>] peforms aleak check. The * in the
arguments indicates the default values.

If the[ful |l *| sunmary| xt| eak] argument is summary, only a summary of the leak search is given;
otherwise afull leak report is produced. A full leak report gives detailed information for each leak: the stack
trace wheretheleaked blockswere allocated, the number of blocks|eaked and their total size. When afull report
is requested, the next two arguments further specify what kind of leaks to report. A leak's details are shown if
they match both the second and third argument. A full leak report might output detailed information for many
leaks. The nr of leaksfor which information is output can be controlled using thel i ni t ed argument followed
by the maximum nr of leak records to output. If this maximum is reached, the leak search outputs the records
with the biggest number of bytes.

Thevalue xt | eak also produces afull leak report, but output it as an xtree in afile xtleak.kcg.%p.%n (see --
log-file). See Execution Trees for adetailed explanation about execution trees formats. See --xtree-leak for the
description of the eventsin a xtree leak file.

The ki nds argument controls what kind of blocks are shown for af ul | leak search. The set of leak kinds
to show can be specified using a <set > similarly to the command line option - - show- | eak- ki nds.
Alternatively, thevaluedef i ni t el eak isequivalenttoki nds defi ni t e,thevaluepossi bl el eak is
equivalentto ki nds definite, possi bl e :itwill alsoshow possibly leaked blocks, .i.e those for which
only an interior pointer was found. The value r eachabl e will show all block categories (i.e. is equivalent
toki nds all).

The heuri sti cs argument controls the heuristics used during the leak search. The set of heuristics to use
can be specified using a<set > similarly to the command line option - - | eak- check- heuri sti cs. The
default valuefor theheuri sti cs argumentisheuri sti cs none.

The[new| i ncr eased* | changed| any] argument controls what kinds of changes are shown for af ul |

leak search. The value i ncr eased specifies that only block allocation stacks with an increased number of
leaked bytes or blocks since the previous leak check should be shown. The value changed specifies that
alocation stacks with any change since the previous leak check should be shown. The value new specifies to

80

Memcheck: amemory error detector

show only the block allocation stacks that are new since the previous leak search. The value any specifies that
all leak entries should be shown, regardless of any increase or decrease. If newor i ncr eased or changed
are specified, the leak report entries will show the delta relative to the previous leak report and the new loss
records will have a"new" marker (even wheni ncr eased or changed were specified).

The following example shows usage of the | eak_check monitor command on the mencheck/ t est s/
| eak- cases. c regression test. The first command outputs one entry having an increase in the leaked bytes.
The second command is the same as the first command, but uses the abbreviated forms accepted by GDB and
the Valgrind gdbserver. It only outputs the summary information, as there was no increase since the previous
leak search.

(gdb) nonitor |eak _check full possibleleak increased
==19520== 16 (+16) bytes in 1 (+1) blocks are possibly lost in new |loss record 9 of 1-

==19520== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19520== by 0x80484D5: nk (| eak-cases.c:52)

==19520== by 0x804855F: f (| eak-cases.c: 81)

==19520== by 0x80488E0: main (| eak-cases.c: 107)

==19520==

==19520== LEAK SUMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+16) bytes in 2 (+1) bl ocks
==19520== still reachable: 96 (+16) bytes in 6 (+1) bl ocks
==19520== suppressed: 0 (+0) bytes in O (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak _check

==19520==

(gdb) nmo

==19520== LEAK SUMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== still reachable: 96 (+0) bytes in 6 (+0) bl ocks
==19520== suppressed: 0 (+0) bytes in O (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak_check

==19520==

(gdb)

Notethat when using Valgrind's gdbserver, it isnot necessary torerunwith - - | eak- check=ful | - - show
r eachabl e=yes to see the reachable blocks. You can obtain the same information without rerunning by
using the GDB command noni t or | eak_check full reachabl e any (or, using abbreviation: no
I f r a).

The GDB equivalent memcheck front end command menctheck | eak check auto-completesthe user input
by providing the full list of keywords still relevant according to what is already typed. For example, if the
"summary" keyword has been provided, the following TABs to auto-complete other items will not propose
anymore "full" and "xtleak". Note that KIND and HEUR values are not part of auto-completed elements.

bl ock _|i st <l oss_record _nr>|<loss_record nr_fromp..<loss record nr_to>
[unlimted*|linmted <max_blocks>] [heuristics heurl, heur2,...] shows
the list of blocks belonging to <loss record nr> (or to the loss records range
<l oss_record_nr_frone..<l oss_record_nr_to>). The nr of blocks to print can be controlled
using thel i m t ed argument followed by the maximum nr of blocks to output. If one or more heuristics are
given, only prints the loss records and blocks found via one of the given heur 1, heur 2, . . . heuristics.

A leak search merges the allocated blocks in loss records : aloss record re-groups all blocks having the same
state (for example, Definitely Lost) and the same all ocation backtrace. Each loss record isidentified in the leak

81

Memcheck: amemory error detector

search result by alossrecord number. Thebl ock | i st command showsthelossrecordinformation followed
by the addresses and sizes of the blocks which have been merged in the loss record. If ablock was found using
an heuristic, the block size is followed by the heuristic.

If adirectly lost block causes some other blocks to be indirectly lost, the block list command will also show
these indirectly lost blocks. The indirectly lost blocks will be indented according to the level of indirection
between the directly lost block and the indirectly lost block(s). Each indirectly lost block is followed by the
reference of itsloss record.

The block_list command can be used on the results of aleak search aslong as no block has been freed after this
|eak search: as soon asthe program frees abl ock, anew leak searchisneeded beforeblock_list can beused again.

In the below example, the program leaks a tree structure by losing the pointer to the block A (top of the tree).
So, the block A isdirectly lost, causing an indirect loss of blocks B to G. The first block _list command shows
the loss record of A (a definitely lost block with address 0x4028028, size 16). The addresses and sizes of the
indirectly lost blocks due to block A are shown below the block A. The second command shows the details of
one of theindirect loss records output by the first command.

/\ /\

(gdb) bt
#0 main () at leak-tree.c:69
(gdb) nonitor |eak check full any

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost

==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)
==19552== by 0x80484FC. f (l|eak-tree.c:41)
==19552== by 0x8048856: main (|eak-tree.c:63)
==19552==

==19552== LEAK SUMVARY:

==19552== definitely lost: 16 bytes in 1 bl ocks
==19552== indirectly lost: 96 bytes in 6 bl ocks
==19552== possibly lost: O bytes in O bl ocks
==19552== still reachable: 0 bytes in O bl ocks
==19552== suppressed: 0 bytes in O bl ocks
==19552==

(gdb) nonitor block list 7

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost

==19552== at 0x40070B4: malloc (vg_replace _mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)

==19552== by 0x80484FC. f (l|eak-tree.c:41)

==19552== by 0x8048856: main (|eak-tree.c:63)

==19552== 0x4028028[16]

==19552== 0x4028068[16] indirect |loss record 1

==19552== 0x40280E8[16] indirect |oss record 3
==19552== 0x4028128[16] indirect | oss record 4
==19552== 0x40280A8[16] indirect |oss record 2

==19552== 0x4028168[16] indirect |loss record 5
==19552== 0x40281A8[16] indirect |oss record 6

(gdb) nmo b 2

==19552== 16 bytes in 1 blocks are indirectly lost in |oss record 2 of 7
==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)

82

in loss r

in loss r

Memcheck: amemory error detector

==19552== by 0x80484D5: nk (| eak-tree.c:28)
==19552== by 0x8048519: f (l|eak-tree.c:43)
==19552== by 0x8048856: main (l|eak-tree.c:63)
==19552== 0x40280A8][16]

==19552== 0x4028168[16] indirect |loss record 5
==19552== 0x40281A8[16] indirect |loss record 6
(gdb)

who_poi nts_at <addr> [<l en>] showsal the locations where a pointer to addr is found. If len is
equal to 1, the command only shows the locations pointing exactly at addr (i.e. the "start pointers’ to addr). If
lenis> 1, "interior pointers' pointing at the len first bytes will also be shown.

The locations searched for are the same as the locations used in the leak search. So, who_poi nts_at can
a.0. be used to show why the leak search still can reach a block, or can search for dangling pointers to a freed
block. Each location pointing at addr (or pointing inside addr if interior pointers are being searched for) will
be described.

The GDB equivalent memcheck front end command nencheck who_poi nts_at ADDR [LEN] accept
any address expression for its first ADDR argument. The second optional argument is any integer expression.
Note that these 2 arguments must be separated by a space.

In the below example, the pointers to the 'tree block A’ (see example in command bl ock | i st) is shown
before the tree was leaked. The descriptions are detailed as the option - - r ead- var - i nf o=yes was given
at Valgrind startup. The second call shows the pointers (start and interior pointers) to block G. The block G
(Ox40281A38) isreachable via block C (0x40280a8) and register ECX of tid 1 (tid is the Valgrind thread id). It
is"interior reachable" viathe register EBX.

(gdb) nonitor who_points_at 0x4028028

==20852== Searching for pointers to 0x4028028

==20852== *0x8049e20 points at 0x4028028

==20852==Locati on 0x8049e20 is O bytes inside global var "t"

==20852== decl ared at |eak-tree.c:35

(gdb) nonitor who_points_at 0x40281A8 16

==20852== Searching for pointers pointing in 16 bytes from 0x40281a8
==20852== *(0x40280ac points at 0x40281a8

==20852==Address 0x40280ac is 4 bytes inside a block of size 16 alloc'd

==20852== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==20852== by 0x80484D5: nk (| eak-tree.c:28)

==20852== by 0x8048519: f (l|eak-tree.c:43)

==20852== by 0x8048856: main (|eak-tree.c:63)

==20852==tid 1 register ECX points at 0x40281a8
==20852==tid 1 register EBX interior points at 2 bytes inside 0x40281a8

(gdb)

When who_poi nts_at finds an interior pointer, it will report the heuristic(s) with which this interior
pointer will be considered as reachable. Note that this is done independently of the value of the option
- -1 eak-check- heuri sti cs. In the below example, the loss record 6 indicates a possibly lost block.
who_poi nts_at reports that there is an interior pointer pointing in this block, and that the block can be
considered reachable using the heuristic mrul ti pl ei nheri t ance.

(gdb) nonitor block list 6

==3748== 8 bytes in 1 blocks are possibly lost in |loss record 6 of 7

==3748== at 0x4007D77: operator new(unsigned int) (vg_replace_malloc.c:313)
==3748== by 0x8048954: main (|l eak cpp_interior.cpp:43)

==3748== 0x402A0EOQ[8]

(gdb) nonitor who_points_at 0x402A0EQ 8

83

Memcheck: amemory error detector

==3748== Searching for pointers pointing in 8 bytes from 0x402a0e0

==3748== *0xbe8ee078 interior points at 4 bytes inside 0x402a0e0

==3748== Address 0xbe8ee078 is on thread 1's stack

==3748== bl ock at 0x402a0e0 consi dered reachabl e by ptr 0x402a0e4 using nul tipl ei nheri

(gdb)

« xtnenory [<fil enane> default xtnmenory. kcg. %p. %] requests Memcheck tool to produce an
xtree heap memory report. See Execution Trees for a detailed explanation about execution trees.

4.7. Client Requests

Thefollowing client requestsaredefinedinnencheck. h. Seementheck. h for exact detailsof their arguments.

* VALGRI ND_MAKE_MEM NOACCESS, VALGRI ND_MAKE_MEM_UNDEFI NED and
VALGRI ND_MAKE_MEM DEFI NED. These mark address ranges as completely inaccessible, accessible but
containing undefined data, and accessible and containing defined data, respectively. They return -1, when run
on Valgrind and O otherwise.

* VALGRI ND_MAKE_MEM DEFI NED | F_ADDRESSABLE. This is just like
VALGRI ND_MAKE NMEM DEFI NED but only affects those bytes that are already addressable.

* VALGRI ND_CHECK_MEM | S_ADDRESSABLE and VALGRI ND_CHECK _MEM | S_DEFI NED: check
immediately whether or not the given address range has the rel evant property, and if not, print an error message.
Also, for the convenience of the client, returns zero if the relevant property holds; otherwise, the returned value
isthe address of thefirst byte for which the property is not true. Always returns 0 when not run on Valgrind.

e VALGRI ND_CHECK VALUE | S DEFI NED: a quick and easy way to find out whether Valgrind thinks a
particular value (Ivalue, to be precise) is addressable and defined. Prints an error messageif not. It hasno return
value.

* VALGRI ND_DO _LEAK_CHECK: does a full memory leak check (like - - | eak- check=f ul ') right now.
Thisis useful for incrementally checking for leaks between arbitrary places in the program's execution. It has
no return value.

* VALGRI ND_DO ADDED LEAK CHECK: same as VALGRI ND_DO_LEAK_CHECK but only shows the
entries for which there was an increase in leaked bytes or leaked number of blocks since the previous leak
search. It has no return value.

* VALGRI ND_ DO CHANGED LEAK CHECK: same as VALGRI ND_DO LEAK CHECK but only shows the
entriesfor which therewas an increase or decreasein leaked bytes or |eaked number of blocks sincethe previous
leak search. It has no return value.

* VALGRI ND_DO NEW LEAK CHECK: sameas VALGRI ND DO LEAK CHECK but only shows the new
entries since the previous leak search. It has no return value.

* VALGRI ND DO QUI CK_LEAK CHECK:likeVALGRI ND_DO LEAK CHECK, except it producesonly aleak
summary (like - - | eak- check=sumar y). It has no return value.

* VALGRI ND_COUNT_LEAKS: fills in the four arguments with the number of bytes of memory found
by the previous leak check to be leaked (i.e. the sum of direct leaks and indirect leaks), dubious,
reachable and suppressed. Thisis useful in test harness code, after calling VALGRI ND_DO_LEAK_CHECK or
VALGRI ND_DO _QUI CK_LEAK_CHECK.

* VALGRI ND_COUNT_LEAK_BLOCKS: identical to VALGRI ND_COUNT_LEAKS except that it returns the
number of blocks rather than the number of bytes in each category.

 VALGRI ND _GET_VBI TSand VALGRI ND_SET_VBI TS: allow you to get and set the V (validity) bitsfor an
address range. Y ou should probably only set V bits that you have got with VALGRI ND_GET_VBI TS. Only
for those who really know what they are doing.

Memcheck: amemory error detector

VALGRI ND_CREATE_BLOCK and VALGRI ND_DI SCARD. VALGRI ND_CREATE_BL OCK takes an address,
anumber of bytes and a character string. The specified address range is then associated with that string. When
Memcheck reports an invalid access to an address in the range, it will describe it in terms of this block rather
than in terms of any other block it knows about. Note that the use of this macro does not actually change the
state of memory in any way -- it merely gives a name for the range.

At some point you may want Memcheck to stop reporting errors in terms of the block named by
VALGRI ND_CREATE _BLOCK. To make this possible, VALGRI ND_CREATE BLOCK returns a "block
handle', whichisa Ci nt value. You can pass this block handle to VALGRI ND_DI SCARD. After doing so,
Valgrind will no longer relate addressing errors in the specified range to the block. Passing invalid handles to
VALGRI ND_DI SCARD is harmless.

4.8. Memory Pools: describing and working
with custom allocators

Some programs use custom memory allocators, often for performance reasons. Left to itself, Memcheck isunable
to understand the behaviour of custom allocation schemes aswell as it understands the standard allocators, and so
may miss errors and leaks in your program. What this section describes is away to give Memcheck enough of a
description of your custom allocator that it can make at |east some sense of what is happening.

There are many different sorts of custom allocator, so Memcheck attempts to reason about them using a loose,
abstract model. We use the following terminology when describing custom allocation systems:

Custom alocation involves a set of independent "memory pools'.

Memcheck's notion of a a memory pool consists of a single "anchor address' and a set of non-overlapping
"chunks" associated with the anchor address.

Typically apool's anchor addressis the address of a book-keeping "header" structure.

Typically the pool's chunks are drawn from a contiguous "superblock” acquired through the system mal | oc
or mmap.

Keep in mind that the last two points above say "typically": the Vagrind mempool client request APl is
intentionally vague about the exact structure of a mempool. There is no specific mention made of headers or
superblocks. Nevertheless, the following picture may help elucidate the intention of the termsin the API:

"pool "
(anchor address)

%
Foococooooo +-- -+
| header | o |
Foococooooo +- | -+
I
v super bl ock
Foocsoooo Foocodfoooocooooooooo Foocodfooocooocoocooooooooo +
| |rzB] allocation |rzB|
Foocsoooo Foocodfoooocooooooooo Foocodfooocooocoocooooooooo +
N N
I I
n addr n n addr n +"Si Zell

Note that the header and the superblock may be contiguous or discontiguous, and there may be multiple
superblocks associated with a single header; such variations are opague to Memcheck. The API only requires that
your allocation scheme can present sensible values of "pool”, "addr" and "size".

85

Memcheck: amemory error detector

Typically, before making client requests related to mempools, a client program will have allocated
such a header and superblock for their mempool, and marked the superblock NOACCESS using the
VALGRI ND_MAKE_MEM NOACCESS client request.

When dealing with mempools, the goal isto maintain a particular invariant condition: that Memcheck believesthe
unallocated portions of the pool's superblock (including redzones) are NOACCESS. To maintain this invariant,
the client program must ensure that the superblock starts out in that state; Memcheck cannot make it so, since
Memcheck never explicitly learns about the superblock of a pool, only the alocated chunks within the pool.

Once the header and superblock for a pool are established and properly marked, there are a number of client
requests programs can use to inform Memcheck about changes to the state of a mempool:

VALGRI ND_CREATE_MEMPOOL(pool, rzB, is_zeroed): Thisrequest registersthe addresspool as
the anchor address for a memory pool. It aso provides asize r zB, specifying how large the redzones placed
around chunks allocated from the pool should be. Finally, it providesani s_zer oed argument that specifies
whether the pool's chunks are zeroed (more precisely: defined) when allocated.

Upon completion of this request, no chunks are associated with the pool. The request simply tells Memcheck
that the pool exists, so that subsequent calls can refer to it asa pool.

VALGRI ND_CREATE_MEMPOOL_EXT(pool, rzB, is_zeroed, flags): Create amemory pool
with some flags (that can be OR-ed together) specifying extended behaviour. When flags is zero, the behaviour
isidentical to VALGRI ND_CREATE_MEMPOOQL.

e The flag VALGRI ND_VMEMPOOL_METAPOCL specifies that the pieces of memory associated with the
pool using VALGRI ND_MEMPOCL_ALLOC will be used by the application as superblocks to dole out
MALLOC_LIKE blocks using VALGRI ND_MALLOCLI KE_BLOCK. In other words, a meta pool is a "2
levels' pool : first level isthe blocks described by VALGRI ND_MEMPOOL_ALLCC. The second level blocks
aredescribed using VALGRI ND_MALLOCLI KE_BLOCK. Note that the association between the pool and the
second level blocksisimplicit : second level blockswill be located inside first level blocks. It is necessary to
use the VALGRI ND_VEMPOOL_ METAPQOL flag for such 2 levels poals, as otherwise valgrind will detect
overlapping memory blocks, and will abort execution (e.g. during lesk search).

« VALGRI ND_ MEMPOOL_AUTO FREE. Such a meta pool can aso be marked as an 'auto free
pool using the flag VALGRI ND_MEMPOOL_AUTO FREE, which must be OR-ed together with
the VALGRI ND_MEMPOOL_METAPOCL. For an 'auto free' pool, VALGRI ND_MEMPOOL_FREE will
automatically free the second level blocks that are contained inside the first level block freed
with VALGRI ND_MEMPOOL_FREE. In other words, calling VALGRI ND_MEMPOCOL_FREE will cause
implicit calls to VALGRI ND_FREELI KE_BLOCK for al the second level blocks included in the first
level block. Note: it is an error to use the VALGRI ND_MEMPOOL_AUTO FREE flag without the
VALGRI ND_MEMPOOL_METAPQOQL flag.

VALGRI ND_DESTROY_MEMPOOL(pool) : This request tells Memcheck that a pool is being torn down.
Memcheck then removes all records of chunks associated with the pool, as well as its record of the pool's
existence. While destroying its records of a mempool, Memcheck resets the redzones of any live chunksin the
pool to NOACCESS.

VALGRI ND_MEMPOOL_ALLQOC(pool , addr, size): Thisrequestinforms Memcheck that asi ze-byte
chunk has been alocated at addr , and associates the chunk with the specified pool . If the pool was created
with nonzero r zB redzones, Memcheck will mark the r zB bytes before and after the chunk as NOACCESS.
If the pool was created with the i s_zer oed argument set, Memcheck will mark the chunk as DEFINED,
otherwise Memcheck will mark the chunk as UNDEFINED.

VALGRI ND_MEMPOOL_FREE(pool , addr): This request informs Memcheck that the chunk at addr
should no longer be considered alocated. Memcheck will mark the chunk associated with addr as
NOACCESS, and deleteits record of the chunk's existence.

VALGRI ND_MEMPOOL_TRI M pool , addr, si ze): Thisrequesttrimsthechunksassociated withpool .
The request only operates on chunks associated with pool . Trimming isformally defined as:

e All chunksentirely insidetherangeaddr . . (addr +si ze- 1) are preserved.

86

Memcheck: amemory error detector

e All chunks entirely outside the range addr.. (addr+size-1) are discarded, as though
VALGRI ND_MEMPOOL_ FREE was called on them.

« All other chunks must intersect with therangeaddr . . (addr +si ze- 1) ; areasoutside theintersection are
marked as NOACCESS, as though they had been independently freed with VALGRI ND_VEMPOOL_ FREE.

Thisis a somewhat rare request, but can be useful in implementing the type of mass-free operations common
in custom LIFO allocators.

* VALGRI ND_MOVE_MEMPQOL(pool A, pool B) : Thisreguest informs Memcheck that the pool previously
anchored at address pool A has moved to anchor address pool B. Thisisarare request, typically only needed
if your eal | oc the header of amempool.

No memory-status bits are altered by this request.

 VALGRI ND_ MEMPOOL_CHANGE(pool , addr A, addrB, si ze): Thisrequestinforms Memcheck that
the chunk previoudly allocated at address addr A within pool has been moved and/or resized, and should be
changed to cover theregion addr B. . (addr B+si ze- 1) . Thisisararerequest, typically only needed if you
r eal | oc asuperblock or wish to extend a chunk without changing its memory-status bits.

No memory-status bits are altered by this request.

* VALGRI ND_MEMPOOL_EXI STS(pool) : This request informs the caler whether or not Memcheck is
currently tracking a mempool at anchor address pool . It evaluates to 1 when there is a mempool associated
with that address, O otherwise. Thisisarare request, only useful in circumstances when client code might have
lost track of the set of active mempools.

4.9. Debugging MPI Parallel Programs with
Valgrind

Memcheck supports debugging of distributed-memory applications which use the MPI message passing standard.
This support consists of a library of wrapper functions for the PMPI _* interface. When incorporated into
the application's address space, either by direct linking or by LD _PRELQAD, the wrappers intercept calls to
PMPI _Send, PMPI _Recv, etc. They then use client requests to inform Memcheck of memory state changes
caused by the function being wrapped. This reduces the number of false positives that Memcheck otherwise
typically reports for MPI applications.

The wrappers also take the opportunity to carefully check size and definedness of buffers passed as arguments
to MPI functions, hence detecting errors such as passing undefined data to PMPI _Send, or receiving data into
abuffer which istoo small.

Unlike most of the rest of Valgrind, the wrapper library is subject to a BSD-style license, so you can link it into
any code base you like. Seethetop of npi / | i bnpi wr ap. ¢ for license details.

4.9.1. Building and installing the wrappers

The wrapper library will be built automatically if possible. Valgrind's configure script will ook for a suitable
npi cc tobuild it with. Thismust be the samenpi cc you useto build the MPI application you want to debug. By
default, Valgrind tries npi cc, but you can specify a different one by using the configure-time option - - wi t h-

npi cc. Currently the wrappers are only buildable with npi ccs which are based on GNU GCC or Intel's C++
Compiler.

Check that the configure script prints aline like this:

checki ng for usable Ml 2-conpliant npicc and npi.h... yes, npicc

Ifitsays. .. no,your npi cc hasfailed to compile and link atest MPI2 program.

87

Memcheck: amemory error detector

If the configure test succeeds, continue in the usual way with make and make i nstal | . Thefind install tree
should then contain | i bnpi wr ap- <pl at f or n®. so.

Compile up atest MPI program (eg, MPI hello-world) and try this:

LD PRELOAD=$prefi x/lib/val grind/Iibnpiw ap-<pl atfornp. so \
mpirun [args] $prefix/bin/valgrind ./hello

Y ou should see something similar to the following

val grind MPl wrappers 31901: Active for pid 31901
val grind MPl wrappers 31901: Try MPIWRAP_DEBUG=hel p for possible options

repeated for every processin the group. If you do not seethese, thereisan build/installation problem of somekind.

TheMPI functionsto bewrapped are assumed to bein an EL F shared object with sonamematching! i brpi . so*.
Thisis known to be correct at least for Open MPI and Quadrics MPI, and can easily be changed if required.

4.9.2. Getting started

Compile your MPI application as usual, taking care to link it using the same npi cc that your Vagrind build
was configured with.

Use the following basic scheme to run your application on Valgrind with the wrappers engaged:

VPl WRAP_DEBUG=[wr apper - ar gs]
LD PRELOAD=$prefix/1ib/val grind/libnpiw ap-<platfornp. so
npi run [npirun-args]
$prefix/bin/valgrind [val grind-args]
[application] [app-args]

— — - —

As an dternative to LD PRELOADINng | i brpi wr ap- <pl at f or n>. so, you can simply link it to your
application if desired. This should not disturb native behaviour of your application in any way.

4.9.3. Controlling the wrapper library

Environment variable MPI WRAP_ DEBUGI s consulted at startup. The default behaviour isto print astarting banner

val grind MPI wrappers 16386: Active for pid 16386
val grind MPI wrappers 16386: Try MPIWRAP_DEBUG=hel p for possible options

and then berelatively quiet.
You can give alist of comma-separated optionsin MPl WRAP_DEBUG. These are

* ver bose: show entries/exits of all wrappers. Also show extradebugging info, such asthe status of outstanding
MPI _Request sresulting from uncompleted MPl _I r ecvs.

* qui et : opposite of ver bose, only print anything when the wrappers want to report a detected programming
error, or in case of catastrophic failure of the wrappers.

» war n: by default, functionswhichlack proper wrappers are not commented on, just silently ignored. This causes
awarning to be printed for each unwrapped function used, up to a maximum of three warnings per function.

* strict: print an error message and abort the program if afunction lacking awrapper is used.

If youwant to use Valgrind's XML output facility (- - xm =yes), you should passqui et in VPl WRAP_ DEBUG
so asto get rid of any extraneous printing from the wrappers.

88

Memcheck: amemory error detector

4.9.4. Functions

All MPI2 functions except MPI _W i ck, MPI _W i me and MPI _Pcont rol have wrappers. The first two
are not wrapped because they return a doubl e, which Valgrind's function-wrap mechanism cannot handle
(but it could easily be extended to do so). MPI _Pcont r ol cannot be wrapped as it has variable arity: i nt
MPI _Pcontrol (const int level, ...)

Most functions are wrapped with a default wrapper which does nothing except complain or abort if it is called,
depending on settings in MPI WRAP_DEBUG listed above. The following functions have "real”, do-something-
useful wrappers:

PMPI _Send PWPI _Bsend PMPI _Ssend PMPI _Rsend
PWMPI _Recv PMPI _Get count
PVMPI _Isend PMPI | bsend PMPI | ssend PWPI | rsend

PMPI _Irecv
PMPI _VWait PMPI _Waitall
PMPI _Test PMPI _Testall

PMPI _| probe PMPI _Probe

PMPI _Cancel

PMPI _Sendr ecv

PMPI _Type_comit PMPlI _Type free
PMPI _Pack PMPI _Unpack

PMPI _Bcast PMPI _Gat her PMPI _Scatter PMPI _Alltoall
PMPI _Reduce PWPI _Allreduce PMPI _Op_create

PMPI _Comm create PWMPI _Comm dup PMPI _Comm free PMPI _Comm rank PMPI _Comm size

PMPI _Error_string
PVMPI Init PVPI Initialized PMPI _Finalize

A few functionssuch asPMPI _Addr ess arelisted asHAS NO WRAPPER. They have no wrapper at all asthere
is nothing worth checking, and giving a no-op wrapper would reduce performance for no reason.

Note that the wrapper library itself can itself generate large numbers of calls to the MPI implementation,
especialy when walking complex types. The most common functions caled are PMPlI _Extent,
PMPI _Type_get _envel ope, PMPI _Type_get _contents,and PMPI _Type_free.

4.9.5. Types

MPI-1.1 structured types are supported, and walked exactly. The currently supported
combiners are MPI _COVBI NER_NAMED, MPI _COVBI NER_CONTI GUOUS, MPI _COVBI NER_VECTOR,
MPI _COMVBI NER_HVECTOR MPI _COVBI NER_| NDEXED, MPI _COVBI NER_HI NDEXED and
MPI _COVBI NER_STRUCT. Thisshould cover all MPI-1.1 types. Themechanism (functionwal k_t ype) should
extend easily to cover MPI2 combiners.

MPI defines some named structured types (MPI _FLOAT | NT, MPI _DOUBLE | NT, MPI _LONG | NT,
MPI 21 NT, MPl _SHORT | NT, MPI _LONG_DOUBLE | NT) which are pairs of somebasictypeandaCi nt .
Unfortunately the MPI specification makes it impossible to look inside these types and see where the fields are.

89

Memcheck: amemory error detector

Therefore these wrappers assume the types are laid out asstruct { float val; int loc; } (for
MPI _FLQOAT I NT), etc, and act accordingly. This appears to be correct at least for Open MPI 1.0.2 and for
Quadrics MPI.

If strict isan option specified in MPI WRAP_DEBUG, the application will abort if an unhandled type is
encountered. Otherwise, the application will print awarning message and continue.

Some effort is made to mark/check memory ranges corresponding to arrays of values in a single pass. This is
important for performance since asking Valgrind to mark/check any range, no matter how small, carries quite a
large constant cost. Thisoptimisationisapplied to arraysof primitivetypes(doubl e, f | oat ,i nt,l ong,| ong
| ong,short,char,andl ong doubl e onplatformswheresi zeof (1 ong doubl e) == 8). For arraysof
all other types, the wrappers handle each element individually and so there can be avery large performance cost.

4.9.6. Writing new wrappers

For the most part the wrappers are straightforward. The only significant complexity arises with nonblocking
receives.

Theissueisthat MPl _| r ecv states the recv buffer and returns immediately, giving ahandle (MPI _Request)
for the transaction. Later the user will have to poll for completion with MPI Wi t etc, and when the transaction
completes successfully, the wrappers have to paint the recv buffer. But the recv buffer details are not presented to
MPI Wi t -- only the handle is. The library therefore maintains a shadow table which associates uncompleted
MPI _Request s with the corresponding buffer address/count/type. When an operation completes, the table is
searched for the associated address/count/type info, and memory is marked accordingly.

Access to the table is guarded by a (POSIX pthreads) lock, so as to make the library thread-safe.
Thetableisallocated with mal | oc and never f r eed, so it will show up in leak checks.

Writing new wrappers should befairly easy. The sourcefileisnpi / | i bnpi wr ap. c. If possible, find an existing
wrapper for afunction of similar behaviour to the one you want to wrap, and use it asastarting point. The wrappers
are organised in sections in the same order as the MPI 1.1 spec, to aid navigation. When adding a wrapper,
remember to comment out the definition of the default wrapper in the long list of defaults at the bottom of the
file (do not removeiit, just comment it out).

4.9.7. What to expect when using the wrappers

The wrappers should reduce Memcheck's false-error rate on MPI applications. Because the wrapping is done at
the MPI interface, therewill still potentially be alarge number of errorsreported in the MPI implementation bel ow
theinterface. The best you can do is try to suppress them.

Y ou may also find that the input-side (buffer length/definedness) checksfind errorsin your MPI use, for example
passing too short abuffer to MPI _Recv.

Functionswhich are not wrapped may increasethefa se error rate. A possible approachistorunwith MPI _ DEBUG
containingwar n. Thiswill show you functions which lack proper wrappers but which are nevertheless used. You
can then write wrappers for them.

A known source of potential false errors are the PMPI _Reduce family of functions, when using a custom (user-
defined) reduction function. In a reduction operation, each node notionally sends data to a "central point" which
uses the specified reduction function to merge the data itemsinto a single item. Hence, in general, datais passed
between nodes and fed to the reduction function, but the wrapper library cannot mark the transferred data as
initialised beforeit is handed to the reduction function, because all that happens"inside" the PMPI _Reduce call.
Asaresult you may see false positives reported in your reduction function.

90

5. Cachegrind: a high-precision
tracing profiler

To usethistool, specify - - t ool =cachegr i nd onthe Vagrind command line.

5.1. Overview

Cachegrind isahigh-precision tracing profiler. It runs slowly, but collects precise and reproducible profiling data.
It can merge and diff data from different runs. To expand on these characteristics:

» Precise. Cachegrind measures the exact number of instructions executed by your program, not an
approximation. Furthermore, it presents the gathered data at the file, function, and line level. Thisisdifferent to
many other profilers that measure approximate execution time, using sampling, and only at the function level.

* Reproducible. In general, execution time is a better metric than instruction counts because it's what users
perceive. However, execution time often has high variability. When running the exact same program on the
exact same input multiple times, execution time might vary by several percent. Furthermore, small changesin a
program can change its memory layout and have even larger effects on runtime. In contrast, instruction counts
are highly reproducible; for some programs they are perfectly reproducible. This means the effects of small
changes in a program can be measured with high precision.

For these reasons, Cachegrind is an excellent complement to time-based profilers.

Cachegrind can annotate programs written in any language, so long as debug info is present to map machine code

back to the origina source code. Cachegrind has been used successfully on programs written in C, C++, Rust,

and assembly.

Cachegrind can also simulate how your program interacts with a machine's cache hierarchy and branch predictor.

This simulation was the original motivation for the tool, hence its name. However, the simulations are basic and

unlikely to reflect the behaviour of a modern machine. For this reason they are off by default. If you really want
cache and branch information, a profiler like per f that accesses hardware counters is a better choice.

5.2. Using Cachegrind and cg_annotate

First, asfor normal Valgrind use, you should compile with debugging info (the - g option in most compilers). But
by contrast with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your
program asit will be normally run.

Second, run Cachegrind itself to gather the profiling data.

Third, run cg_annotate to get a detailed presentation of that data. cg_annotate can combine the results of multiple
Cachegrind output files. It can also perform a diff between two Cachegrind output files.

5.2.1. Running Cachegrind

To run Cachegrind on a program pr og, run:

val grind --tool =cachegri nd prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

91

Cachegrind: a high-precision tracing profiler

==17942== refs: 8, 195, 070

Thel refs number isshort for "Instruction cache references’, which is equivalent to "instructions executed".
If you enable the cache and/or branch simulation, additional counts will be shown.

5.2.2. Output File

Cachegrind aso writes more detailed profiling data to a file. By default this Cachegrind output file is named
cachegri nd. out . <pi d> (where <pi d> is the program's process ID), but its name can be changed with
the - - cachegri nd- out - fi | e option. This file is human-readable, but is intended to be interpreted by the
accompanying program cg_annotate, described in the next section.

Thedefault . <pi d> suffix on the output file name servestwo purposes. First, it means existing Cachegrind output

filesaren'timmediately overwritten. Second, and moreimportantly, it allowscorrect profilingwiththe- - t r ace-
chi | dr en=yes option of programs that spawn child processes.

5.2.3. Running cg_annotate

Before using cg_annotate, it isworth widening your window to be at least 120 characterswideif possible, because
the output lines can be quite long.

Then run:
cg_annotate <fil enane>

on a Cachegrind output file.

5.2.4. The Metadata Section

Thefirst part of the output looks like this:

-- Met adat a

I nvocati on: ../ cg_annotate concord. cgout
Command: ./concord ../cg_nain.c
Events recorded: Ir

Event s shown: Ir

Event sort order: |Ir

Thr eshol d: 0.1%

Annot ati on: on

It summarizes how Cachegrind and the profiled program were run.
* Invocation: the command line used to produce this output.
» Command: the command line used to run the profiled program.

» Eventsrecorded: which events were recorded. By default, thisis| r . More eventswill be recorded if cache and/
or branch simulation is enabled.

» Events shown: the events shown, which is a subset of the events gathered. This can be adjusted with the - -
show option.

» Event sort order: the sort order used for the subsequent sections. For example, in this case those sections are

sorted from highest | r counts to lowest. If there are multiple events, one will be the primary sort event, and
then there can be a secondary sort event, tertiary sort event, etc., though more than one is rarely needed. This

92

Cachegrind: a high-precision tracing profiler

order can be adjusted with the - - sor t option. Note that this does not specify the order in which the columns
appear. That is specified by the "events shown" line (and can be changed with the - - show option).

Threshold: cg_annotate by default omits files and functions with very low counts to keep the output size
reasonable. By default cg_annotate only shows files and functions that account for at least 0.1% of the primary
sort event. The threshold can be adjusted with the - - t hr eshol d option.

Annotation: whether source file annotation is enabled. Controlled with the - - annot at e option.

If cache simulation is enabled, details of the cache parameters will be shown above the "Invocation” line.

5

.2.5. Global, File, and Function-level Counts

Next comes the summary for the whole program:

81

195, 070 (100.0% PROGRAM TOTALS

Thel r column label is suffixed with underscores to show the bounds of the columns underneath.

Then comes file:function counts. Here is the first part of that section:

<

N

N

N

N

N

N

Ir file:function

3,078,746 (37.6% 37.6% /home/njn/grind/ wsl/cachegrind/concord.c:

1, 630, 232 (19.9% get _word
630,918 (7.7% hash
461,095 (5.6% i nsert
130,560 (1.6% add_exi sting
91,014 (1.1% init_hash table
88,056 (1.1% Create
46,676 (0.6% new wor d_node
1,746,038 (21.3% 58.9% ./nmalloc/./malloc/nalloc.c:
1, 285,938 (15.7% _int_malloc

458,225 (5.6% mal | oc
1,107,550 (13.5% 72.4% ./libio/./libio/getc.c:getc
551,071 (6.7% 79.1% ./string/../sysdeps/x86 64/ nultiarch/strcnp-avx2.S: __strcnp
521,228 (6.4% 85.5% ./ctype/../include/ctype.h:
260,616 (3.2% __ctype_tolower_|oc
260,612 (3.2% __ctype_ b loc

468,163 (5.7% 91.2% 2?72
468,151 (5. 7% 2272

456,071 (5.6% 96.8% /usr/include/ctype. h:get word

93

Cachegrind: a high-precision tracing profiler

Each entry covers one file, and one or more functions within that file. If there is only one significant function
within afile, asin thefirst entry, the file and function are shown on the same line separate by a colon. If there are
multiple significant functions within afile, asin the third entry, each function getsits own line.

This example involves a small C program, and shows a combination of code from the program itself (including
functions like get _wor d and hash in the file concor d. c) as well as code from system libraries, such as
functionslikemal | oc and get c.

Each entry is preceded with a <, which can be useful when navigating through the output in an editor, or grepping
through results.

The first percentage in each column indicates the proportion of the total event count is covered by thisline. The
second percentage, which only shows on the first line of each entry, shows the cumulative percentage of al the
entries up to and including this one. The entries shown here account for 96.8% of the instructions executed by
the program.

Thename ??? isused if thefile name and/or function name could not be determined from debugging information.
If 2?7? filenames dominate, the program probably wasn't compiled with - g. If ??? function names dominate, the
program may have had symbols stripped.

After that comes function:file counts. Here is the first part of that section:

Ir function:file

> 2,086,303 (25.5% 25.5% get_ word:

1, 630,232 (19.9% / hone/ nj n/ gri nd/ ws1/ cachegri nd/ concord. c
456, 071 (5.6% [usr/include/ctype. h
> 1,285,938 (15.7% 41.1% _int_malloc:./malloc/./malloc/malloc.c
> 1,107,550 (13.5% 54.7% getc:./libio/./libio/getc.c

> 630,918 (7.7% 62.49% hash:/home/ njn/grind/ wsl/ cachegrind/concord.c
> 551,071 (6.7% 69.1% _ strcnp_avx2:./string/../sysdeps/x86_ 64/ multiarch/strcnp-a
> 480,248 (5.9% 74.9% mall oc:
458, 225 (5.6% ./malloc/./malloc/mlloc.c
22,023 (0.3% ./malloc/./malloc/arena.c
> 468,151 (5.7% 80.7% ?7?7:???
> 461,095 (5.6% 86.3% insert:/home/njn/grind/ wsl/cachegrind/concord.c

Thisis similar to the previous section, but is grouped by functions first and files second. Also, the entry markers
are> instead of <.

Y ou might wonder why this section is needed, and how it differsfrom the previous section. The answer isinlining.
In this example there are two entries demonstrating a function whose code is effectively spread across more than
onefile: get _wor d and mal | oc. Hereis an example from profiling the Rust compiler, a much larger program
that uses inlining more:

Cachegrind: a high-precision tracing profiler

> 30,469,230 (1.3% 11.1% <rustc_mddle::ty::context::Cixtlnterners> :intern_ty:

10, 269, 220 (0.5% /hone/ njn/.cargo/ registry/src/github. com 1lecc6299db9ec82
7,696, 827 (0.3% / hone/ nj n/ dev/rust O/ conpi |l er/rustc_m ddl e/ src/ty/ context
3,858,099 (0.2% /hone/ njn/ dev/rustO/library/core/src/cell.rs

In this case the compiled function i nt er n_t y includes code from three different source files, due to inlining.
These should be examined together. Older versions of cg annotate presented this entry as three separate
file:function entries, which would typically be intermixed with all the other entries, making it hard to see that they
areadl realy part of the same function.

5.2.6. Per-line Counts

By default, asource file is annotated if it contains at |east one function that meets the significance threshold. This
can be disabled with the - - annot at e option.

To continue the previous example, hereis part of the annotation of thefileconcor d. c:

-- Annotated source file: /home/njn/grind/ wsl/cachegrind/docs/concord.c

/* Function builds the hash table fromthe given file. */
void init_hash_table(char *file_nane, Wrd_Node *table[])

8 (0.0% {
. FILE *file_ptr;
. Wrd_ I nfo *data;
2 (0.0% int line =1, i;
. /* Structure used when reading in words and |ine nunbers. */
3 (0.0% data = (Wrd_Info *) create(sizeof (Wrd_Info));
. /* Initialise entire table to NULL. */
2,993 (0.0% for (i = 0; i < TABLE SIZE; i++)
997 (0.0% table[i] = NULL;
. [* Open file, check it. */
4 (0.0% file_ptr = fopen(file_nane, "r");
2 (0.0% if (!(file_ptr)) {
fprintf(stderr, "Couldn't open '%'.\n", file_nane);
exit (EXI T_FAI LURE) ;
}
/* "Cet' the words and lines one at a time fromthe file, and insel
. ** into the table one at a tine. */
55,363 (0.7% while ((line = get_word(data, line, file_ptr)) != EOF)
31,632 (0.4% i nsert (data->word, data->line, table);
2 (0.0% free(data);
2 (0.0% fclose(file_ptr);
6 (0.0% }

Each executed line is annotated with its event counts. Other lines are annotated with a dot. This may be because
they contain no executable code, or they contain executable code but were never executed.

You can easily tell if afunction is inlined from this output. If it is not inlined, it will have event counts on the
lines containing the opening and closing braces. If itisinlined, it will not have event counts on those lines. In the
exampleabove, i nit _hash_t abl e does have counts, so you can tell it isnot inlined.

95

Cachegrind: a high-precision tracing profiler

Note again that inlining can lead to surprising results. If afunction f is aways inlined, in the file:function and
function:file sections counts will be attributed to the functionsit isinlined into, rather than itself. However, if you
look at the line-by-line annotations for f you'll see the counts that belong to f . So it's worth looking for large
counts/percentages in the line-by-line annotations.

Sometimes only a small section of a source file is executed. To minimise uninteresting output, Cachegrind only
shows annotated lines and lines within a small distance of annotated lines. Gaps are marked with line numbers,

for example:

(counts and code for |ine 704)

- line 375 -- oo
- line Bl4 --- oo

(counts and code for |ine 878)

The number of lines of context shown around annotated linesis controlled by the - - cont ext option.

Any significant source files that could not be found are shown like this:

-- Annot ated source file:

./malloc/./malloc/malloc.c

Unannot at ed because one or

- ./malloc/./malloc/malloc.c

nore of these original

files are unreadabl e:

Thisiscommon for library files, because libraries are usually compiled with debugging information but the source
filesarerarely present on a system.

Cachegrind relies heavily on accurate debug info. Sometimes compilers do not map a particular compiled
instruction to line number O, where the 0 represents "unknown" or "none". This is annoying but does happen in
practice. cg_annotate prints these in the following way:

-- Annot ated source file:

/ hone/ nj n/ dev/ rust O/ conpi l er/rustc_borrowck/src/lib.rs

1, 046, 746 (0. 0%

<unknown (line 0)>

Finally, when annotation is performed, the output ends with a summary of how many counts were annotated and
unannotated, and why. For example:

3,534, 817 (43.1%
0
0
4,132,126 (50. 4%
59,950 (0.7%
468,163 (5.7%

annot at ed:
annot at ed:
unannot at ed:
unannot at ed:
unannot at ed:
unannot at ed:

files
files
files
files
files
files

5.2.7. Forking Programs

known & above
known & above
known & above
known & above
known & bel ow
unknown

threshol d & readabl e, |ine nunbers
threshol d & readabl e, |ine nunbers
threshold & two or nmore non-identic
t hreshol d & unreadabl e

t hreshol d

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

96

Cachegrind: a high-precision tracing profiler

If the output file name (controlled by - - cachegr i nd- out - f i | e) does not contain %p, then the outputs from
the parent and child will be intermingled in a single output file, which will aimost certainly make it unreadable
by cg_annotate.

5.2.8. cg_annotate Warnings

There are two situations in which cg_annotate prints warnings.

« If asourcefileismore recent than the Cachegrind output file. Thisis because the information in the Cachegrind
output fileisonly recorded with line numbers, so if theline numbers change at all in the source (e.g. lines added,
deleted, swapped), any annotations will be incorrect.

« If information is recorded about line numbers past the end of afile. This can be caused by the above problem,
e.g. shortening the source file while using an old Cachegrind output file. If this happens, the figures for the
bogus lines are printed anyway (and clearly marked as bogus) in case they are important.

5.2.9. Merging Cachegrind Output Files

cg_annotate can merge data from multiple Cachegrind output filesin asingle run. (Thereisalso aprogram called
cg_merge that can merge multiple Cachegrind output files into a single Cachegrind output file, but it is now
deprecated because cg_annotate's merging does a better job.)

Useit asfollows:

cg_annotate filel file2 file3 ...

cg_annotate computes the sum of these files (effectively fil el +fil e2 +fi | e3), and then produces output
as usua that shows the summed counts.

The most common merging scenario is if you want to aggregate costs over multiple runs of the same program,
possibly on different inputs.

5.2.10. Differencing Cachegrind output files

cg_annotate can diff datafrom two Cachegrind output filesin asingle run. (Thereisalso aprogram called cg_diff
that can diff two Cachegrind output files into a single Cachegrind output file, but it is now deprecated because
cg_annotate's differencing does a better job.)

Useit asfollows:

cg_annotate --diff filel file2

cg_annotate computes the difference between these two files (effectively fi | e2 - fi | el), and then produces
output as usual that shows the count differences. Note that many of the counts may be negative; this indicates that
the counts for the relevant file/function/line are smaller in the second version than those in the first version.

The simplest common scenario is comparing two Cachegrind output files that came from the same program, but
on different inputs. cg_annotate will do agood job on this without assistance.

A more complex scenarioisif you want to compare Cachegrind output filesfrom two dlightly different versions of
aprogram that you have sitting side-by-side, running on the sameinput. For example, you might havever si onl/

prog. c andver si on2/ pr og. c. A straight comparison of the two would not be useful. Because functions are
always paired with filenames, a function f would be listed asver si onl/ prog. c: f for the first version but
ver si on2/ prog. c: f for the second version.

In this case, use the - - nod- f i | enane option. Its argument is a search-and-replace expression that will be
applied to al thefilenamesin both Cachegrind output files. It can be used to remove minor differencesinfilenames.

97

Cachegrind: a high-precision tracing profiler

For example, the option - - nod- f i | enane=" s/ versi on[0- 9]/ versi onN "' will suffice for the above
example.

Similarly, sometimes compilers auto-generate certain functions and give them randomized names like T. 1234
where the suffixes vary from build to build. You can use the - - nod- f uncnane option to remove small
differenceslike these; it worksin the sasmeway as- - nod- f i | enane.

When - - nod- f i | enane isused to compare two different versions of the same program, cg_annotate will not
annotate any file that is different between the two versions, because the per-line counts are not reliable in such a
case. For example, imagine if ver si on2/ pr og. ¢ isthe same asver si onl/ pr og. ¢ except with an extra
blank line at the top of thefile. Every single per-line count will have changed. In comparison, the per-file and per-
function counts have not changed, and are still very useful for determining differences between programs. You
might think that this means every interesting file will be left unannotated, but again inlining means that files that
areidentical in the two versions can have different counts on many lines.

5.2.11. Cache and Branch Simulation

Cachegrind can simulate how your program interacts with a machine's cache hierarchy and/or branch predictor.
The cache simulation models a machine with independent first-level instruction and data caches (11 and D1),
backed by a unified second-level cache (L2). For these machines (in the cases where Cachegrind can auto-detect
the cache configuration) Cachegrind simulates the first-level and last-level caches. Therefore, Cachegrind always
referstothell, D1 and LL (last-level) caches.

When simulating the cache, with - - cache- si mryes, Cachegrind gathers the following statistics:

* | cache reads (I r, which equals the number of instructions executed), 11 cache read misses (I 1nr) and LL
cacheinstruction read misses (I Lnt).

» D cache reads (Dr , which equals the number of memory reads), D1 cache read misses (D1nt), and LL cache
data read misses (DLnT).

* D cache writes (Dw, which equals the number of memory writes), D1 cache write misses (D1nw), and LL cache
data write misses (DLmw).

Notethat D1 total accessesisgivenby D1nr +D1lnw, andthat LL total accessesisgivenby | Lnr +DLnr + DLmw.
When simulating the branch predictor, with - - br anch- si mryes, Cachegrind gathers the following statistics:
» Conditional branches executed (Bc) and conditional branches mispredicted (Bcnj.

« Indirect branches executed (Bi) and indirect branches mispredicted (Bi nj.

When cache and/or branch simulation is enabled, cg_annotate will print multiple counts per line of output. For
example:

Ir Bc Bcm Bi
> 8,547 (0.1% 99.4% 936 (0.1% 99.1% 177 (0.3% 96.7% 59 (0.0%
8,503 (0.1% 928 (0.1% 175 (0.3% 59 (0.0%

5.3. Cachegrind Command-line Options

Cachegrind-specific options are:
--cachegrind-out-file=<file>

Write the Cachegrind output filetof i | e rather than to the default output file, cachegr i nd. out . <pi d>.
The %p and %g format specifiers can be used to embed the process ID and/or the contents of an environment
variablein the name, asisthe case for the core option - - | og-fi |l e.

98

Cachegrind: a high-precision tracing profiler

- -cache-si neno| yes [no]

Enables or disables collection of cache access and miss counts.
- -branch- si meFno| yes [no]

Enables or disables collection of branch instruction and misprediction counts.
--instr-at-start=no|yes [yes]

Enables or disables instrumentation a the start of execution. Use this in combination
with CACHEGRI ND_START _| NSTRUVENTATI ON and CACHEGRI ND_STOP_| NSTRUVENTATI ON to
measure only part of a client program's execution.

--11=<si ze>, <associativity>, <line size>

Specify the size, associativity and line size of the level 1 instruction cache. Only useful with - - cache-
Si mryes.

--Dl=<si ze>, <associativity>, <line size>
Specify the size, associativity and line size of the level 1 data cache. Only useful with - - cache- si nryes.
--LL=<si ze>, <associ ativity>, <line size>

Specify the size, associativity and line size of the last-level cache. Only useful with - - cache- si nryes.

5.4. cg_annotate Command-line Options

-h --help
Show the help message.
--version
Show the version number.
--diff
Diff two Cachegrind output files.
--nod-fil enane <regex> [default: none]

Specifies an s/ ol d/ new/ search-and-replace expression that is applied to al filenames. Useful when
differencing, for removing minor differences in paths between two different versions of a program that are
sitting in different directories. Ani suffix makes the regex case-insensitive, and a g suffix makes it match
multiple times.

--nod- funcnane <regex> [default: none]

Like- - nod- fi | enane, but for filenames. Useful for removing minor differencesin randomized names of
auto-generated functions generated by some compilers.

--show=A, B, C [default: all, using order in the Cachegrind output file]

Specifies which events to show (and the column order). Default isto use all present in the Cachegrind output
file (and use the order in the file). Best used in conjunction with - - sort .

--sort=A,B,C [default: order in the Cachegrind output file]

Specifies the events upon which the sorting of the file:function and function:file entries will be based.

99

Cachegrind: a high-precision tracing profiler

--threshol d=X [default: 0.1%

Sets the significance threshold for the file:function and function:files sections. A file or function is shown
if it accounts for more than X% of the counts for the primary sort event. If annotating source files, this also
affects which files are annotated.

--show percs, --no-show percs, --show percs=<no|yes> [default: yes]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of
each function and line.

--annotate, --no-annotate, --auto=<no|yes> [default: yes]
Enables or disables source file annotation.
--context=N [default: 8]

The number of lines of context to show before and after each annotated line. Use alarge number (e.g. 100000)
to show all source lines.

5.5. cg_merge Command-line Options

-o outfile

Write the output to to out f i | e instead of standard outpuit.

5.6. cg_diff Command-line Options

-h --help
Show the help message.
--version
Show the version number.
--nod-fil ename=<expr> [defaul t: none]
Specifiesan s/ ol d/ new/ search-and-replace expression that is applied to all filenames.
- -nod- f uncnane=<expr> [defaul t: none]

Like- - nod-fi | enamne, but for filenames.

5.7. Cachegrind Client Requests

Cachegrind provides the following client requestsin cachegr i nd. h.
CACHEGRI ND_START_| NSTRUVENTATI ON

Start Cachegrind instrumentation if not aready enabled. Use this in combination with
CACHEGRI ND_STOP_I NSTRUVENTATI ONand - -i nstr-at-start to measure only part of aclient
program's execution.

CACHEGRI ND_STOP_| NSTRUMENTATI ON

Stop Cachegrind instrumentation if not aready disabled. Use this in combination with
CACHEGRI ND_START | NSTRUMENTATI ONand - -i nstr - at - st art to measure only part of aclient
program's execution.

100

Cachegrind: a high-precision tracing profiler

5.8. Simulation Detalls

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest
to some people.

5.8.1. Cache Simulation Specifics

The cache simulation approximates the hardware of an AMD Athlon CPU circa 2002. Its specific characteristics
are asfollows:

» Write-allocate: when awrite miss occurs, the block written to is brought into the D1 cache. Most modern caches
have this property.

« Bit-selection hash function: the set of ling(s) in the cache to which amemory block mapsis chosen by themiddle
bits M--(M+N-1) of the byte address, where:

¢ linesize=2"M bytes
e (cachesize/ line size/ associativity) = 2”N bytes

* Inclusive LL cache: the LL cache typically replicates all the entries of the L1 caches, because fetching into L1
involves fetching into LL first (this does not guarantee strict inclusiveness, aslines evicted from LL still could
residein L1). Thisis standard on Pentium chips, but AMD Opterons, Athlons and Durons use an exclusive LL
cache that only holds blocks evicted from L 1. Ditto most modern VIA CPUs.

The cache configuration simulated (cache size, associativity and line size) is determined automatically using the
x86 CPUID instruction. If you have a machine that (a) doesn't support the CPUID instruction, or (b) supports it
in an early incarnation that doesn't give any cache information, then Cachegrind will fall back to using a default
configuration (that of a model 3/4 Athlon). Cachegrind will tell you if this happens. You can manually specify
one, two or all three levels (I1/D1/LL) of the cache from the command lineusing the--11,--D1 and - - LL
options. For cache parameters to be valid for simulation, the number of sets (with associativity being the number
of cachelinesin each set) hasto be a power of two.

On PowerPC platforms Cachegrind cannot automatically determine the cache configuration, so you will need to
specify it withthe- -1 1,-- D1 and - - LL options.

Other noteworthy behaviour:

» References that straddle two cache lines are treated as follows:
« If both blocks hit --> counted as one hit
* If one block hits, the other misses --> counted as one miss.
« If both blocks miss --> counted as one miss (not two)

* Instructions that modify a memory location (e.g. i nc and dec) are counted as doing just aread, i.e. asingle
datareference. This may seem strange, but since the write can never cause amiss (the read guarantees the block
isin the cache) it's not very interesting.

Thus it measures not the number of times the data cache is accessed, but the number of times a data cache
miss could occur.

If you are interested in simulating a cache with different properties, it is not particularly hard to write your own
cache simulator, or to modify the existing onesincg_si m c.

5.8.2. Branch Simulation Specifics

Cachegrind simulates branch predictorsintended to be typical of mainstream desktop/server processors of around
2004.

101

Cachegrind: a high-precision tracing profiler

Conditional branches are predicted using an array of 16384 2-hit saturating counters. The array index used for a
branch instruction is computed partly from the low-order bits of the branch instruction's address and partly using
the taken/not-taken behaviour of the last few conditional branches. As a result the predictions for any specific
branch depend both on its own history and the behaviour of previous branches. Thisis a standard technique for
improving prediction accuracy.

For indirect branches (that is, jumps to unknown destinations) Cachegrind uses a simple branch target address
predictor. Targets are predicted using an array of 512 entries indexed by the low order 9 bits of the branch
instruction's address. Each branch is predicted to jump to the same address it did last time. Any other behaviour
causes amispredict.

More recent processors have better branch predictors, in particular better indirect branch predictors. Cachegrind's
predictor design is deliberately conservative so as to be representative of the large installed base of processors
which pre-date widespread deployment of more sophisticated indirect branch predictors. In particular, |ate model
Pentium 4s (Prescott), Pentium M, Core and Core 2 have more sophisticated indirect branch predictors than
modelled by Cachegrind.

Cachegrind does not simulate a return stack predictor. It assumes that processors perfectly predict function return
addresses, an assumption which is probably close to being true.

See Hennessy and Patterson's classic text "Computer Architecture: A Quantitative Approach”, 4th edition (2007),
Section 2.3 (pages 80-89) for background on modern branch predictors.

5.8.3. Accuracy

Cachegrind's instruction counting has one shortcoming on x86/amd64:

» When a REP-prefixed instruction executes each iteration is counted separately. In contrast, hardware counters
count each such instruction just once, ho matter how many times it iterates. It is arguable that Cachegrind's
behaviour is more useful.

Cachegrind's cache profiling has a number of shortcomings:

* It doesn't account for kernel activity. The effect of system calls on the cache and branch predictor contentsis
ignored.

* It doesn't account for other process activity. Thisis arguably desirable when considering a single program.

* It doesn't account for virtual-to-physical address mappings. Hence the simulation is not a true representation
of what's happening in the cache. Most caches and branch predictors are physically indexed, but Cachegrind
simulates caches using virtual addresses.

* It doesn't account for cache misses not visible at the instruction level, e.g. those arising from TLB misses, or
speculative execution.

 Valgrind will schedule threads differently from how they would be when running natively. This could warp the
results for threaded programs.

» The x86/amd64 instructions bt s, bt r and bt ¢ will incorrectly be counted as doing a data read if both the
arguments are registers, e.g.:

btsl % ax, %edx
This should only happen rarely.

» x86/amd64 FPU instructions with data sizes of 28 and 108 bytes (e.g. f save) are treated as though they only
access 16 bytes. These instructions seem to be rare so hopefully this won't affect accuracy much.

Another thing worth noting is that results are very sensitive. Changing the size of the executable being profiled,
or the sizes of any of the shared libraries it uses, or even the length of their file names, can perturb the results.
Variationswill be small, but don't expect perfectly repeatable results if your program changes at al.

102

Cachegrind: a high-precision tracing profiler

Many Linux distributions perform address space layout randomisation (ASLR), in which identical runs of the
same program have their shared libraries loaded at different locations, as a security measure. This also perturbs
the results.

5.9. Implementation Details

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest
to some people.

5.9.1. How Cachegrind Works

The best reference for understanding how Cachegrind works is chapter 3 of "Dynamic Binary Analysis and
Instrumentation”, by Nicholas Nethercote. It is available on the Valgrind publications page.

5.9.2. Cachegrind Output File Format

The file format is fairly straightforward, basically giving the cost centre for every line, grouped by files and
functions. It's also totally generic and self-describing, in the sense that it can be used for any events that can
be counted on a line-by-line basis, not just cache and branch predictor events. For example, earlier versions of
Cachegrind didn't have a branch predictor simulation. When this was added, the file format didn't need to change
at all. So the format (and consequently, cg_annotate) could be used by other tools.

Thefile format:

count _line
sunmary_line ::
count

[ine_num (ws+ count)* ws*
"summary:" ws? count (ws+ count)+ ws*
num

file = desc_line* cnd _|ine events line data_|ine+ sunmary |ine
desc_line = "desc:" ws? non_nl _string

cnd_I|ine ="cnmd:" ws? cmd

events |ine = "events:" ws? (event ws)+

data_line = file_line | fn_line | count_line

file_line = "fl=" filenane

fn_line = "fn=" fn_nanme

Where:

e non_nl _stri ng isany string not containing a newline.

» cnd isastring holding the command line of the profiled program.
e event isastring containing no whitespace.

e fil ename andf n_nane arestrings.

e numand | i ne_numare decimal numbers.

e Ws iswhitespace.

The contents of the "desc:" lines are printed out at the top of the summary. This is a generic way of providing
simulation specific information, e.g. for giving the cache configuration for cache simulation.

More than one line of info can be present for each file/fn/line number. In such cases, the counts for the named
events will be accumulated.

The number of countsin each | i ne and the summary_| i ne should not exceed the number of eventsin the
event _|ine. If thenumberineachl i ne isless, cg annotate treats those missing as though they were a"0"
entry. This can reducefile size.

103

http://www.valgrind.org/docs/pubs.html

Cachegrind: a high-precision tracing profiler

Afile_linechangesthecurrentfilename. A f n_| i ne changesthe current function name. A count _|i ne
contains counts that pertain to the current filename/fn_name. A "fn="fil e_| i ne andaf n_I| i ne must appear
beforeany count _| i nesto give the context of thefirst count _| i nes.

Similarly, eachfi | e_I i ne must beimmediately followed by af n_1 i ne.

The summary line is redundant, because it just holds the total counts for each event. But this serves as a useful
sanity check of the data; if the totals for each event don't match the summary line, something has gone wrong.

104

6. Callgrind: a call-graph generating
cache and branch prediction profiler

To usethistool, you must specify - - t ool =cal | gri nd on the Valgrind command line.

6.1. Overview

Callgrind is a profiling tool that records the call history among functions in a program's run as a call-graph. By
default, the collected data consists of the number of instructions executed, their relationship to source lines, the
caller/callee relationship between functions, and the numbers of such calls. Optionally, cache simulation and/
or branch prediction (similar to Cachegrind) can produce further information about the runtime behavior of an
application.

The profile dataiswritten out to afile at program termination. For presentation of the data, and interactive control
of the profiling, two command line tools are provided:

callgrind_annotate
Thiscommand readsin the profile data, and printsasorted lists of functions, optionally with source annotation.

For graphical visualization of the data, try K Cachegrind, which isa KDE/Qt based GUI that makesit easy to
navigate the large amount of data that Callgrind produces.

callgrind_control

This command enables you to interactively observe and control the status of a program currently running
under Callgrind's control, without stopping the program. Y ou can get statistics information as well as the
current stack trace, and you can request zeroing of counters or dumping of profile data.

6.1.1. Functionality

Cachegrind collects flat profile data: event counts (data reads, cache misses, etc.) are attributed directly to the
function they occurred in. This cost attribution mechanism is called self or exclusive attribution.

Callgrind extends this functionality by propagating costs across function call boundaries. If function f oo calls
bar , the costs from bar are added into f 0o's costs. When applied to the program as a whole, this builds up a
picture of so called inclusive costs, that is, where the cost of each function includes the costs of al functions it
called, directly or indirectly.

Asan example, theinclusive cost of mai n should be almost 100 percent of thetotal program cost. Because of costs
arising before mai n isrun, such asinitialization of the run time linker and construction of global C++ objects, the
inclusive cost of mai n isnot exactly 100 percent of the total program cost.

Together with the call graph, this allows you to find the specific call chains starting from mai n in which the
majority of the program'’s costs occur. Caller/callee cost attribution is aso useful for profiling functions called
from multiple call sites, and where optimization opportunities depend on changing codein the callers, in particul ar
by reducing the call count.

Callgrind's cache simulation is based on that of Cachegrind. Read the documentation for Cachegrind: a cache and
branch-prediction profiler first. The material below describes the features supported in addition to Cachegrind's
features.

Callgrind's ability to detect function calls and returns depends on the instruction set of the platform itisrun on. It
works best on x86 and amd64, and unfortunately currently does not work so well on PowerPC, ARM, Thumb or
MIPS code. Thisis because there are no explicit call or return instructions in these instruction sets, so Callgrind
has to rely on heuristics to detect calls and returns.

105

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

6.1.2. Basic Usage

As with Cachegrind, you probably want to compile with debugging info (the - g option) and with optimization
turned on.

To start a profile run for a program, execute:

valgrind --tool =callgrind [callgrind options] your-program [program options]
While the simulation is running, you can observe execution with:

callgrind_control -b

Thiswill print out the current backtrace. To annotate the backtrace with event counts, run
callgrind_control -e -b

After program termination, a profile data file named cal | gri nd. out . <pi d> is generated, where pid is the
process ID of the program being profiled. The data file contains information about the calls made in the program
among the functions executed, together with Instruction Read (Ir) event counts.

To generate a function-by-function summary from the profile datafile, use
call grind_annotate [options] callgrind.out.<pid>

This summary is similar to the output you get from a Cachegrind run with cg_annotate: the list of functionsis
ordered by exclusive cost of functions, which also are the onesthat are shown. Important for the additional features
of Callgrind are the following two options:

* --incl usi ve=yes: Instead of using exclusive cost of functionsas sorting order, use and show inclusive cost.

» --tree=bot h: Interleaveinto thetop level list of functions, information on the callers and the callees of each
function. In these lines, which represents executed calls, the cost gives the number of events spent in the call.
Indented, above each function, thereisthelist of callers, and below, thelist of callees. The sum of eventsin calls
to agiven function (caller lines), as well as the sum of eventsin calls from the function (callee lines) together
with the self cost, gives the total inclusive cost of the function.

By default, you will also get annotated source code for al relevant functions for which the source can be found.
In addition to source annotation as produced by cg_annot at e, you will see the annotated call sites with call
counts. For al other options, consult the (Cachegrind) documentation for cg_annot at e.

For better call graph browsing experience, it is highly recommended to use KCachegrind. If your code has a
significant fraction of its cost in cycles (sets of functions calling each other in a recursive manner), you have to
use KCachegrind, ascal | gri nd_annot at e currently does not do any cycle detection, which isimportant to
get correct resultsin this case.

If you are additionally interested in measuring the cache behavior of your program, use Callgrind with the option
- - cache- si mryes. For branch prediction simulation, use- - br anch- si mryes. Expect afurther slow down
approximately by afactor of 2.

If the program section you want to profile is somewhere in the middle of the run, it is beneficial to fast forward to
this section without any profiling, and then enable profiling. Thisis achieved by using the command line option
--instr-atstart=no andrunning, inashell:cal |l grind _control -i on justbeforetheinteresting
code section is executed. To exactly specify the code position where profiling should start, use the client request
CALLGRI ND_START_| NSTRUMVENTATI ON.

If you want to be able to see assembly code level annotation, specify - - dunp- i nst r =yes. Thiswill produce
profile data at instruction granularity. Note that the resulting profile data can only be viewed with KCachegrind.
For assembly annotation, it also is interesting to see more details of the control flow inside of functions, i.e.
(conditional) jumps. Thiswill be collected by further specifying - - col | ect - j unps=yes.

106

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

6.2. Advanced Usage

6.2.1. Multiple profiling dumps from one program run

Sometimesyou are not interested in characteristics of afull program run, but only of asmall part of it, for example
execution of one agorithm. If there are multiple algorithms, or one algorithm running with different input data, it
may even be useful to get different profile information for different parts of a single program run.

Profile data files have names of the form

cal l grind.out.pid.part-threadl D

where pid isthe PID of the running program, part is a number incremented on each dump (".part" is skipped for
the dump at program termination), and threadID is athread identification ("-threadID" is only used if you request
dumps of individual threads with - - separ at e- t hr eads=yes).

There are different ways to generate multiple profile dumps while a program is running under Callgrind's
supervision. Nevertheless, all methodstrigger the same action, whichis"dump al profileinformation sincethelast
dump or program start, and zero cost counters afterwards’. To allow for zeroing cost counters without dumping,
there is a second action "zero all cost counters now". The different methods are:

» Dump on program termination. This method is the standard way and doesn't need any special action on your
part.

» Spontaneous, interactive dumping. Use
callgrind_control -d [hint [PlID Nane]]

to request the dumping of profileinformation of the supervised application with PID or Name. hintisan arbitrary
string you can optionally specify to later be able to distinguish profile dumps. The control program will not
terminate before the dump iscompletely written. Note that the application must be actively running for detection
of the dump command. So, for a GUI application, resize the window, or for a server, send a request.

If you are using K Cachegrind for browsing of profileinformation, you can use the toolbar button For ce dump.
Thiswill request adump and trigger areload after the dump is written.

» Periodic dumping after execution of a specified number of basic blocks. For this, use the command line
option - - dunp- ever y- bb=count .

e Dumping at enter/leave of specified functions. Use the option - - dunp- bef ore=functi on and
--dunp-after=function. To zero cost counters before entering a function, use --zero-
bef or e=f uncti on.

Y ou can specify these options multiple timesfor different functions. Function specifications support wildcards:
eg. use- - dunp- bef ore=' f 00*' to generate dumps before entering any function starting with foo.

» Program controlled dumping. Insert CALLGRI ND_DUMP_STATS; at the position in your code where you
want a profile dump to happen. Use CALLGRI ND_ZERO_STATS; to only zero profile counters. See Client
reguest reference for more information on Callgrind specific client requests.

If you are running a multi-threaded application and specify the command line option - - separ at e-
t hr eads=yes, every thread will be profiled on its own and will create its own profile dump. Thus, the last
two methods will only generate one dump of the currently running thread. With the other methods, you will get
multiple dumps (one for each thread) on a dump request.

6.2.2. Limiting the range of collected events

By default, whenever events are happening (such as an instruction execution or cache hit/miss), Callgrind is
aggregating them into event counters. However, you may be interested only in what is happening within a given

107

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

function or starting from a given program phase. To this end, you can disable event aggregation for uninteresting
program parts. While attribution of eventsto functions aswell as producing separate output per program phase can
be done by other means (see previous section), there are two benefits by disabling aggregation. First, thisis very
fine-granular (e.g. just for aloop within a function). Second, disabling event aggregation for complete program
phases allows to switch off time-consuming cache simulation and alows Callgrind to progress at much higher
speed with an slowdown of around factor 2 (identical toval gri nd --t ool =none).

There are two aspects which influence whether Callgrind is aggregating events at some point in time of program
execution. First, there isthe collection state. If thisis off, no aggregation will be done. By changing the collection
state, you can control event aggregation at avery fine granularity. However, thereis not much differencein regard
to execution speed of Callgrind. By default, collection is switched on, but can be disabled by different means (see
below). Second, there is the instrumentation mode in which Callgrind is running. This mode either can be on or
off. If instrumentation is off, no observation of actions in the program will be done and thus, no actions will be
forwarded to the simulator which could trigger events. In the end, no events will be aggregated. The huge benefit
is the much higher speed with instrumentation switched off. However, this only should be used with care and in
a coarse fashion: every mode change resets the simulator state (ie. whether amemory block is cached or not) and
flushes Valgrindsinternal cache of instrumented code blocks, resulting in latency penalty at switching time. Also,
cache simulator results directly after switching on instrumentation will be skewed due to identified cache misses
which would not happenin redlity (if you care about thiswarm-up effect, you should make sureto temporarly have
collection state switched off directly after turning instrumentation mode on). However, switching instrumentation
state is very useful to skip larger program phases such as an initialization phase. By default, instrumentation is
switched on, but as with the collection state, can be changed by various means.

Callgrind can start with instrumentation mode switched off by specifying option - -i nstr-at st art =no.
Afterwards, instrumentation can be controlled in two ways: first, interactively with:

callgrind_control -i on

(and switching off again by specifying "off" instead of "on"). Second, instrumentation state
can be programmatically changed with the macros CALLGRI ND_START_| NSTRUVENTATI ON; and
CALLGRI ND_STOP_I NSTRUMENTATI ON,; .

Similarly, the collection state at program start can be switched off by --i nstr-atstart=no. During
execution, it can be controlled programmatically with the macro CALLGRI ND_TOGGLE_COLLECT; . Further,
you can limit event collection to a specific function by using - -t oggl e- col | ect =f uncti on. This will
toggle the collection state on entering and leaving the specified function. When this option isin effect, the default
collection state at program start is "off". Only events happening while running inside of the given function will
be collected. Recursive calls of the given function do not trigger any action. This option can be given multiple
times to specify different functions of interest.

6.2.3. Counting global bus events

For access to shared data among threads in a multithreaded code, synchronization is required to avoid raced
conditions. Synchronization primitives are usually implemented via atomic instructions. However, excessive use
of such instructions can lead to performance issues.

To enable analysis of this problem, Callgrind optionally can count the number of atomic instructions executed.
More precisely, for x86/x86_64, these are instructions using a lock prefix. For architectures supporting LL/SC,
these are the number of SC instructions executed. For both, the term "global bus events' is used.

The short name of the event type used for global buseventsis™Ge". To count global busevents, use- - col | ect -
bus=yes.

6.2.4. Avoiding cycles

Informally speaking, acycleisagroup of functions which call each other in arecursive way.

Formally speaking, a cycle is a nonempty set S of functions, such that for every pair of functionsFand G in S,
itispossibleto cal from F to G (possibly viaintermediate functions) and also from G to F. Furthermore, S must

108

Callgrind: a call-graph generating cache and branch prediction profiler

be maximal -- that is, be the largest set of functions satisfying this property. For example, if athird function H is
caled frominside S and calls back into S, then H is also part of the cycle and should be included in S.

Recursion is quite usual in programs, and therefore, cycles sometimes appear in the call graph output of Callgrind.
However, thetitle of this chapter should raise two questions. What is bad about cycles which makes you want to
avoid them? And: How can cycles be avoided without changing program code?

Cyclesare not bad in itself, but tend to make performance analysis of your code harder. Thisis because inclusive
costs for cals inside of a cycle are meaningless. The definition of inclusive cogt, i.e. self cost of a function
plusinclusive cost of its callees, needs a topological order among functions. For cycles, this does not hold true:
callees of afunction in a cycleinclude the function itself. Therefore, K Cachegrind does cycle detection and skips
visuaization of any inclusive cost for calls inside of cycles. Further, all functionsin a cycle are collapsed into
artificial functions called like Cycl e 1.

Now, when a program exposes really big cycles (asis true for some GUI code, or in general code using event or
callback based programming style), you lose the nice property to let you pinpoint the bottlenecks by following
call chains from mai n, guided viainclusive cost. In addition, KCachegrind loses its ability to show interesting
parts of the call graph, asit usesinclusive costs to cut off uninteresting areas.

Despite the meaningless of inclusive costs in cycles, the big drawback for visualization motivates the possibility
to temporarily switch off cycle detection in KCachegrind, which can lead to misguiding visualization. However,
often cycles appear because of unlucky superposition of independent call chainsin a way that the profile result
will see acycle. Neglecting uninteresting calls with very small measured inclusive cost would break these cycles.
In such cases, incorrect handling of cycles by not detecting them still gives meaningful profiling visualization.

It hasto be noted that currently, callgrind_annotate does not do any cycledetection at all. For program executions
with function recursion, it e.g. can print nonsense inclusive costs way above 100%.

After describing why cycles are bad for profiling, it is worth talking about cycle avoidance. The key insight here
is that symbols in the profile data do not have to exactly match the symbols found in the program. Instead, the
symbol name could encode additional information from the current execution context such as recursion level of
the current function, or even some part of the call chain leading to the function. While encoding of additional
information into symbols is quite capable of avoiding cycles, it has to be used carefully to not cause symbol
explosion. The latter imposes large memory requirement for Callgrind with possible out-of-memory conditions,
and big profile datafiles.

A further possibility to avoid cycles in Callgrind's profile data output is to simply leave out given functions in
the call graph. Of course, this also skips any call information from and to an ignored function, and thus can break
acycle. Candidates for this typically are dispatcher functions in event driven code. The option to ignore calls to
afunction is - - f n- ski p=f uncti on. Aside from possibly breaking cycles, thisis used in Callgrind to skip
trampoline functionsinthe PLT sectionsfor callsto functionsin shared libraries. Y ou can see the differenceif you
profilewith - - ski p- pl t =no. If acall isignored, its cost events will be propagated to the enclosing function.

If you have arecursive function, you can distinguish the first 10 recursion levels by specifying - - separ at e-
recs10=f uncti on. Or for al functions with - - separ at e- r ecs=10, but this will give you much bigger
profile data files. In the profile data, you will see the recursion levels of "func" as the different functions with

names "func”, "func'2", "func'3" and so on.

If you have call chains"A >B > C" and "A > C > B" in your program, you usually get a"false" cycle"B <> C".
Use- - separat e-cal | ers2=B--separ at e- cal | er s2=C, and functions"B" and "C" will betreated as
different functions depending on thedirect caller. Using the apostrophe for appending this" context" to the function
name, youget"A >B'A >CB"and"A >CA >B'C", and therewill beno cycle. Use- - separ at e- cal | er s=2
to get a 2-caller dependency for all functions. Note that doing this will increase the size of profile datafiles.

6.2.5. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent. To start
with empty profile counter values in the child, the client request CALLGRI ND_ZERO STATS; can be inserted
into code to be executed by the child, directly after f or k.

109

Callgrind: a call-graph generating cache and branch prediction profiler

However, you will have to make sure that the output file format string (controlled by - - cal | gri nd- out -
fil e)doescontain % (whichistrue by default). Otherwise, the outputs from the parent and child will overwrite
each other or will be intermingled, which almost certainly is not what you want.

Y ou will be able to control the new child independently from the parent via callgrind_control.

6.3. Callgrind Command-line Options

In the following, options are grouped into classes.

Some options allow the specification of a function/symbol name, such as - - dunp- bef or e=f uncti on, or
- - fn-ski p=functi on. All these options can be specified multiple times for different functions. In addition,
the function specifications actually are patterns by supporting the use of wildcards *' (zero or more arbitrary
characters) and '? (exactly one arbitrary character), similar to file name globbing in the shell. This feature is
important especially for C++, as without wildcard usage, the function would have to be specified in full extent,
including parameter signature.

6.3.1. Dump creation options

These options influence the name and format of the profile datafiles.
--callgrind-out-file=<file>

Writetheprofiledatatof i | e rather than to the default output file, cal | gri nd. out . <pi d>. The %p and
% format specifiers can be used to embed the process ID and/or the contents of an environment variable in
the name, as is the case for the core option - - | og- fi | e. When multiple dumps are made, the file name
is modified further; see below.

--dunp-line=<no|yes> [default: yes]

This specifies that event counting should be performed at source line granularity. This alows source
annotation for sources which are compiled with debug information (- g).

--dunp-instr=<no| yes> [defaul t: no]

This specifiesthat event counting should be performed at per-instruction granularity. Thisallowsfor assembly
code annotation. Currently the results can only be displayed by KCachegrind.

--conpress-strings=<no|yes> [default: yes]

This option influences the output format of the profile data. It specifies whether strings (file and function
names) should be identified by numbers. This shrinks the file, but makes it more difficult for humansto read
(which is not recommended in any case).

- -conpress- pos=<no| yes> [default: yes]

Thisoption influencesthe output format of the profile data. It specifieswhether numerical positionsare aways
specified as absolute values or are allowed to be relative to previous numbers. This shrinksthefile size.

- - conbi ne- dunps=<no| yes> [defaul t: no]

When enabled, when multiple profile data parts are to be generated these parts are appended to the same
output file. Not recommended.

6.3.2. Activity options

These options specify when actions relating to event counts are to be executed. For interactive control use
callgrind_contral.

110

Callgrind: a call-graph generating cache and branch prediction profiler

--dunp- every-bb=<count> [default: 0, never]

Dump profile data every count basic blocks. Whether a dump is needed is only checked when Valgrind's
internal scheduler is run. Therefore, the minimum setting useful is about 100000. The count is a 64-bit value
to make long dump periods possible.

- - dunp- bef or e=<f uncti on>

Dump when entering f unct i on.
- -zer o- bef ore=<functi on>

Zero al costs when entering f unct i on.
- -dunp- af t er=<functi on>

Dump when leaving f unct i on.

6.3.3. Data collection options

These options specify when events are to be aggregated into event counts. Also see Limiting range of event
collection.

--instr-atstart=<yes|no> [default: yes]

Specify if you want Callgrind to start simulation and profiling from the beginning of the program. When
set to no, Callgrind will not be able to collect any information, including calls, but it will have at most a
slowdown of around 4, whichisthe minimum Valgrind overhead. I nstrumentation can beinteractively enabled
viacal I grind_control -i on.

Note that the resulting call graph will most probably not contain rmai n, but will contain all the functions
executed after instrumentation was enabled. Instrumentation can also be programmatically enabled/disabled.
See the Callgrind includefilecal | gri nd. h for the macro you have to use in your source code.

For cache simulation, results will be less accurate when switching on instrumentation later in the program
run, asthe simulator starts with an empty cache at that moment. Switch on event collection |ater to cope with
thiserror.

--coll ect-atstart=<yes|no> [default: yes]
Specify whether event collection is enabled at beginning of the profile run.
To only look at parts of your program, you have two possibilities:

1. Zero event counters before entering the program part you want to profile, and dump the event countersto
afile after leaving that program part.

2. Switch on/off collection state as needed to only see event counters happening while inside of the program
part you want to profile.

The second option can be used if the program part you want to profile is called many times. Option 1, i.e.
creating alot of dumpsis not practical here.

Collection state can be toggled at entry and exit of a given function with the option - - t oggl e- col | ect .
If you use this option, collection state should be disabled at the beginning. Note that the specification of - -
t oggl e- col | ect implicitly sets- - col | ect - st at e=no.

Collection state can be toggled also by inserting the client request CALLGRI ND_TOGGLE_COLLECT ;
at the needed code positions.

--toggl e-col | ect =<functi on>

Toggle collection on entry/exit of f unct i on.

111

Callgrind: a call-graph generating cache and branch prediction profiler

--col |l ect-junps=<no|yes> [default: no]

This specifies whether information for (conditional) jumps should be collected. Asabove, callgrind_annotate
currently is not able to show you the data. Y ou have to use KCachegrind to get jump arrows in the annotated
code.

--col | ect-systi ne=<no| yes| nsec| usec| nsec> [defaul t: no]
This specifies whether information for system call times should be collected.
The value no indicates to record no system call information.

The other values indicate to record the number of system calls done (sysCount event) and the elapsed time
(sysTime event) spent in system calls. The- - col | ect - syst i me value gives the unit used for sysTime:
milli seconds, micro seconds or nano seconds. With thevalue nsec, callgrind also records the cpu time spent
during system calls (sysCpuTime).

Thevaueyes isasynonym of nsec. Thevaue nsec isnot supported on Darwin.
--col |l ect-bus=<no| yes> [defaul t: no]

This specifies whether the number of global bus events executed should be collected. The event type "Ge"
is used for these events.

6.3.4. Cost entity separation options

These options specify how event counts should be attributed to execution contexts. For example, they specify
whether the recursion level or the call chain leading to a function should be taken into account, and whether the
thread ID should be considered. Also see Avoiding cycles.

--separ at e-t hreads=<no| yes> [defaul t: no]

This option specifies whether profile data should be generated separately for every thread. If yes, the file
names get "-threadl D" appended.

--separate-call ers=<cal l ers> [defaul t: 0]

Separate contexts by at most <callers> functionsin the call chain. See Avoiding cycles.
--separ at e- cal | er s<nunber >=<f uncti on>

Separate nunber callersfor f unct i on. See Avoiding cycles.
--separate-recs=<level > [default: 2]

Separate function recursions by at most | evel levels. See Avoiding cycles.
- - separ at e- r ecs<nunber >=<f uncti on>

Separate nuber recursionsfor f unct i on. See Avoiding cycles.
- - ski p-pl t=<no| yes> [default: yes]

Ignore calls to/from PLT sections.
--skip-direct-rec=<no| yes> [defaul t: yes]

Ignore direct recursions.
- - f n- ski p=<functi on>

Ignore calls to/from a given function. E.g. if you have a call chain A > B > C, and you specify function B
to beignored, you will only see A > C.

112

Callgrind: a call-graph generating cache and branch prediction profiler

This is very convenient to skip functions handling callback behaviour. For example, with the signal/slot
mechanism in the Qt graphics library, you only want to see the function emitting a signal to call the slots
connected to that signal. First, determine the real call chain to see the functions needed to be skipped, then
use this option.

6.3.5. Simulation options

--cache-si me<yes| no> [defaul t: no]

Specify if you want to do full cache simulation. By default, only instruction read accesses will be counted
("Ir). With cache simulation, further event counters are enabled: Cache misses on instruction reads
("Imr"/*ILmr"), data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"), data write accesses
("Dw") and related cache misses ("D1mw"/*DLmw"). For more information, see Cachegrind: a cache and
branch-prediction profiler.

--branch-si me<yes| no> [defaul t: no]

Specify if you want to do branch prediction simulation. Further event counters are enabled: Number of
executed conditional branchesand related predictor misses ("Bc"/"Bem™), executed indirect jumpsand related
misses of the jump address predictor ("Bi"/"Bim™).

6.3.6. Cache simulation options
--si nmul at e-wb=<yes| no> [defaul t: no]

Specify whether write-back behavior should be simulated, allowing to distinguish LL caches misseswith and
without write backs. The cache model of Cachegrind/Callgrind does not specify write-through vs. write-back
behavior, and thisalso is not relevant for the number of generated miss counts. However, with explicit write-
back simulation it can be decided whether a miss triggers not only the loading of a new cache line, but also if
awrite back of adirty cache line had to take place before. The new dirty miss events are ILdmr, DLdmr, and
DLdmw, for misses because of instruction read, data read, and data write, respectively. Asthey produce two
memory transactions, they should account for a doubled time estimation in relation to a normal miss.

--si mul at e- hwpr ef =<yes| no> [defaul t: no]

Specify whether simulation of a hardware prefetcher should be added which is able to detect stream access
in the second level cache by comparing accesses to separate to each page. As the simulation can not decide
about any timing issues of prefetching, it is assumed that any hardware prefetch triggered succeeds before a
real accessisdone. Thus, this gives a best-case scenario by covering all possible stream accesses.

--cacheuse=<yes| no> [defaul t: no]

Specify whether cache line use should be collected. For every cache line, from loading to it being evicted,
the number of accesses as well as the number of actually used bytes is determined. This behavior is related
to the code which triggered loading of the cache line. In contrast to miss counters, which shows the position
where the symptoms of bad cache behavior (i.e. latencies) happens, the use counters try to pinpoint at the
reason (i.e. the code with the bad access behavior). The new counters are defined in a way such that worse
behavior results in higher cost. AcCostl and AcCost2 are counters showing bad temporal locality for L1
and LL caches, respectively. Thisis done by summing up reciprocal values of the numbers of accesses of
each cache line, multiplied by 1000 (as only integer costs are allowed). E.g. for a given source line with 5
read accesses, avalue of 5000 AcCost means that for every access, a new cache line was loaded and directly
evicted afterwards without further accesses. Similarly, SpLoss1/2 shows bad spatial locality for L1 and LL
caches, respectively. It givesthe spatial 1oss count of byteswhich were loaded into cache but never accessed.
It pinpoints at code accessing data in away such that cache space is wasted. This hints at bad layout of data
structures in memory. Assuming a cache line size of 64 bytesand 100 L1 misses for a given source line, the
loading of 6400 bytes into L1 was triggered. If SpLossl shows a value of 3200 for this line, this means that
half of the loaded data was never used, or using a better data layout, only half of the cache space would have
been needed. Please note that for cache line use counters, it currently is not possible to provide meaningful
inclusive costs. Therefore, inclusive cost of these counters should be ignored.

113

Callgrind: a call-graph generating cache and branch prediction profiler

--11=<si ze>, <associativity> <line size>

Specify the size, associativity and line size of the level 1 instruction cache.
- - Dl=<si ze>, <associ ativity>, <l ine size>

Specify the size, associativity and line size of the level 1 data cache.
--LL=<si ze>, <associativity>, <line size>

Specify the size, associativity and line size of the last-level cache.

6.4. Callgrind Monitor Commands

The Callgrind tool provides monitor commands handled by the Valgrind gdbserver (see Monitor command
handling by the Valgrind gdbserver). Valgrind python code provides GDB front end commands giving an
easier usage of the callgrind monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch a callgrind monitor command via its GDB front end command, instead of prefixing the
command with "monitor”, you must use the GDB cal | gri nd command (or the shorter aliases cg). Using the
callgrind GDB front end command provide a more flexible usage, such as auto-completion of the command by
GDB. InGDB, youcanusehel p cal | gri nd to get help about the callgrind front end monitor commands and
you can use apr opos cal | gri nd to get al the commands mentionning the word "callgrind" in their name
or on-line help.

e dunp [<dunp_hi nt >] requeststo dump the profile data.
e Zer 0 requests to zero the profile data counters.

e instrumentation [on|off] requests to set (if parameter on/off is given) or get the current
instrumentation state.

» st at us requeststo print out some status information.

6.5. Callgrind specific client requests

Callgrind provides the following specific client requestsin cal | gri nd. h. See that file for the exact details of
their arguments.

CALLGRI ND_DUMP_STATS

Force generation of a profile dump at specified position in code, for the current thread only. Written counters
will be reset to zero.

CALLGRI ND_DUMP_STATS_AT(stri ng)

Same as CALLGRI ND_DUMP_STATS, but allows to specify a string to be able to distinguish profile dumps.
CALLGRI ND_ZERO STATS

Reset the profile counters for the current thread to zero.
CALLGRI ND_TOGGLE_COLLECT

Toggle the collection state. This allows to ignore events with regard to profile counters. See also options - -
collect-atstart and--toggle-collect.

CALLGRI ND_START_| NSTRUMENTATI ON

Start full Callgrind instrumentation if not already enabled. When cache simulation is done, thiswill flush the
simulated cache and lead to an artificial cache warmup phase afterwards with cache misses which would not
have happened in reality. Seealso option--i nstr-atstart.

114

Callgrind: a call-graph generating cache and branch prediction profiler

CALLGRI ND_STOP_I NSTRUMENTATI ON
Stop full Callgrind instrumentation if not already disabled. This flushes Valgrinds translation cache,
and does no additional instrumentation afterwards: it effectivly will run at the same speed as Nulgrind,
i.e. a minima slowdown. Use this to speed up the Callgrind run for uninteresting code parts. Use

CALLGRI ND_START _| NSTRUVENTATI ON to enable instrumentation again. See also option - -i nst r -
atstart.

6.6. callgrind_annotate Command-line
Options
-h --help
Show summary of options.
--version
Show version of callgrind_annotate.
--show=A, B, C [default: all]
Only show figures for events A,B,C.
--threshol d=<0--100> [default: 99%
Percentage of counts (of primary sort event) we are interested in.

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functions is
bigger or equal to the given threshold percentage.

--sort=A,B,C
Sort columns by events A,B,C [event column order].

Optionally, each event is followed by a : and a threshold, to specify different thresholds depending on the
event.

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functions for
all the eventsis bigger or equal to the given event threshold percentages.

When one or more thresholds are given viathis option, the value of - - t hr eshol d isignored.
--show per cs=<no| yes> [defaul t: no]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of
each function and line.

--aut o=<yes| no> [defaul t: yes]

Annotate all source files containing functions that helped reach the event count threshold.
--context=N [default: 8]

Print N lines of context before and after annotated lines.
--inclusive=<yes|no> [default: no]

Add subroutine costs to functions calls.

115

Callgrind: a call-graph generating cache and branch prediction profiler

--tree=<none| cal l er|cal I i ng| both> [defaul t: none]

6.

Print for each function their callers, the called functions or both.
--include=<dir>

Add di r tothelist of directoriesto search for source files.

7. callgrind_control Command-line Options

By default, callgrind_control actson all programsrun by the current user under Callgrind. It is possibleto limit the
actions to specified Callgrind runs by providing alist of pids or program names as argument. The default action
isto give some brief information about the applications being run under Callgrind.

-h

--help

Show a short description, usage, and summary of options.

--version

Show version of callgrind_control.

--long

Show &l so the working directory, in addition to the brief information given by default.
--stat

Show statistics information about active Callgrind runs.

- - back

Show stack/back traces of each thread in active Callgrind runs. For each active function in the stack trace,
also the number of invocations since program start (or last dump) is shown. This option can be combined with
-eto show inclusive cost of active functions.

[A B, ...] (default:al)

Show the current per-thread, exclusive cost values of event counters. If no explicit event names are given,
figuresfor all event types which are collected in the given Callgrind run are shown. Otherwise, only figures
for event types A, B, ... are shown. If this option is combined with -b, inclusive cost for the functions of each
active stack frame is provided, too.

- -dunp[=<desc>] (default: no description)

-Z

-k

Request the dumping of profile information. Optionally, a description can be specified which is written into
the dump as part of the information giving the reason which triggered the dump action. This can be used to
distinguish multiple dumps.

--zero
Zero all event counters.
--kill

Force a Callgrind run to be terminated.

--instr=<on|of f>

Switch instrumentation mode on or off. If a Callgrind run has instrumentation disabled, no simulation is done
and no events are counted. Thisis useful to skip uninteresting program parts, as there is much less slowdown
(same as with the Valgrind tool "none"). See also the Callgrind option--i nstr-atstart.

116

Callgrind: a call-graph generating cache and branch prediction profiler

--vgdb- prefi x=<prefi x>

Specify the vgdb prefix to use by callgrind_control. callgrind_control internally uses vgdb to find and control
the active Callgrind runs. If the - - vgdb- pr ef i X option was used for launching valgrind, then the same
option must be given to callgrind_control.

117

/. Helgrind: athread error detector

To usethistool, you must specify - - t ool =hel gri nd on the Valgrind command line.

7.1. Overview

HelgrindisaValgrind tool for detecting synchronisation errorsin C, C++ and Fortran programsthat use the POSI X
pthreads threading primitives.

The main abstractions in POSIX pthreads are: a set of threads sharing a common address space, thread creation,
thread joining, thread exit, mutexes (locks), condition variables (inter-thread event notifications), reader-writer
locks, spinlocks, semaphores and barriers.

Helgrind can detect three classes of errors, which are discussed in detail in the next three sections:
1. Misuses of the POSIX pthreads API.

2. Potential deadlocks arising from lock ordering problems.

3. Dataraces -- accessing memory without adequate locking or synchronisation.

Problems like these often result in unreproducible, timing-dependent crashes, deadlocks and other misbehaviour,
and can be difficult to find by other means.

Helgrind isaware of all the pthread abstractions and tracks their effects as accurately asit can. On x86 and amd64
platforms, it understands and partially handles implicit locking arising from the use of the LOCK instruction
prefix. On PowerPC/POWER and ARM platforms, it partially handles implicit locking arising from load-linked
and store-conditional instruction pairs.

Helgrind works best when your application usesonly the POSI X pthreads API. However, if you want to use custom
threading primitives, you can describe their behaviour to Helgrind using the ANNOTATE_* macros defined in
hel gri nd. h.

Helgrind also provides Execution Trees memory profiling using the command line option - - xt r ee- nenory
and the monitor command xt nmenory.

Following those is a section containing hints and tips on how to get the best out of Helgrind.
Then there is a summary of command-line options.

Finally, thereisabrief summary of areasin which Helgrind could be improved.

7.2. Detected errors: Misuses of the POSIX
pthreads API

Helgrind intercepts calls to many POSIX pthreads functions, and is therefore able to report on various common
problems. Although these are unglamourous errors, their presence can lead to undefined program behaviour and
hard-to-find bugs later on. The detected errors are:

 unlocking an invalid mutex

« unlocking a not-locked mutex

* unlocking amutex held by a different thread
* destroying an invalid or alocked mutex

« recursively locking a non-recursive mutex

118

Helgrind: athread error detector

« deallocation of memory that contains alocked mutex

 passing mutex arguments to functions expecting reader-writer lock arguments, and vice versa

» when aPOSIX pthread function fails with an error code that must be handled

» when athread exits whilst still holding locked locks

» cadlingpt hr ead_cond_wai t with anot-locked mutex, aninvalid mutex, or onelocked by adifferent thread
* inconsistent bindings between condition variables and their associated mutexes

* invalid or duplicate initialisation of a pthread barrier

« initialisation of a pthread barrier on which threads are still waiting

« destruction of a pthread barrier object which was never initialised, or on which threads are still waiting
 waiting on an uninitialised pthread barrier

« for al of the pthreads functions that Helgrind intercepts, an error is reported, along with a stack trace, if the
system threading library routine returns an error code, even if Helgrind itself detected no error

Checks pertaining to the validity of mutexes are generally also performed for reader-writer locks.

Various kinds of this-can't-possibly-happen events are also reported. These usually indicate bugs in the system
threading library.

Reported errors always contain a primary stack trace indicating where the error was detected. They may also
contain auxiliary stack traces giving additional information. In particular, most errorsrelating to mutexes will also
tell you where that mutex first came to Helgrind's attention (the "was first observed at" part), soyou
have a chance of figuring out which mutex it is referring to. For example:

Thread #1 unl ocked a not-1|ocked | ock at Ox7FEFFFA90
at 0x4C2408D: pt hread nutex_unl ock (hg_intercepts.c:492)
by 0x40073A: nearly main (tc09 bad unl ock. c: 27)
by 0x40079B: nmain (tc09_bad unl ock. c: 50)
Lock at Ox7FEFFFA90 was first observed
at 0x4C25D01: pthread nutex_init (hg_intercepts.c: 326)
by 0x40071F: nearly main (tc09 bad unl ock. c: 23)
by 0x40079B: nmain (tc09_bad unl ock. c: 50)

Helgrind has a way of summarising thread identities, as you see here with the text "Thread #1". Thisis so
that it can speak about threads and sets of threads without overwhelming you with details. See below for more
information on interpreting error messages.

7.3. Detected errors: Inconsistent Lock
Orderings

In this section, and in general, to "acquire" alock simply means to lock that lock, and to "release” alock means
to unlock it.

Helgrind monitors the order in which threads acquire locks. This allows it to detect potential deadlocks which
could arise from the formation of cycles of locks. Detecting such inconsistencies is useful because, whilst actual
deadlocks are fairly obvious, potential deadlocks may never be discovered during testing and could later lead to
hard-to-diagnose in-service failures.

The simplest example of such aproblem is asfollows.

119

Helgrind: athread error detector

* Imagine some shared resource R, which, for whatever reason, is guarded by two locks, L1 and L2, which must
both be held when R is accessed.

» Suppose athread acquires L1, then L2, and proceeds to access R. The implication of thisisthat all threadsin
the program must acquire the two locksin the order first L1 then L2. Not doing so risks deadlock.

» Thedeadlock could happen if two threads -- call them T1 and T2 -- both want to access R. Suppose T1 acquires
L1 first, and T2 acquires L2 first. Then T1 triesto acquire L2, and T2 tries to acquire L1, but those locks are
both already held. So T1 and T2 become deadlocked.

Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When athread
acquires a new lock, the graph is updated, and then checked to see if it now contains a cycle. The presence of a
cycle indicates a potential deadlock involving the locks in the cycle.

In general, Helgrind will choose two locks involved in the cycle and show you how their acquisition ordering has
become inconsistent. It does this by showing the program points that first defined the ordering, and the program
points which later violated it. Here is a simple example involving just two locks:

Thread #1: | ock order "Ox7FFO006D0 before Ox7FFO006A0" vi ol at ed

Observed (incorrect) order is: acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts. c:494)
by 0x400825: mmin (tcl3_laogl.c:23)

followed by a later acquisition of |ock at Ox7FFO006DO0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts. c:494)
by 0x400853: mmin (tcl3_l aogl. c: 24)

Requi red order was established by acquisition of |ock at Ox7FFO0006DO0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts. c:494)
by 0x40076D: mmin (tcl3_laogl.c:17)

followed by a later acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread_nutex_| ock (hg_intercepts. c:494)
by 0x40079B: mmin (tcl3_l aogl.c: 18)

When there are more than two locks in the cycle, the error is equally serious. However, at present Helgrind does
not show the locks involved, sometimes because that information is not available, but also so asto avoid flooding
you with information. For example, a naive implementation of the famous Dining Philosophers problem involves
acycleof fivelocks(seehel gri nd/ tests/tcl4_l aog_di nphil s. ¢). InthiscaseHelgrind has detected
that all 5 philosophers could simultaneously pick up their left fork and then deadlock whilst waiting to pick up
their right forks.

Thread #6: | ock order "0x80499A0 before 0x8049A00" vi ol at ed

observed (incorrect) order is: acquisition of |ock at 0x8049A00
at 0x40085BC. pthread nmutex | ock (hg_intercepts.c:495)
by 0x80485B4: dine (tcl4 |aog dinphils.c:18)
by 0x400BDA4: nythread w apper (hg_intercepts.c:219)
by 0x39B924: start _thread (pthread create.c:297)
by 0x2F107D: clone (clone. S: 130)

followed by a later acquisition of |ock at 0x80499A0
at 0x40085BC. pthread nmutex | ock (hg_intercepts.c:495)
by 0x80485CD: dine (tcl4 |aog dinphils.c:19)
by 0x400BDA4: nythread w apper (hg_intercepts.c:219)
by 0x39B924: start _thread (pthread create.c:297)
by 0x2F107D: clone (clone. S: 130)

120

Helgrind: athread error detector

7.4. Detected errors: Data Races

A datarace happens, or could happen, when two threads access a shared memory location without using suitable
locks or other synchronisation to ensure single-threaded access. Such missing locking can cause obscure timing
dependent bugs. Ensuring programs are race-free is one of the central difficulties of threaded programming.

Reliably detecting racesis adifficult problem, and most of Helgrind's internals are devoted to dealing with it. We
begin with a simple example.

7.4.1. A Simple Data Race

About the simplest possible example of arace is as follows. In this program, it is impossible to know what the
value of var isat the end of the program. Isit2?Or 1 ?

#i ncl ude <pt hread. h>
int var = O;

voi d* child_fn (void* arg) {
var++; /* Unprotected relative to parent */ /* this is line 6 */
return NULL;

}

int min (void) {
pthread_t child;
pt hread_create(&child, NULL, child_fn, NULL);
var++; /* Unprotected relative to child */ /* this is line 13 */
pt hread_j oi n(child, NULL);
return O;

}

The problem is there is nothing to stop var being updated simultaneously by both threads. A correct program
would protect var with alock of type pt hr ead_nut ex_t , which is acquired before each access and released
afterwards. Helgrind's output for this program is:

Thread #1 is the programis root thread

Thread #2 was created
at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)
by 0x4E333A4: do_clone (in /lib64/1ibpthread-2. 8. so0)
by O0x4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. so)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)
by 0x400605: nain (sinple race.c:12)

Possi bl e data race during read of size 4 at 0x601038 by thread #1
Locks hel d: none
at 0x400606: mmin (sinple_race.c:13)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none
at 0x4005DC. child fn (sinple_race.c:6)
by Ox4C29AFF. nythread w apper (hg_intercepts.c: 194)
by O0x4E3403F:. start _thread (in /1ib64/1ibpthread-2. 8. s0)
by 0x511COCC. clone (in /lib64/1ibc-2.8.s0)

Location 0x601038 is O bytes inside global var "var"

121

Helgrind: athread error detector

declared at sinple_race.c:3

Thisisquitealot of detail for an apparently simple error. The last clause is the main error message. It says there
isarace as aresult of aread of size 4 (bytes), at 0x601038, which is the address of var , happening in function
mai n at line 13 in the program.

Two important parts of the message are:

» Helgrind shows two stack traces for the error, not one. By definition, a race involves two different threads
accessing the same location in such away that the result depends on the rel ative speeds of the two threads.

and

The first stack trace follows the text "Possi bl e data race during read of size 4 ...
the second trace followsthetext "Thi s conflicts with a previous wite of size 4 ...
Helgrind is usually able to show both accesses involved in a race. At least one of these will be a write (since
two concurrent, unsynchronised reads are harmless), and they will of course be from different threads.

By examining your program at the two locations, you should be able to get at least some idea of what the root
cause of the problem is. For each location, Helgrind shows the set of locks held at the time of the access. This
often makes it clear which thread, if any, failed to take a required lock. In this example neither thread holds
alock during the access.

* For races which occur on global or stack variables, Helgrind tries to identify the name and defining point of
the variable. Hence the text "Locati on 0x601038 is 0 bytes inside global var "var
decl ared at sinple_race.c: 3"

Showing names of stack and global variables carries no run-time overhead once Helgrind has your program
up and running. However, it does require Helgrind to spend considerable extra time and memory at program
startup to read the relevant debug info. Hence this facility is disabled by default. To enableit, you need to give
the- - r ead- var - i nf o=yes option to Helgrind.

The following section explains Helgrind's race detection algorithm in more detail.

7.4.2. Helgrind's Race Detection Algorithm

Most programmersthink about threaded programming in terms of the basic functionality provided by thethreading
library (POSIX Pthreads): thread creation, thread joining, locks, condition variables, semaphores and barriers.

The effect of using these functionsisto impose constraints upon the order in which memory accesses can happen.
This implied ordering is generally known as the "happens-before relation”. Once you understand the happens-
before relation, it is easy to see how Helgrind finds races in your code. Fortunately, the happens-before relation
isitself easy to understand, and is by itself a useful tool for reasoning about the behaviour of parallel programs.
We now introduce it using a simple example.

Consider first the following buggy program:

Par ent thread: Chil d thread:
int var;

/'l create child thread

pt hread_create(...)

var = 20; var = 10;
exit

/1 wait for child
pthread_join(...)
printf("%l\n", var);

The parent thread creates a child. Both then write different valuesto some variablevar , and the parent then waits
for the child to exit.

122

Helgrind: athread error detector

What isthevalueof var at the end of the program, 10 or 20? We don't know. The program is considered buggy (it
has arace) because thefinal value of var depends ontherelative rates of progress of the parent and child threads.
If the parent is fast and the child is slow, then the child's assignment may happen later, so the final value will be
10; and vice versaif the child is faster than the parent.

Therelativerates of progress of parent vschild isnot something the programmer can control, and will often change
from run to run. It depends on factors such astheload on the machine, what elseisrunning, the kernel's scheduling
strategy, and many other factors.

The obvious fix is to use alock to protect var . It is however instructive to consider a somewhat more abstract
solution, which is to send a message from one thread to the other:

Par ent thread: Child thread:
int var;

/1 create child thread

pt hread create(...)

var = 20;

/1 send nessage to child
/1l wait for nmessage to arrive
var = 10;
exi t

/] wait for child
pthread_join(...)
printf("%\n", var);

Now the program reliably prints"10", regardless of the speed of the threads. Why? Because the child's assignment
cannot happen until after it receives the message. And the message is not sent until after the parent's assignment
is done.

The message transmission creates a "happens-before" dependency between the two assignments: var = 20;
must now happen-beforevar = 10; . And so thereisno longer araceon var .

Note that it's not significant that the parent sends a message to the child. Sending a message from the child (after
its assignment) to the parent (before its assignment) would also fix the problem, causing the program to reliably
print "20".

Helgrind's algorithm is (conceptually) very simple. It monitors all accesses to memory locations. If alocation --
inthisexample, var , is accessed by two different threads, Helgrind checksto see if the two accesses are ordered
by the happens-before relation. If so, that's fine; if not, it reports arace.

It isimportant to understand that the happens-before relation creates only a partial ordering, not atotal ordering.
An example of atotal ordering is comparison of numbers: for any two numbers x and y, either x is less than,
equal to, or greater thany. A partial ordering is like atotal ordering, but it can also express the concept that two
elements are neither equal, less or greater, but merely unordered with respect to each other.

In the fixed example above, we say that var = 20; "happens-before” var = 10; . Butintheorigina version,
they are unordered: we cannot say that either happens-before the other.

What does it mean to say that two accesses from different threads are ordered by the happens-before relation? It
means that there is some chain of inter-thread synchronisation operations which cause those accesses to happenin
aparticular order, irrespective of the actual rates of progress of the individual threads. Thisis arequired property
for areliable threaded program, which iswhy Helgrind checks for it.

The happens-before relations created by standard threading primitives are as follows:

» When a mutex is unlocked by thread T1 and later (or immediately) locked by thread T2, then the memory
accessesin T1 prior to the unlock must happen-before those in T2 after it acquires the lock.

123

Helgrind: athread error detector

The same idea applies to reader-writer locks, although with some complication so asto allow correct handling
of reads vs writes.

When acondition variable (CV) is signalled on by thread T1 and some other thread T2 is thereby released from
await on the same CV, then the memory accessesin T1 prior to the signalling must happen-before those in T2
after it returns from the wait. If no thread was waiting on the CV then thereis no effect.

If instead T1 broadcastson aCV, then all of the waiting threads, rather than just one of them, acquire a happens-
before dependency on the broadcasting thread at the point it did the broadcast.

A thread T2 that continues after completing sem_wait on a semaphore that thread T1 posts on, acquires a
happens-before dependence on the posting thread, a bit like dependencies caused mutex unlock-lock pairs.
However, since a semaphore can be posted on many times, it is unspecified from which of the post calls the
wait call getsits happens-before dependency.

For a group of threads T1 .. Tn which arrive at a barrier and then move on, each thread after the call has a
happens-after dependency from all threads before the barrier.

A newly-created child thread acquires an initial happens-after dependency on the point where its parent created
it. That is, all memory accesses performed by the parent prior to creating the child are regarded as happening-
before all the accesses of the child.

Similarly, when an exiting thread is reaped via a call to pt hr ead_j oi n, once the cal returns, the reaping
thread acquires a happens-after dependency relative to all memory accesses made by the exiting thread.

In summary: Helgrind intercepts the above listed events, and builds a directed acyclic graph represented the
collective happens-before dependencies. It also monitors all memory accesses.

If alocation is accessed by two different threads, but Helgrind cannot find any path through the happens-before
graph from one access to the other, then it reports a race.

There are a couple of caveats:

Helgrind doesn't check for aracein the case where both accesses are reads. That would be silly, since concurrent
reads are harmless.

Two accesses are considered to be ordered by the happens-before dependency even through arbitrarily
long chains of synchronisation events. For example, if T1 accesses some location L, and then
pt hr ead_cond_si gnal s T2, which later pt hr ead_cond_si gnal s T3, which then accessesL, then a
suitable happens-before dependency exists between the first and second accesses, even though it involves two
different inter-thread synchronisation events.

7.4.3. Interpreting Race Error Messages

Helgrind's race detection algorithm collects a lot of information, and tries to present it in a helpful way when a
raceis detected. Here's an example:

Thread #2 was created

at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)

by 0x4E333A4: do_clone (in /1ib64/1ibpthread-2. 8. so0)

by O0x4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. s0)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)

by 0x4008F2: main (tc2l pthonce. c: 86)

Thread #3 was created

at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)
by O0x4E333A4: do_clone (in /1ib64/1ibpthread-2. 8. so0)
by O0x4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. s0)

124

Helgrind: athread error detector

by 0x4C299D4: pthread create@ (hg_intercepts.c:214)
by 0x4008F2: main (tc2l1_pthonce. c: 86)

Possi bl e data race during read of size 4 at 0x601070 by thread #3
Locks hel d: none

at 0x40087A: child (tc2l1_pthonce.c: 74)

by Ox4C29AFF: nyt hread_wr apper (hg_intercepts.c:194)

by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

by 0x511CO0CC. clone (in /1ib64/I1ibc-2.8.s0)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none
at 0x400883: child (tc2l1_pthonce.c: 74)
by Ox4C29AFF: nyt hread_wr apper (hg_intercepts.c:194)
by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)
by 0x511C0CC. clone (in /lib64/1ibc-2.8.s0)

Locati on 0x601070 is O bytes inside |ocal var "unprotected2”
declared at tc2l1 pthonce.c:51, in frame #0 of thread 3

Helgrind first announces the creation points of any threads referenced in the error message. This is so it can
speak concisely about threads without repeatedly printing their creation point call stacks. Each thread isonly ever
announced once, the first time it appearsin any Helgrind error message.

Themain error message beginsat thetext "Possi bl e dat a race duri ng read". Atthestartisinformation
you would expect to see -- address and size of the racing access, whether aread or awrite, and the call stack at
the point it was detected.

A second call stack is presented starting at thetext "This conflicts with a previous wite".
This shows a previous access which also accessed the stated address, and which is believed to be racing against
the access in the first call stack. Note that this second call stack is limited to a maximum of - - hi st ory-
backt race- si ze entrieswith adefault value of 8 to limit the memory usage.

Finally, Helgrind may attempt to give adescription of the raced-on addressin source level terms. In this example,
itidentifiesit as alocal variable, shows its name, declaration point, and in which frame (of the first call stack) it
lives. Note that this information is only shown when - - r ead- var - i nf o=yes is specified on the command
line. That's because reading the DWARF3 debug information in enough detail to capture variabletype and location
information makes Helgrind much slower at startup, and also requires considerable amounts of memory, for large
programs.

Once you have your two call stacks, how do you find the root cause of the race?

The first thing to do is examine the source locations referred to by each call stack. They should both show an
access to the same location, or variable.

Now figure out how how that location should have been made thread-safe:

 Perhaps the location was intended to be protected by a mutex? If so, you need to lock and unlock the mutex
at both access points, even if one of the accesses is reported to be a read. Did you perhaps forget the locking
at one or other of the accesses? To help you do this, Helgrind shows the set of locks held by each threads at
the time they accessed the raced-on location.

 Alternatively, perhapsyou intended to use asome other schemeto makeit safe, such assignalling on acondition
variable. In all such cases, try to find a synchronisation event (or a chain thereof) which separates the earlier-
observed access (as shown in the second call stack) from the later-observed access (as shown in the first call
stack). In other words, try to find evidence that the earlier access "happens-before” the later access. See the
previous subsection for an explanation of the happens-before relation.

Thefact that Helgrind isreporting arace meansit did not observe any happens-before relation between the two
accesses. If Helgrind isworking correctly, it should also be the case that you also cannot find any such relation,

125

Helgrind: athread error detector

even on detailed inspection of the source code. Hopefully, though, your inspection of the code will show where
the missing synchronisation operation(s) should have been.

7.5. Hints and Tips for Effective Use of
Helgrind

Helgrind can be very helpful in finding and resolving threading-related problems. Like all sophisticated tools, it
is most effective when you understand how to play to its strengths.

Helgrind will be less effective when you merely throw an existing threaded program at it and try to make sense
of any reported errors. It will be more effective if you design threaded programs from the start in away that helps
Helgrind verify correctness. The same is true for finding memory errors with Memcheck, but applies more here,
because thread checking is a harder problem. Consequently it is much easier to write a correct program for which
Helgrind falsely reports (threading) errorsthan it isto write acorrect program for which Memcheck falsely reports
(memory) errors.

With that in mind, here are some tips, listed most important first, for getting reliable results and avoiding false
errors. The first two are critical. Any violations of them will swamp you with huge numbers of false data-race
errors.

1. Make sure your application, and al the libraries it uses, use the POSIX threading primitives. Helgrind needs
to be able to see all events pertaining to thread creation, exit, locking and other synchronisation events. To do
so it intercepts many POSIX pthreads functions.

Do not roll your own threading primitives (mutexes, etc) from combinations of the Linux futex syscall, atomic
counters, etc. These throw Helgrind's internal what's-going-on models way off course and will give bogus
results.

Also, do not reimplement existing POSI X abstractionsusing other POSI X abstractions. For example, don't build
your own semaphore routines or reader-writer locks from POSIX mutexes and condition variables. Instead use
POSIX reader-writer locks and semaphores directly, since Helgrind supports them directly.

Helgrind directly supportsthe following POSI X threading abstractions. mutexes, reader-writer locks, condition
variables (but see below), semaphores and barriers. Currently spinlocks are not supported, although they could
bein future.

At the time of writing, the following popular Linux packages are known to implement their own threading
primitives:

» Qtversion4.X. Qt 3.X isharmlessinthat it only uses POSIX pthreads primitives. Unfortunately Qt 4.X has
its own implementation of mutexes (QMutex) and thread reaping. Helgrind 3.4.x contains direct support for
Qt 4.X threading, which is experimental but is believed to work fairly well. A side effect of supporting Qt
4 directly is that Helgrind can be used to debug KDE4 applications. As thisis an experimental feature, we
would particularly appreciate feedback from folks who have used Helgrind to successfully debug Qt 4 and/
or KDE4 applications.

* Runtime support library for GNU OpenMP (part of GCC), at least for GCC versions 4.2 and 4.3. The GNU
OpenMP runtimelibrary (I i bgonp. so) constructsits own synchronisation primitives using combinations
of atomic memory instructions and the futex syscall, which causes total chaos since in Helgrind since it
cannot "see" those.

Fortunately, this can be solved using a configuration-time option (for GCC). Rebuild GCC from source, and
configureusing - - di sabl e- | i nux- f ut ex. This makes libgomp.so use the standard POSI X threading
primitives instead. Note that this was tested using GCC 4.2.3 and has hot been re-tested using more recent
GCC versions. We would appreciate hearing about any successes or failures with more recent versions.

If you must implement your own threading primitives, there are a set of client request macrosinhel gri nd. h
to help you describe your primitives to Helgrind. Y ou should be able to mark up mutexes, condition variables,
etc, without difficulty.

126

Helgrind: athread error detector

It is aso possible to mark up the effects of thread-safe reference
counting using the ANNOTATE_HAPPENS BEFORE, ANNOTATE_HAPPENS AFTER and
ANNOTATE_HAPPENS BEFORE FORGET_ALL, macros. Thread-safe reference counting using an
atomically incremented/decremented refcount variable causes Helgrind problems because a one-to-zero
transition of the reference count means the accessing thread has exclusive ownership of the associated resource
(normally, a C++ object) and can therefore accessit (normally, to run its destructor) without locking. Helgrind
doesn't understand this, and markup is essential to avoid false positives.

Here are recommended guidelines for marking up thread safe reference counting in C++. You only need to
mark up your release methods -- the ones which decrement the reference count. Given aclass like this:

cl ass Myd ass {
unsi gned i nt nRef Count;

void Release (void) {
unsi gned int newCount = atom c_decrenent (&rRef Count) ;
if (newCount == 0) {
delete this;

}
}

the release method should be marked up as follows:

void Release (void) {

unsi gned i nt newCount = atom c_decrenent (&rRef Count) ;

if (newCount == 0) {
ANNCOTATE_HAPPENS_AFTER(&rRef Count) ;
ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(&rRef Count) ;
delete this;

} else {
ANNOCTATE_HAPPENS_BEFORE(&nRef Count) ;

}
}

There are anumber of complex, mostly-theoretical objections to this scheme. From a theoretical standpoint it
appears to be impossible to devise a markup scheme which is completely correct in the sense of guaranteeing
to remove all false races. The proposed scheme however works well in practice.

. Avoid memory recycling. If you can't avoid it, you must use tell Helgrind what is going on via the
VALGRI ND_HG CLEAN_MEMORY client request (in hel gri nd. h).

Helgrind is aware of standard heap memory allocation and deallocation that occurs viamal | oc/f r ee/new
del et e and from entry and exit of stack frames. In particular, when memory is deallocated via f r ee,
del et e, or function exit, Helgrind considersthat memory clean, sowhenitiseventually reallocated, itshistory
isirrelevant.

However, it is common practice to implement memory recycling schemes. In these, memory to be freed is not
handed to f r ee/del et e, but instead put into a pool of free buffers to be handed out again as required. The
problem is that Helgrind has no way to know that such memory islogically no longer in use, and its history is
irrelevant. Hence you must make that explicit, using the VALGRI ND_HG CLEAN_MEMORY client request to
specify the relevant address ranges. It's easiest to put these requests into the pool manager code, and use them
either when memory is returned to the pool, or is alocated from it.

. Avoid POSIX condition variables. If you can, use POSIX semaphores (sem t , sem post, sem wai t) to
do inter-thread event signalling. Semaphores with an initial value of zero are particularly useful for this.

127

Helgrind: athread error detector

Helgrind only partially correctly handles POSIX condition variables. This is because Helgrind can see
inter-thread dependencies between a pt hread _cond_wait cal and a pt hread_cond_si gnal /
pt hr ead_cond_br oadcast call only if the waiting thread actually gets to the rendezvous first (so that it
actually calls pt hread_cond_wai t). It can't see dependencies between the threads if the signaller arrives
first. In the latter case, POSIX guidelines imply that the associated boolean condition still provides an inter-
thread synchronisation event, but one which isinvisible to Helgrind.

The result of Helgrind missing some inter-thread synchronisation eventsis to cause it to report fal se positives.

The root cause of this synchronisation lossage is particularly hard to understand, so an example is helpful.
It was discussed at length by Arndt Muehlenfeld ("Runtime Race Detection in Multi-Threaded Programs’,
Dissertation, TU Graz, Austria). The canonical POSIX-recommended usage scheme for condition variablesis
asfollows:

b is a Bool ean condition, which is Fal se nobst of the tine
cv is a condition variable
mnK is its associated nutex

Signal l er: Wi ter:

| ock(nx) I ock(nx)

b = True while (b == Fal se)
si gnal (cv) wai t (cv, nx)

unl ock(nx) unl ock(nx)

Assumeb isFalse most of thetime. If the waiter arrives at the rendezvousfirst, it entersitswhile-loop, waitsfor
the signaller to signal, and eventually proceeds. Helgrind sees the signal, notes the dependency, and all iswell.

If thesignaller arrivesfirst, b isset to true, and the signal disappearsinto nowhere. When the waiter later arrives,
it does not enter itswhile-loop and simply carries on. But even in this case, the waiter code following the while-
loop cannot execute until the signaller setsb to True. Hence thereis still the same inter-thread dependency, but
thistimeit is through an arbitrary in-memory condition, and Helgrind cannot see it.

By comparison, Helgrind's detection of inter-thread dependencies caused by semaphore operationsis believed
to be exactly correct.

Asfar as| know, a solution to this problem that does not require source-level annotation of condition-variable
wait loops is beyond the current state of the art.

4. Make sure you are using a supported Linux distribution. At present, Helgrind only properly supports glibc-2.3
or later. Thisin turn means we only support glibc's NPTL threading implementation. The old LinuxThreads
implementation is not supported.

5. If your application is using thread local variables, helgrind might report fal se positive race conditions on these
variables, despite being very probably race free. On Linux, you can use - - si m hi nt s=deact i vat e-
pt hr ead- st ack- cache- vi a- hack to avoid such false positive error messages (see --sim-hints).

6. Round up all finished threads using pt hr ead_j oi n. Avoid detaching threads: don't create threads in the
detached state, and don't call pt hr ead_det ach on existing threads.

Using pt hr ead_j oi n to round up finished threads provides a clear synchronisation point that both Helgrind
and programmers can see. If you don't call pt hr ead_j oi n on athread, Helgrind has no way to know when
it finishes, relative to any significant synchronisation pointsfor other threadsin the program. So it assumesthat
the thread lingers indefinitely and can potentialy interfere indefinitely with the memory state of the program.
It has every right to assume that -- after all, it might really be the case that, for scheduling reasons, the exiting
thread did run very slowly in the last stages of itslife.

7. Perform thread debugging (with Helgrind) and memory debugging (with Memcheck) together.

128

Helgrind: athread error detector

Helgrind tracks the state of memory in detail, and memory management bugs in the application are liable to
cause confusion. In extreme cases, applications which do many invalid reads and writes (particularly to freed
memory) have been known to crash Helgrind. So, ideally, you should make your application Memcheck-clean
before using Helgrind.

It may be impossible to make your application Memcheck-clean unless you first remove threading bugs. In
particular, it may be difficult to remove all reads and writes to freed memory in multithreaded C++ destructor
seguences at program termination. So, ideally, you should make your application Helgrind-clean before using
Memcheck.

Sincethis circularity is obviously unresolvable, at |east bear in mind that Memcheck and Helgrind are to some
extent complementary, and you may need to use them together.

8. POSIX requires that implementations of standard I/O (printf ,fprintf,fwite,fread,etc) arethread
safe. Unfortunately GNU libc implements this by using internal locking primitives that Helgrind is unable to
intercept. Consequently Helgrind generates many fal se race reports when you use these functions.

Helgrind attempts to hide these errors using the standard Valgrind error-suppression mechanism. So, at least
for simpletest cases, you don't see any. Nevertheless, some may dlip through. Just something to be aware of.

9. Helgrind's error checks do not work properly inside the system threading library itself (I i bpt hr ead. so),
and it usually observeslarge numbers of (false) errorsin there. Valgrind's suppression system then filters these
out, so you should not see them.

If you see any race errors reported where | i bpt hread. so or | d. so is the object associated with the
innermost stack frame, please file a bug report at http://www.valgrind.org/.

7.6. Helgrind Command-line Options

The following end-user options are available:
--free-is-wite=no|yes [default: no]

When enabled (not the default), Helgrind treats freeing of heap memory as if the memory was written
immediately before the free. This exposes races where memory is referenced by one thread, and freed by
another, but there is no observable synchronisation event to ensure that the reference happens before the free.

Thisfunctionality isnewinValgrind 3.7.0, and isregarded as experimental. It isnot enabled by default because
its interaction with custom memory alocatorsis not well understood at present. User feedback is welcomed.

--track-1 ockorders=no|yes [default: yes]

When enabled (the default), Helgrind performs lock order consistency checking. For some buggy programs,
the large number of lock order errors reported can become annoying, particularly if you're only interested in
race errors. You may therefore find it helpful to disable lock order checking.

--history-Ievel =none| approx| full [default: full]

--history-Ievel =ful | (thedefault) causes Helgrind collects enough information about "old" accesses
that it can producetwo stack tracesin aracereport -- both the stack tracefor the current access, and thetracefor
the older, conflicting access. To limit memory usage, "old" accesses stack traces are limited to a maximum of
--hi story-backtrace-si ze entries(default 8) or to- - num cal | er s valueif thisvalueissmaller.

Callecting such information is expensive in both speed and memory, particularly for programs that do many
inter-thread synchronisation events (locks, unlocks, etc). Without such information, it is more difficult to
track down the root causes of races. Nonetheless, you may not need it in situations where you just want to
check for the presence or absence of races, for example, when doing regression testing of a previously race-
free program.

--hi story- 1| evel =none isthe opposite extreme. It causes Helgrind not to collect any information about
previous accesses. This can be dramatically faster than - - hi st ory-1 evel =ful | .

129

http://www.valgrind.org/

Helgrind: athread error detector

--hi story-1| evel =appr ox provides a compromise between these two extremes. It causes Helgrind
to show a full trace for the later access, and approximate information regarding the earlier access. This
approximate information consists of two stacks, and the earlier access is guaranteed to have occurred
somewhere between program points denoted by the two stacks. This is not as useful as showing the exact
stack for the previous access (as- - hi st ory- 1 evel =f ul | does), but it is better than nothing, and it is
amost asfast as- - hi st ory-1 evel =none.

--hi story-backtrace-si ze=<nunber > [defaul t: 8]

When --history-1level =full is sdected, - - hi story-backtrace-si ze=nunber indicates
how many entries to record in "old" accesses stack traces.

--del ta-stacktrace=no|yes [default: yes on |inux and64/x86]
Thisflag only hasany effect at - - hi story-1 evel =ful | .

- - del t a- st ackt r ace configurestheway Helgrind capturesthe stacktracesfor theoption- - hi st or y-
| evel =ful | . Such a stacktrace is typically needed each time a new piece of memory isread or written in
abasic block of instructions.

--del t a- st ackt race=no causes Helgrind to compute a full history stacktrace from the unwind info
each time a stacktrace is needed.

--del ta-stacktrace=yes indicates to Helgrind to derive a new stacktrace from the previous
stacktrace, aslong asthere was no call instruction, no return instruction, or any other instruction changing the
call stack since the previous stacktrace was captured. If no such instruction was executed, the new stacktrace
can be derived from the previous stacktrace by just changing the top frame to the current program counter.
This option can speed up Helgrind by 25% when using - - hi st ory- | evel =ful | .

The following aspects have to be considered when using - - del t a- st ackt race=yes :

 In some cases (for example in a function prologue), the valgrind unwinder might not properly unwind the
stack, due to some limitations and/or due to wrong unwind info. When using --delta-stacktrace=yes, the
wrong stack trace captured in the function prologue will be kept till the next call or return.

» Ontheother hand, --delta-stacktrace=yes sometimes helpsto obtain acorrect stacktrace, for example when
the unwind info allows a correct stacktrace to be done in the beginning of the sequence, but not later on
in the instruction sequence.

» Determining which instructions are changing the callstack is partially based on platform dependent
heuristics, which have to be tuned/validated specifically for the platform. Also, unwinding in a function
prologue must be good enough to alow using --delta-stacktrace=yes. Currently, the option --delta-
stacktrace=yes has been reasonably validated only on linux x86 32 bits and linux amd64 64 bits. For more
details about how to validate --delta-stacktrace=yes, see debug option --hg-sanity-flags and the function
check cached rcec ok inlibhb_core.c.

--conflict-cache-size=N [default: 1000000]
Thisflag only hasany effect at - - hi story-1 evel =ful | .

Information about "old" conflicting accessesis stored in acache of limited size, with LRU-style management.
Thisis necessary because it isn't practical to store a stack trace for every single memory access made by the
program. Historical information on not recently accessed locations is periodically discarded, to free up space
in the cache.

This option controls the size of the cache, in terms of the number of different memory addresses for which
conflicting access information is stored. If you find that Helgrind is showing race errors with only one stack
instead of the expected two stacks, try increasing this value.

The minimum valueis 10,000 and the maximum is 30,000,000 (thirty timesthe default value). Increasing the
value by 1 increases Helgrind's memory requirement by very roughly 100 bytes, so the maximum value will
easily eat up three extra gigabytes or so of memory.

130

Helgrind: athread error detector

--check-stack-refs=no| yes [default: yes]

By default Helgrind checks all data memory accesses made by your program. This flag enables you to skip
checking for accesses to thread stacks (local variables). This can improve performance, but comes at the cost
of missing races on stack-allocated data.

i gnor e-t hread-creati on=<yes|no> [defaul t: no]

Controls whether all activities during thread creation should be ignored. By default enabled only on Solaris.
Solaris provides higher throughput, parallelism and scalability than other operating systems, at the cost of
more fine-grained locking activity. This means for example that when a thread is created under glibc, just
one big lock is used for all thread setup. Solaris libc uses several fine-grained locks and the creator thread
resumes its activities as soon as possible, leaving for example stack and TLS setup sequence to the created
thread. This situation confuses Helgrind as it assumes there is some false ordering in place between creator
and created thread; and therefore many types of race conditions in the application would not be reported. To
prevent such false ordering, this command line option is set to yes by default on Solaris. All activity (loads,
stores, client requests) is therefore ignored during:

 pthread_create() call in the creator thread
+ thread creation phase (stack and TL S setup) in the created thread

Also new memory allocated during thread creation is untracked, that is race reporting is suppressed there.
DRD does the same thing implicitly. This is necessary because Solaris libc caches many objects and reuses
them for different threads and that confuses Helgrind.

7.7. Helgrind Monitor Commands

The Helgrind tool provides monitor commands handled by Valgrind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver). Vagrind python code provides GDB front end commands giving an
easier usage of the helgrind monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch an helgrind monitor command via its GDB front end command, instead of prefixing
the command with "monitor”, you must use the GDB hel gri nd command (or the shorter aliases hg). Using
the helgrind GDB front end command provide a more flexible usage, such as evaluation of address and length
arguments by GDB. In GDB, you can use hel p hel gri nd to get help about the helgrind front end monitor
commands and you can use apr opos hel gri nd to get all the commands mentionning the word "helgrind"
in their name or on-line help.

« info | ocks [l ock_addr] showsthelist of locks and their status. If | ock_addr isgiven, only shows
the lock located at this address.

In the following example, helgrind knows about one lock. This lock is located at the guest address ga
0x8049a20. The lock kind isr dwr indicating a reader-writer lock. Other possible lock kinds are nonRec
(simple mutex, non recursive) and mbRec (simple mutex, possibly recursive). The lock kind is then followed
by the list of threads helding the lock. In the below example, R1: t hread #6 tid 3 indicates that the
helgrind thread #6 has acquired (once, as the counter following the letter R is one) the lock in read mode. The
helgrind thread nr is incremented for each started thread. The presence of 'tid 3' indicates that the thread #6 is
has not exited yet and isthe valgrind tid 3. If athread has terminated, then thisisindicated with 'tid (exited)'".

(gdb) rmonitor info |ocks
Lock ga 0x8049a20 {

ki nd r dwr
{ Rl:thread #6 tid 3 }
}
(gdb)

If you give the option - - r ead- var - i nf o=yes, then more information will be provided about the lock
location, such as the global variable or the heap block that contains the lock:

131

Helgrind: athread error detector

Lock ga 0x8049a20 {
Locati on 0x8049a20 is O bytes inside global var "s_rw ock”
declared at rw ock_race.c: 17
ki nd r dwr
{ Rl:thread #3 tid 3 }

}

The GDB equivalent helgrind front end command hel gri nd i nfo | ocks [ADDR] accept any address
expression for itsfirst ADDR argument.

accesshi story <addr> [<l en>] showsthe access history recorded for <len> (default 1) bytes starting
at <addr>. For each recorded accessthat overlapswith the givenrange, accesshi st or y showsthe operation
type (read or write), the address and size read or written, the helgrind thread nr/valgrind tid number that did
the operation and the locks held by the thread at the time of the operation. The oldest access is shown first, the
most recent access is shown |ast.

In the following example, we see first a recorded write of 4 bytes by thread #7 that has modified the given 2
bytes range. The second recorded write is the most recent recorded write : thread #9 modified the same 2 bytes
as part of a4 bytes write operation. The list of locks held by each thread at the time of the write operation are
also shown.

(gdb) nonitor accesshistory 0x8049D8A 2
wite of size 4 at 0x8049D88 by thread #7 tid 3
==6319== Locks hel d: 2, at address 0x8049D8C (and 1 that can't be shown)

==6319== at 0x804865F: child_fnl (Il ocked vs_unl ocked2. c: 29)
==6319== by O0x400AE61: nyt hread_wr apper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S: 130)

wite of size 4 at 0x8049D88 by thread #9 tid 2
==6319== Locks hel d: 2, at addresses 0x8049DA4 0x8049DD4

==6319== at 0x804877B: child_fn2 (Il ocked _vs_unl ocked2. c: 45)
==6319== by O0x400AE61: nyt hread_wr apper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S: 130)

The GDB equivalent helgrind front end command hel gri nd accesshi story ADDR [LEN] accept any
address expression for itsfirst ADDR argument. The second optional argument is any integer expression. Note
that these 2 arguments must be separated by a space, like in the following example:

(gdb) hg accesshistory &mx si zeof (nx)
read of size 4 at Ox1130A8 by thread #2 tid (exited)
==302== Locks hel d: none

==302== at O0x1094AC. chil d8 (tc19_shadowrem c: 37)

==302== by Ox10AODF: steer (tcl9 shadowrem c: 288)

==302== by 0x48448A3: nyt hread_wr apper (hg_intercepts.c: 406)
==302== by 0x4879EA6: start_thread (pthread_create.c:477)
==302== by 0x4990A2E: cl one (cl one. S: 95)

xtrmenory [<filename> default xtmenory. kcg. %. %] requests Helgrind tool to produce an
xtree heap memory report. See Execution Trees for a detailed explanation about execution trees.

132

Helgrind: athread error detector

7.8. Helgrind Client Requests

The following client requests are defined in hel gri nd. h. See that file for exact details of their arguments.
* VALGRI ND_HG_CLEAN MEMORY

This makes Helgrind forget everything it knows about a specified memory range. Thisis particularly useful for
memory allocators that wish to recycle memory.

« ANNOTATE_HAPPENS_BEFORE
« ANNOTATE_HAPPENS_ AFTER

« ANNOTATE_NEW MEMORY

- ANNOTATE_RW.OCK_CREATE

« ANNOTATE_RW.OCK_DESTROY
« ANNOTATE_RW.OCK_ACQUI RED
« ANNOTATE_RW.OCK_RELEASED

These are used to describe to Helgrind, the behaviour of custom (non-POSIX) synchronisation primitives, which
it otherwise has no way to understand. See commentsin hel gri nd. h for further documentation.

7.9. A To-Do List for Helgrind

Thefollowingisalist of loose ends which should be tidied up some time.
 For lock order errors, print the complete lock cycle, rather than only doing for size-2 cycles as at present.

* The conflicting access mechanism sometimes mysteriously fails to show the conflicting access' stack, even
when provided with unbounded storage for conflicting accessinfo. This should be investigated.

e Document races caused by GCC's thread-unsafe code generation for speculative stores. In the interim
see http://gcc.gnu.org/ m/gcc/2007-10/ nsg00266. ht mi and http://1km.org/
| km / 2007/ 10/ 24/ 673.

» Don't update the lock-order graph, and don't check for errors, when a"try"-style lock operation happens (e.g.
pt hr ead_mnut ex_t ryl ock). Such callsdo not add any real restrictions to the locking order, since they can
awaysfail to acquire thelock, resulting in the caller going off and doing Plan B (presumably it will have aPlan
B). Doing such checks could generate false lock-order errors and confuse users.

» Performance can be very poor. Slowdowns on the order of 100:1 are not unusual. There is limited scope for
performance improvements.

133

8. DRD: athread error detector

To usethistool, you must specify - - t ool =dr d on the Valgrind command line.

8.1. Overview

DRD isaValgrind tool for detecting errorsin multithreaded C and C++ programs. Thetool worksfor any program
that uses the POSIX threading primitives or that uses threading concepts built on top of the POSIX threading
primitives.

8.1.1. Multithreaded Programming Paradigms

There are two possible reasons for using multithreading in a program:

» Tomodel concurrent activities. Assigning one thread to each activity can be agreat ssmplification compared to
multiplexing the states of multiple activitiesin asingle thread. Thisiswhy most server software and embedded
software is multithreaded.

* To use multiple CPU cores simultaneously for speeding up computations. Thisiswhy many High Performance
Computing (HPC) applications are multithreaded.

Multithreaded programs can use one or more of the following programming paradigms. Which paradigm is
appropriate depends e.g. on the application type. Some examples of multithreaded programming paradigms are:

» Locking. Data that is shared over threads is protected from concurrent accesses via locking. E.g. the POSIX
threads library, the Qt library and the Boost.Thread library support this paradigm directly.

» Message passing. No data is shared between threads, but threads exchange data by passing messages to each
other. Examples of implementations of the message passing paradigm are MPI and CORBA.

» Automatic parallelization. A compiler convertsasequential program into amultithreaded program. The original
program may or may not contain parallelization hints. One example of such paral€lization hintsisthe OpenMP
standard. In this standard a set of directives are defined which tell a compiler how to parallelize a C, C++ or
Fortran program. OpenMP is well suited for computational intensive applications. As an example, an open
sourceimage processing software packageis using OpenM P to maximize performance on systemswith multiple
CPU cores. GCC supports the OpenMP standard from version 4.2.0 on.

 Software Transactional Memory (STM). Any data that is shared between threads is updated via transactions.
After each transaction it is verified whether there were any conflicting transactions. If there were conflicts, the
transaction is aborted, otherwise it is committed. Thisis a so-called optimistic approach. There is a prototype
of the Intel C++ Compiler available that supports STM. Research about the addition of STM support to GCC
is ongoing.

DRD supports any combination of multithreaded programming paradigms as long as the implementation of these
paradigmsisbased on the POSI X threads primitives. DRD however does not support programsthat use e.g. Linux’
futexes directly. Attempts to analyze such programs with DRD will cause DRD to report many false positives.

8.1.2. POSIX Threads Programming Model

POSIX threads, aso known as Pthreads, is the most widely available threading library on Unix systems.
The POSIX threads programming model is based on the following abstractions:

* A shared address space. All threads running within the same process share the same address space. All data,
whether shared or not, isidentified by its address.

» Regular load and store operations, which allow to read values from or to write values to the memory shared by
al threads running in the same process.

134

DRD: athread error detector

» Atomic store and load-modify-store operations. While these are not mentioned in the POSIX threads standard,
most microprocessors support atomic memory operations.

 Threads. Each thread represents a concurrent activity.

e Synchronization objects and operations on these synchronization objects. The following types of
synchronization objects have been defined in the POSIX threads standard: mutexes, condition variables,
semaphores, reader-writer synchronization objects, barriers and spinlocks.

Which source code statements generate which memory accesses depends on the memory model of the programming
language being used. Thereisnot yet a definitive memory model for the C and C++ languages. For adraft memory
model, see also the document WG21/N2338: Concurrency memory model compiler conseguences.

For more information about POSIX threads, see also the Single UNIX Specification version 3, also known as
|EEE Std 1003.1.

8.1.3. Multithreaded Programming Problems

Depending on which multithreading paradigm is being used in a program, one or more of the following problems
can occur:

» Dataraces. One or more threads access the same memory location without sufficient locking. Most but not al
data races are programming errors and are the cause of subtle and hard-to-find bugs.

 Lock contention. One thread blocks the progress of one or more other threads by holding alock too long.

 Improper use of the POSIX threads API. Most implementations of the POSIX threads APl have been optimized
for runtime speed. Such implementations will not complain on certain errors, e.g. when a mutex is being
unlocked by another thread than the thread that obtained alock on the mutex.

» Deadlock. A deadlock occurs when two or more threads wait for each other indefinitely.

» Fasesharing. If threadsthat run on different processor cores access different variableslocated in the same cache
line frequently, thiswill slow down the involved threads a lot due to frequent exchange of cache lines.

Although the likelihood of the occurrence of data races can be reduced through adisciplined programming style, a
tool for automatic detection of dataracesisanecessity when developing multithreaded software. DRD can detect
these, aswell aslock contention and improper use of the POSIX threads API.

8.1.4. Data Race Detection

The result of load and store operations performed by a multithreaded program depends on the order in which
memory operations are performed. This order is determined by:

1. All memory operations performed by the same thread are performed in program order, that is, the order
determined by the program source code and the results of previous load operations.

2. Synchronization operations determine certain ordering constraints on memory operations performed by
different threads. These ordering constraints are called the synchronization order.

The combination of program order and synchronization order is called the happens-before relationship. This
concept was first defined by S. Adve et al in the paper Detecting data races on weak memory systems, ACM
SIGARCH Computer Architecture News, v.19 n.3, p.234-243, May 1991.

Two memory operations conflict if both operations are performed by different threads, refer to the same memory
location and at least one of them is a store operation.

A multithreaded program is data-race free if al conflicting memory accesses are ordered by synchronization
operations.

135

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html
http://www.opengroup.org/onlinepubs/000095399/idx/threads.html

DRD: athread error detector

A well known way to ensure that a multithreaded program is data-race free isto ensure that alocking disciplineis
followed. It is e.g. possible to associate a mutex with each shared data item, and to hold alock on the associated
mutex while the shared data is accessed.

All programsthat follow alocking discipline are data-race free, but not all data-race free programsfollow alocking
discipline. There exist multithreaded programs where access to shared data is arbitrated via condition variables,
semaphores or barriers. As an example, acertain class of HPC applications consists of a sequence of computation
steps separated in time by barriers, and where these barriers are the only means of synchronization. Although
there are many conflicting memory accesses in such applications and athough such applications do not make use
mutexes, most of these applications do not contain data races.

There exist two different approaches for verifying the correctness of multithreaded programs at runtime. The
approach of the so-called Eraser algorithm is to verify whether al shared memory accesses follow a consistent
locking strategy. And the happens-before data race detectors verify directly whether all interthread memory
accesses are ordered by synchronization operations. While the last approach is more complex to implement, and
while it is more sensitive to OS scheduling, it is a general approach that works for all classes of multithreaded
programs. An important advantage of happens-before data race detectors is that these do not report any false
positives.

DRD is based on the happens-before algorithm.

8.2. Using DRD
8.2.1. DRD Command-line Options

The following command-line options are available for controlling the behavior of the DRD tool itself:
--check- st ack-var=<yes| no> [default: no]

Controls whether DRD detects data races on stack variables. Verifying stack variables is disabled by default
because most programs do not share stack variables over threads.

--exclusive-threshol d=<n> [defaul t: off]

Print an error messageif any mutex or writer lock has been held longer than the time specified in milliseconds.
This option enables the detection of lock contention.

--join-list-vol=<n> [default: 10]

Dataracesthat occur between a statement at the end of one thread and another thread can be missed if memory
access information is discarded immediately after athread has been joined. This option allows one to specify
for how many joined threads memory access information should be retained.

--first-race-onl y=<yes| no> [default: no]

Whether to report only the first data race that has been detected on a memory location or all data races that
have been detected on a memory location.

--free-is-wite=<yes| no> [default: no]

Whether to report races between accessing memory and freeing memory. Enabling this option may cause
DRD to run dlightly slower. Notes:

 Don't enable this option when wusing custom memory alocators that use the
VG _USERREQ MALLCOCLI KE_BLOCK and VG_USERREQ _FREELI KE_BLOCK because that would
result in false positives.

» Don't enable this option when using reference-counted objects because that will result in false
positives, even when that code has been annotated properly with ANNOTATE HAPPENS BEFORE

136

DRD: athread error detector

and ANNOTATE HAPPENS AFTER. See eg. the output of the following command for
an example: val grind --tool =drd --free-is-wite=yes drd/ tests/
annot ate_snart _pointer.

--report-signal -unl ocked=<yes| no> [defaul t: yes]

Whether to report calls to pt hr ead_cond_si gnal and pt hr ead_cond_br oadcast where the
mutex associated with the signal through pt hr ead_cond_wai t or pt hread_cond_ti ned_wai tis
not locked at the time the signal is sent. Sending a signal without holding alock on the associated mutex isa
common programming error which can cause subtle race conditions and unpredictable behavior. There exist
some uncommon synchronization patterns however where it is safe to send a signal without holding a lock
on the associated mutex.

- -segnent - mer gi ng=<yes| no> [default: yes]

Controls segment merging. Segment merging isan algorithm to limit memory usage of the data race detection
algorithm. Disabling segment merging may improve the accuracy of the so-called 'other segments' displayed
in race reports but can also trigger an out of memory error.

--segnent - ner gi ng-i nterval =<n> [defaul t: 10]

Perform segment merging only after the specified number of new segments have been created. This is an
advanced configuration option that allows one to choose whether to minimize DRD's memory usage by
choosing alow value or to let DRD run faster by choosing aslightly higher value. The optimal value for this
parameter depends on the program being analyzed. The default value works well for most programs.

--shared-threshol d=<n> [defaul t: off]

Print an error message if a reader lock has been held longer than the specified time (in milliseconds). This
option enables the detection of lock contention.

--show confl - seg=<yes| no> [defaul t: yes]

Show conflicting segments in race reports. Since this information can help to find the cause of a data race,
this option is enabled by default. Disabling this option makes the output of DRD more compact.

- -show st ack- usage=<yes| no> [defaul t: no]

Print stack usage at thread exit time. When a program creates alarge number of threads it becomes important
tolimit theamount of virtual memory allocated for thread stacks. This option makesit possibleto observe how
much stack memory has been used by each thread of the client program. Note: the DRD tool itself alocates
some temporary data on the client thread stack. The space necessary for thistemporary data must be allocated
by the client program when it allocates stack memory, but is not included in stack usage reported by DRD.

i gnore-thread-creati on=<yes|no> [default: no]

Controls whether al activities during thread creation should be ignored. By default enabled only on Solaris.
Solaris provides higher throughput, parallelism and scalability than other operating systems, at the cost of
more fine-grained locking activity. This meansfor example that when athread is created under glibc, just one
big lock isused for all thread setup. Solarislibc uses severa fine-grained locks and the creator thread resumes
its activities as soon as possible, leaving for example stack and TL S setup sequence to the created thread.
This situation confuses DRD as it assumes there is some false ordering in place between creator and created
thread; and therefore many types of race conditions in the application would not be reported. To prevent such
false ordering, this command line option is set to yes by default on Solaris. All activity (loads, stores, client
requests) is therefore ignored during:

 pthread_create() call in the creator thread

* thread creation phase (stack and TL S setup) in the created thread

The following options are available for monitoring the behavior of the client program:

137

DRD: athread error detector

--trace-addr=<address> [defaul t: none]
Trace all load and store activity for the specified address. This option may be specified more than once.
--ptrace- addr =<address> [default: none]

Trace all load and store activity for the specified address and keep doing that even after the memory at that
address has been freed and reall ocated.

--trace-all oc=<yes| no> [defaul t: no]
Trace all memory alocations and deallocations. May produce a huge amount of output.
--trace-barrier=<yes| no> [default: no]
Trace all barrier activity.
--trace-cond=<yes| no> [defaul t: no]
Trace al condition variable activity.
--trace-fork-joi n=<yes| no> [default: no]
Trace all thread creation and all thread termination events.
--trace- hb=<yes| no> [default: no]

Trace execution of the ANNOTATE_HAPPENS BEFORE(), ANNOTATE_HAPPENS_AFTER() and
ANNOTATE_HAPPENS DONE() client requests.

--trace- mut ex=<yes| no> [defaul t: no]
Trace all mutex activity.

--trace-rw ock=<yes| no> [default: no]
Trace all reader-writer lock activity.

--trace-semaphor e=<yes| no> [default: no]

Trace all semaphore activity.

8.2.2. Detected Errors: Data Races

DRD prints a message every time it detects a data race. Please keep the following in mind when interpreting
DRD's output:

» Every thread is assigned a thread ID by the DRD tool. A thread ID is a nhumber. Thread ID's start at one and
are never recycled.

» Theterm segment refersto aconsecutive sequence of load, store and synchronization operations, all issued by the
same thread. A segment always starts and ends at a synchronization operation. Datarace analysisis performed
between segments instead of between individual |oad and store operations because of performance reasons.

» There are always at least two memory accesses involved in a data race. Memory accesses involved in a data
race are called conflicting memory accesses. DRD prints a report for each memory access that conflicts with
apast memory access.

Below you can find an example of a message printed by DRD when it detects a data race:

$ valgrind --tool =drd --read-var-info=yes drd/tests/rw ock_race

138

DRD: athread error detector

==9466== Thread 3:
==9466== Conflicting |l oad by thread 3 at 0x006020b8 size 4

==9466== at 0x400B6C. thread_func (rw ock_race. c: 29)

==9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2. 8. so)
==9466== by 0x53250CC. clone (in /lib64/1ibc-2.8.so0)

==9466== Locati on 0x6020b8 is 0 bytes inside |local var "s_racy"
==9466== declared at rwl ock race.c:18, in frane #0 of thread 3
==9466== Ot her segment start (thread 2)

==9466== at 0x4C2847D: pthread_rw ock_rdl ock* (drd_pthread_intercepts.c:813)
==9466== by 0x400B6B: thread func (rw ock _race. c: 28)

==9466== by 0x4C291DF: vg_thread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

==9466== by 0x53250CC. clone (in /1ib64/I1ibc-2.8.s0)

==9466== O her segnment end (thread 2)

==9466== at 0x4C28B54: pthread_rw ock_unl ock* (drd_pthread_intercepts.c:912)
==9466== by 0x400B84: thread func (rw ock_race. c: 30)

==9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

==9466== by 0x53250CC. clone (in /1ib64/1ibc-2.8.s0)

The above report has the following meaning:

* The number in the column on the left is the process ID of the process being analyzed by DRD.

Thefirstline ("Thread 3") tellsyou the thread 1D for the thread in which context the data race has been detected.

» Thenext linetellswhich kind of operation was performed (load or store) and by which thread. On the sameline
the start address and the number of bytes involved in the conflicting access are also displayed.

* Next, the call stack of the conflicting access is displayed. If your program has been compiled with debug
information (- g), this call stack will include file names and line numbers. The two bottommost frames
in this call stack (cl one and start _t hread) show how the NPTL starts a thread. The third frame
(vg_t hread_wr apper) is added by DRD. The fourth frame (t hr ead_f unc) is the first interesting line
because it shows the thread entry point, that is the function that has been passed as the third argument to
pt hread_creat e.

» Next, theallocation context for the conflicting addressis displayed. For dynamically alocated datathe allocation
call stack is shown. For static variables and stack variables the allocation context is only shown when the
option - - r ead- var - i nf o=yes hasbeen specified. Otherwise DRD will print Al | ocati on cont ext:
unknown.

A conflicting access involves at least two memory accesses. For one of these accesses an exact call stack is
displayed, and for the other accesses an approximate call stack is displayed, namely the start and the end of the
segments of the other accesses. This information can be interpreted as follows:

1. Start at the bottom of both call stacks, and count the number stack frames with identical function name,
file name and line number. In the above example the three bottommost frames are identical (cl one,
start _threadandvg t hread_w apper).

2. The next higher stack frame in both call stacks now tells you between in which source code region the other
memory access happened. The above output tells that the other memory access involved in the data race
happened between source code lines 28 and 30 infiler Wl ock_r ace. c.

8.2.3. Detected Errors: Lock Contention

Threads must be able to make progress without being blocked for too long by other threads. Sometimes a thread
has to wait until a mutex or reader-writer synchronization object is unlocked by another thread. This is called
lock contention.

139

DRD: athread error detector

Lock contention causes delays. Such delays should be as short as possible. The two command line options - -
excl usi ve-t hreshol d=<n>and- - shar ed- t hr eshol d=<n> makeit possible to detect excessive lock
contention by making DRD report any lock that has been held longer than the specified threshold. An example:

$ valgrind --tool =drd --exclusive-threshol d=10 drd/tests/hold_l ock -i 500

==10668== Acquired at:

==10668== at 0x4C267C8: pthread _nutex_| ock (drd_pthread_intercepts.c: 395)
==10668== by 0x400D92: main (hol d_I ock.c:51)

==10668== Lock on mutex Ox7fefffd50 was held during 503 ns (threshold: 10 ms).
==10668== at Ox4C26ADA: pt hread_nutex_unl ock (drd_pthread_intercepts.c: 441)

==10668== by 0x400DB5: main (hol d_I ock. c: 55)

Thehol d_| ock test program holds alock aslong as specified by the - i (interval) argument. The DRD output
reportsthat the lock acquired at line 51 in sourcefilehol d_| ock. ¢ and released at line 55 was held during 503
ms, while athreshold of 10 mswas specified to DRD.

8.2.4. Detected Errors: Misuse of the POSIX threads
API

DRD is able to detect and report the following misuses of the POSI X threads API:

» Passing the address of one type of synchronization object (e.g. a mutex) to a POSIX API cal that expects a
pointer to another type of synchronization object (e.g. a condition variable).

» Attemptsto unlock a mutex that has not been locked.

» Attemptsto unlock a mutex that was locked by another thread.

» Attemptsto lock amutex of type PTHREAD MUTEX NORMAL or aspinlock recursively.

* Destruction or deallocation of alocked mutex.

» Sending asignal to acondition variablewhilenolock isheld on the mutex associated with the condition variable.

» Cdling pt hr ead_cond_wai t on a mutex that is not locked, that is locked by another thread or that has
been locked recursively.

» Associating two different mutexes with a condition variable through pt hread_cond_wai t .

* Destruction or deallocation of a condition variable that is being waited upon.

« Destruction or deallocation of alocked reader-writer synchronization object.

 Attemptsto unlock areader-writer synchronization object that was not locked by the calling thread.

» Attemptsto recursively lock areader-writer synchronization object exclusively.

» Attemptsto passthe address of auser-defined reader-writer synchronization object to aPOSI X threadsfunction.

» Attemptsto passthe address of aPOSIX reader-writer synchronization object to one of the annotationsfor user-
defined reader-writer synchronization objects.

» Reinitiaization of amutex, condition variable, reader-writer lock, semaphore or barrier.
 Destruction or deallocation of a semaphore or barrier that is being waited upon.

» Missing synchronization between barrier wait and barrier destruction.

140

DRD: athread error detector

Exiting a thread without first unlocking the spinlocks, mutexes or reader-writer synchronization objects that
were locked by that thread.

Passing aninvalid thread ID to pt hr ead_j oi n or pt hr ead_cancel .

8.2.5. Client Requests

Just as for other Valgrind tools it is possible to let a client program interact with the DRD tool through client
requests. In addition to the client requests several macros have been defined that alow to use the client requests
in aconvenient way.

Theinterface between client programs and the DRD tool isdefined in the header file<val gri nd/ drd. h>.The
available macros and client requests are:

The macro DRD GET_VALGRIND THREADID and the corresponding client request
VG _USERREQ DRD GET_VALGRI ND_THREAD_| D. Query the thread ID that has been assigned by the
Valgrind core to the thread executing this client request. Valgrind's thread ID's start at one and are recycled
in case athread stops.

The macro DRD GET_DRD THREADI D and the corresponding client request
VG _USERREQ DRD GET_DRD_THREAD | D. Query the thread ID that has been assigned by DRD to the
thread executing this client request. These are the thread ID's reported by DRD in data race reports and in trace
messages. DRD'sthread ID's start at one and are never recycled.

The macros DRD_| GNORE_VAR(x), ANNOTATE TRACE MEMORY(&) and the corresponding client
request VG_USERREQ DRD START _SUPPRESSI ON. Some applications contain intentional races. There
exist e.g. applicationswhere the same valueisassigned to ashared variable from two different threads. It may be
more convenient to suppress such racesthan to solvethese. Thisclient request allows oneto suppress such races.

The macro DRD_STOP_I GNORI NG _VAR(x) and the corresponding client reguest
VG_USERREQ _DRD FI NI SH_SUPPRESSI ON. Tell DRD to no longer ignore data races for the address
range that was suppressed either via the macro DRD | GNORE_VAR(x) or via the client request
VG _USERREQ DRD START_SUPPRESSI ON.

The macro DRD_TRACE_VAR(x) . Trace al load and store activity for the address range starting at &x and
occupying si zeof (x) bytes. When DRD reports a data race on a specified variable, and it's not immediately
clear which source code statements triggered the conflicting accesses, it can be very helpful to trace all activity
on the offending memory location.

ThemacroDRD_STOP_TRACI NG_VAR(x) . Stop tracing load and store activity for the address range starting
at & and occupying si zeof (x) bytes.

Themacro ANNOTATE_TRACE MEMORY(&x) . Traceall load and store activity that touches at least the single
byte at the address &x.

The client request VG_USERREQ _DRD_START_TRACE_ADDR, which allowsoneto trace all load and store
activity for the specified address range.

Theclient request VG_USERREQ DRD STOP_TRACE_ADDR. Do no longer trace load and store activity for
the specified address range.

The macro ANNOTATE_HAPPENS BEFORE(addr) tells DRD to insert a mark. Insert this macro just after
an access to the variable at the specified address has been performed.

The macro ANNOTATE_HAPPENS AFTER(addr) tells DRD that the next access to the variable at
the specified address should be considered to have happened after the access just before the latest
ANNOTATE_HAPPENS BEFORE(addr) annotation that references the same variable. The purpose of these
two macros is to tell DRD about the order of inter-thread memory accesses implemented via atomic memory
operations. Seealsodr d/ t est s/ annot at e_smart _poi nt er. cpp for an example.

141

DRD: athread error detector

The macro ANNOTATE RALOCK _CREATE(rw ock) tells DRD that the object at address rwl ock is a
reader-writer synchronization object thatisnotapt hr ead_rw ock_t synchronization object. Seealsodr d/
test s/ annot at e_rw ock. c for an example.

The macro ANNOTATE RW.OCK_DESTROY(rw ock) tells DRD that the reader-writer synchronization
object at addressr wl ock has been destroyed.

Themacro ANNOTATE_WRI TERLOCK _ACQUI RED(rwl ock) tellsDRD that awriter lock hasbeen acquired
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE _READERLOCK_ACQUI RED(r Wl ock) tellsDRD that areader |ock hasbeen acquired
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE_RW.OCK_ACQUI RED(r W ock, is_w) tellsDRD that awriter lock (wheni s_w !
= 0) or that areader lock (wheni s_w == 0) has been acquired on the reader-writer synchronization object
at addressr wl ock.

Themacro ANNOTATE_WRI TERLOCK _RELEASED(r W ock) tellsDRD that awriter lock has been released
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE READERLOCK RELEASED(rw ock) tellsDRD that areader lock has been released
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE_RW.OCK_RELEASED(r W ock, is_w) tellsDRD that awriter lock (wheni s_w !
= 0) or that areader lock (wheni s_w == 0) has been released on the reader-writer synchronization object
at addressr wl ock.

The macro ANNOTATE_BARRI ER I NIl T(barrier, count, reinitialization_allowed) tels
DRD that anew barrier object at the addressbar r i er hasbeen initialized, that count threads participate in
each barrier and also whether or not barrier reinitialization without intervening destruction should be reported
asanerror. Seealsodrd/ t est s/ annot at e_barri er. c for an example.

The macro ANNOTATE_BARRI ER DESTROY(barri er) tells DRD that a barrier object is about to be
destroyed.

The macro ANNOTATE_BARRI ER_WAI T_BEFCORE(barri er) tells DRD that waiting for a barrier will
start.

The macro ANNOTATE _BARRI ER WAl T_AFTER(barri er) tells DRD that waiting for a barrier has
finished.

Themacro ANNOTATE_BENI GN_RACE_SI ZED(addr, si ze, descr) tellsDRD that any racesdetected
on the specified address are benign and hence should not be reported. Thedescr argument isignored but can
be used to document why data races on addr are benign.

The macro ANNOTATE_BENI GN_RACE_STATI C(var, descr) tellsDRD that any races detected on the
specified static variable are benign and hence should not be reported. Thedescr argument isignored but can
be used to document why data races on var are benign. Note: this macro can only be used in C++ programs
and not in C programs.

The macro ANNOTATE | GNORE_READS BEQ N tells DRD to ignore al memory loads performed by the
current thread.

The macro ANNOTATE | GNORE_READS END tells DRD to stop ignoring the memory loads performed by
the current thread.

The macro ANNOTATE_| GNORE_WRI TES BEQ Ntells DRD to ignore all memory stores performed by the
current thread.

The macro ANNOTATE | GNORE_VWRI TES_ENDtells DRD to stop ignoring the memory stores performed by
the current thread.

142

DRD: athread error detector

e The macro ANNOTATE | GNORE_READS _AND WRI TES BEG Ntells DRD to ignore all memory accesses
performed by the current thread.

* The macro ANNOTATE_| GNORE_READS AND WRI TES END tells DRD to stop ignoring the memory
accesses performed by the current thread.

» Themacro ANNOTATE_NEW MEMORY(addr, si ze) tellsDRD that the specified memory range has been
alocated by a custom memory allocator in the client program and that the client program will start using this
memory range.

» The macro ANNOTATE_THREAD NAME(nane) tells DRD to associate the specified name with the current
thread and to include this name in the error messages printed by DRD.

* The macros VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLOCK from the Valgrind
core are implemented; they are described in The Client Request mechanism.

Note: if you compiled Valgrind yourself, the header file <val gri nd/ dr d. h> will have been installed in the
directory / usr /i ncl ude by the command make i nstall . If you obtained Valgrind by installing it as a
package however, you will probably haveto install another package with anamelikeval gri nd- devel before
Valgrind's header files are available.

8.2.6. Debugging C++11 Programs

If you want to use the C++11 class std::thread you will need to do the following to annotate the std::shared ptr<>
objects used in the implementation of that class:

» Add the following code at the start of a common header or at the start of each source file, before any C++
header files are included:

#i ncl ude <val gri nd/drd. h>
#def i ne _CGLI BCXX_SYNCHRONI ZATI ON_HAPPENS BEFORE(addr) ANNOTATE_HAPPENS BEFCRE(addr)
#def i ne _CGLI BCXX_SYNCHRONI ZATI ON_HAPPENS AFTER(addr) ANNOTATE_HAPPENS AFTER(addr)

» Download the gcc source code and from source file libstdc++-v3/src/c++11/thread.cc copy the implementation
of the execute_native_ thread routine() and std:.:thread:: Mstart_thread()
functions into a source file that is linked with your application. Make sure that aso in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS *() macros are defined properly.

For more information, see aso The GNU C++ Library Manual, Debugging Support (http://gcc.gnu.org/
onlinedocg/libstdc++/manual/debug.html).

8.2.7. Debugging GNOME Programs

GNOME applications use the threading primitives provided by thegl i b and gt hr ead libraries. These libraries
arebuilt on top of POSIX threads, and hence are directly supported by DRD. Please keep in mind that you haveto
cal g_thread_i nit before creating any threads, or DRD will report several data races on glib functions. See
also the GLib Reference Manual for moreinformation about g_t hread_i ni t.

One of the many facilities provided by the gl i b library is a block alocator, called g_sl i ce. You have
to disable this block alocator when using DRD by adding the following to the shell environment variables:
G _SLI CE=al ways- mal | oc. Seealsothe GLib Reference Manual for more information.

8.2.8. Debugging Boost.Thread Programs

The Boost.Thread library isthe threading library included with the cross-platform Boost Libraries. Thisthreading
library is an early implementation of the upcoming C++0x threading library.

Applications that use the Boost. Thread library should run fine under DRD.

143

http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://library.gnome.org/devel/glib/stable/glib-Threads.html
http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html

DRD: athread error detector

More information about Boost.Thread can be found here;
» Anthony Williams, Boost.Thread Library Documentation, Boost website, 2007.

» Anthony Williams, What's New in Boost Threads?, Recent changes to the Boost Thread library, Dr. Dobbs
Magazine, October 2008.

8.2.9. Debugging OpenMP Programs

OpenMP stands for Open Multi-Processing. The OpenMP standard consists of a set of compiler directives for
C, C++ and Fortran programs that allows a compiler to transform a sequential program into a parallel program.
OpenMP is well suited for HPC applications and allows one to work at a higher level compared to direct use of
the POSIX threads API. While OpenMP ensures that the POSIX API is used correctly, OpenMP programs can
still contain dataraces. So it definitely makes sense to verify OpenMP programs with a thread checking tool.

DRD supports OpenM P shared-memory programs generated by GCC. GCC supports OpenM P since version 4.2.0.
GCC's runtime support for OpenMP programs is provided by a library called | i bgonp. The synchronization
primitivesimplemented in thislibrary use Linux’ futex system call directly, unlessthe library has been configured
with the - - di sabl e-1i nux- f ut ex option. DRD only supports libgomp libraries that have been configured
with this option and in which symbol information is present. For most Linux distributions this means that you will
have to recompile GCC. See also the script dr d/ scri pt s/ downl oad- and- bui | d- gcc in the Valgrind
source tree for an example of how to compile GCC. Y ou will also have to make sure that the newly compiled
I i bgonp. so library isloaded when OpenMP programs are started. This is possible by adding aline similar to
the following to your shell startup script:

export LD LI BRARY_PATH=~/gcc-4.4.0/1ib64: ~/gcc-4.4.0/1ib:
Asan example, the test OpenMP test program dr d/ t est s/ onp_mat i nv triggers a data race when the option
-r has been specified on the command line. The data race is triggered by the following code:

#pragma onp parallel for private(j)
for (j =0; j <rows; j++)

{
if (i '=1])
{
const elemt factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -=a[i * cols + k] * factor;
}
}
}

The above code is racy because the variable k has not been declared private. DRD will print the following error
message for the above code:

$ valgrind --tool =drd --check-stack-var=yes --read-var-info=yes drd/tests/onmp_nmatinv 3

Conflicting store by thread 1/1 at Ox7fefffbc4 size 4
at 0x4014A0: gj.onp_fn.0 (onp_matinv. c: 203)
by 0x401211: gj (onp_matinv.c:159)
by 0x40166A: invert matrix (onp_natinv.c: 238)
by 0x4019B4: nmin (onp_matinv. c: 316)
Location Ox7fefffbc4 is O bytes inside |ocal var "k"
declared at onp_matinv.c: 160, in frane #0 of thread 1

144

http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html
http://www.ddj.com/cpp/211600441

DRD: athread error detector

In the above output the function name gj . onp_f n. 0 has been generated by GCC from the function name gj .
The allocation context information shows that the data race has been caused by modifying the variable k.

Note: for GCC versions before 4.4.0, no allocation context information is shown. With these GCC versions the
most usable information in the above output is the source file name and the line number where the data race has
been detected (onp_nati nv. c: 203).

For more information about OpenMP, see also openmp.org.

8.2.10. DRD and Custom Memory Allocators

DRD tracks all memory allocation events that happen via the standard memory alocation and deallocation
functions (mal | oc, free, newand del et e), viaentry and exit of stack frames or that have been annotated
with Valgrind's memory pool client requests. DRD uses memory allocation and deallocation information for two
purposes:

» To know where the scope ends of POSIX objects that have not been destroyed explicitly. It ise.g. not required
by the POSIX threads standard to call pt hr ead_nut ex_dest r oy before freeing the memory in which a
mutex object resides.

* To know where the scope of variables ends. If e.g. heap memory has been used by one thread, that thread frees
that memory, and another thread allocates and starts using that memory, no data races must be reported for
that memory.

It isessential for correct operation of DRD that the tool knows about memory allocation and deall ocation events.
When analyzing a client program with DRD that uses a custom memory allocator, either instrument the custom
memory allocator with the VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLOCK macros
or disable the custom memory allocator.

Asan example, the GNU libstdc++ library can be configured to use standard memory allocation functionsinstead
of memory pools by setting the environment variable GLI BCXX_FORCE_NEW For more information, see also
the libstdc++ manual.

8.2.11. DRD Versus Memcheck

Itisessential for correct operation of DRD that there are no memory errors such as dangling pointersin the client
program. Which meansthat it isagood i deato make surethat your program is Memcheck-clean before you analyze
it with DRD. It is possible however that some of the Memcheck reports are caused by data races. In this case it
makes sense to run DRD before Memcheck.

Sowhichtool should berunfirst?In case both DRD and Memcheck complain about aprogram, apossible approach
isto run both tools alternatingly and to fix as many errors as possible after each run of each tool until none of the
two tools prints any more error messages.

8.2.12. Resource Requirements

The regquirements of DRD with regard to heap and stack memory and the effect on the execution time of client
programs are as follows:

* When running a program under DRD with default DRD options, between 1.1 and 3.6 times more memory
will be needed compared to a native run of the client program. More memory will be needed if loading debug
information has been enabled (- - r ead- var - i nf o=yes).

» DRD alocates some of itstemporary data structures on the stack of the client program threads. This amount of
dataislimited to 1 - 2 KB. Make sure that thread stacks are sufficiently large.

» Most applications will run between 20 and 50 times slower under DRD than a native single-threaded run. The
slowdown will be most noticeable for applications which perform frequent mutex lock / unlock operations.

145

http://openmp.org/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html

DRD: athread error detector

8.2.13. Hints and Tips for Effective Use of DRD

The following information may be helpful when using DRD:

» Make surethat debug information is present in the executable being analyzed, such that DRD can print function
name and line number information in stack traces. Most compilers can be told to include debug information
via compiler option - g.

» Compile with option - OL instead of - 0. This will reduce the amount of generated code, may reduce the
amount of debug info and will speed up DRD's processing of the client program. For more information, see
also Getting started.

 |If DRD reports any errorson librariesthat are part of your Linux distribution likee.g. | i bc. soorl i bst dc
++. s0, installing the debug packages for these libraries will make the output of DRD alot more detailed.

* When using C++, do not send output from more than one thread to st d: : cout . Doing so would not only
generate multiple data race reports, it could also result in output from several threads getting mixed up. Either
usepri nt f or do thefollowing:

1. Deriveaclassfrom st d: : ost r eanbuf and let that class send output line by lineto st dout . This will
avoid that individual lines of text produced by different threads get mixed up.

2. Createoneinstanceof st d: : ost r eamfor each thread. This makes stream formatting settings thread-local.
Passa per-thread instance of the classderived fromst d: : ost r eanbuf totheconstructor of eachinstance.

3. Let each thread send its output to its own instance of st d: : ost r eaminstead of st d: : cout .

8.3. Using the POSIX Threads API Effectively
8.3.1. Mutex types

The Single UNIX Specification version two defines the following four mutex types (see also the documentation
of pt hread_nut exattr_settype):

» normal, which means that no error checking is performed, and that the mutex is non-recursive.
« error checking, which means that the mutex is non-recursive and that error checking is performed.
* recursive, which means that a mutex may be locked recursively.

* default, which means that error checking behavior is undefined, and that the behavior for recursive locking is
aso undefined. Or: portable code must neither trigger error conditions through the Pthreads API nor attempt
to lock amutex of default type recursively.

In complex applications it is not always clear from beforehand which mutex will be locked recursively and
which mutex will not be locked recursively. Attempts lock a non-recursive mutex recursively will result in race
conditions that are very hard to find without a thread checking tool. So either use the error checking mutex type
and consistently check the return value of Pthread APl mutex calls, or use the recursive mutex type.

8.3.2. Condition variables

A condition variable allows one thread to wake up one or more other threads. Condition variables are often used
to notify one or more threads about state changes of shared data. Unfortunately it is very easy to introduce race
conditions by using condition variables as the only means of state information propagation. A better approach is
to let threads poll for changes of a state variable that is protected by amutex, and to use condition variables only as
athread wakeup mechanism. See also the sourcefiledr d/ t est s/ noni t or _exanpl e. cpp for an example
of how to implement this concept in C++. The monitor concept used in this example is a well known and very
useful concept -- see also Wikipedia for more information about the monitor concept.

146

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html
http://en.wikipedia.org/wiki/Monitor_(synchronization)

DRD: athread error detector

8.3.3. pthread _cond_timedwait and timeouts

Historically the function pt hread_cond_ti medwait only alowed the specification of an absolute
timeout, that is a timeout independent of the time when this function was caled. However, amost
every cal to this function expresses a relative timeout. This typically happens by passing the sum of
cl ock_getti me(CLOCK _REALTI ME) andarelativetimeout asthethird argument. Thisapproachisincorrect
since forward or backward clock adjustments by e.g. ntpd will affect the timeout. A more reliable approach is
asfollows:

* When initializing a condition variable through pt hread cond_init, specify that the timeout of
pt hread_cond_ti nedwai t will usetheclock CLOCK MONOTONI Cinstead of CLOCK_REALTI ME. You
candothisviapt hread_condattr_setclock(..., CLOCK MONOTON C).

» When calling pt hr ead_cond_t i medwai t , pass the sum of cl ock_get ti me(CLOCK_MONOTONI C)
and arelative timeout as the third argument.

Seedsodrd/tests/ nonitor_exanpl e. cpp for an example.

8.4. Limitations

DRD currently has the following limitations:

* DRD, just like Memcheck, will refuse to start on Linux distributions where al symbol information has been
removed from | d. so. This is e.g. the case for the PPC editions of openSUSE and Gentoo. You will have
to install the glibc debuginfo package on these platforms before you can use DRD. See also openSUSE bug
396197 and Gentoo bug 214065.

» With gcc 4.4.3 and before, DRD may report data races on the C++ classst d: : st ri ng in a multithreaded
program. Thisisaknow | i bst dc++ issue -- see also GCC bug 40518 for more information.

« If you compile the DRD source code yourself, you need GCC 3.0 or later. GCC 2.95 is not supported.

» Of the two POSIX threads implementations for Linux, only the NPTL (Native POSIX Thread Library) is
supported. The older LinuxThreads library is not supported.

8.5. Feedback

If you have any comments, suggestions, feedback or bug reports about DRD, feel free to either post a message on
the Valgrind users mailing list or to file a bug report. See aso http://www.valgrind.org/ for more information.

147

http://bugzilla.novell.com/show_bug.cgi?id=396197
http://bugs.gentoo.org/214065
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518
http://www.valgrind.org/

9. Massif: a heap profiler

To usethistool, you must specify - - t ool =massi f onthe Valgrind command line.

9.1. Overview

Massif is a heap profiler. It measures how much heap memory your program uses. This includes both the useful
space, and the extra bytes allocated for book-keeping and alignment purposes. It can also measure the size of your
program's stack(s), although it does not do so by default.

Heap profiling can help you reduce the amount of memory your program uses. On modern machines with virtual
memory, this provides the following benefits:

* It can speed up your program -- a smaller program will interact better with your machine's caches and avoid
paging.

« If your program uses lots of memory, it will reduce the chance that it exhausts your machine's swap space.

Also, there are certain space leaks that aren't detected by traditional |eak-checkers, such as Memcheck's. That's
because the memory isn't ever actually lost -- a pointer remains to it -- but it's not in use. Programs that have
leakslikethis can unnecessarily increase the amount of memory they are using over time. Massif can help identify
these leaks.

Importantly, Massif tells you not only how much heap memory your program is using, it also gives very detailed
information that indicates which parts of your program are responsible for allocating the heap memory.

Massif aso provides Execution Trees memory profiling using the command line option - - xt r ee- menor y and
the monitor command xt nenory.

9.2. Using Massif and ms_print

First off, as for the other Valgrind tools, you should compile with debugging info (the - g option). It shouldn't
matter much what optimisation level you compile your program with, asthisisunlikely to affect the heap memory
usage.

Then, you need to run Massif itself to gather the profiling information, and then run ms_print to present it in a
readable way.

9.2.1. An Example Program

An example will make things clear. Consider the following C program (annotated with line numbers) which
allocates a number of different blocks on the heap.

1 #i ncl ude <stdlib. h>
2

3 void g(voi d)

4 {

5 mal | oc(4000) ;
6 }

7

8 void f(void)

9 {
10 mal | oc(2000) ;
11 a();
12 }
13
14 i nt mai n(voi d)

148

Massif: a heap profiler

15 {

16 int i;

17 int* a[10];

18

19 for (i =0; i < 10; i++) {
20 a[i] = mall oc(1000);

21 }

22

23 f();

24

25 9();

26

27 for (i =0; i < 10; i++) {
28 free(a[i]);

29 }

30

31 return O;

32 }

9.2.2. Running Massif

To gather heap profiling information about the program pr og, type:

val grind --tool =nassif prog

The program will execute (dlowly). Upon completion, no summary statisticsare printed to Valgrind's commentary;
all of Massif'sprofiling dataiswrittento afile. By default, thisfileiscalledmassi f . out . <pi d>, where<pi d>
isthe process ID, although this filename can be changed with the - - massi f - out - fi | e option.

9.2.3. Running ms_print

To see the information gathered by Massif in an easy-to-read form, use ms_print. If the output file's name is
massi f. out . 12345, type:

ns_print massif.out. 12345

ms_print will produce (a) agraph showing the memory consumption over the program’'s execution, and (b) detailed
information about the responsible allocation sites at various points in the program, including the point of peak
memory allocation. The use of a separate script for presenting the results is deliberate: it separates the data
gathering from its presentation, and means that new methods of presenting the data can be added in the future.

9.2.4. The Output Preamble

After running this program under Massif, the first part of ms_print's output contains a preamble which just states
how the program, Massif and ms_print were each invoked:

Conmmand: exampl e
Massi f argunents: (none)
ns_print argunents: nmassif.out. 12797

9.2.5. The Output Graph

The next part is the graph that shows how memory consumption occurred as the program executed:

149

Massif: a heap profiler

KB
19. 637

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

Why is most of the graph empty, with only a couple of bars at the very end? By default, Massif uses "instructions
executed" asthe unit of time. For very short-run programs such as the example, most of the executed instructions
involve the loading and dynamic linking of the program. The execution of mai n (and thus the heap allocations)
only occur at the very end. For a short-running program like this, we can use the - - t i me- uni t =B option to
specify that we want the time unit to instead be the number of bytes all ocated/deallocated on the heap and stack(s).

If we re-run the program under Massif with this option, and then re-run ms_print, we get this more useful graph:

19. 637 HH#

HHHFHFHFHHFHHHF O H R

150

YPOROO000®

HHR I HEHFHEHFEHFHHF TR

Massif: a heap profiler

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

Thesize of thegraph can be changed withms_print's- - x and - - y options. Each vertical bar representsasnapshot,
i.e. ameasurement of the memory usage at a certain point in time. If the next snapshot is more than one column
away, ahorizontal line of charactersisdrawn from the top of the snapshot to just before the next snapshot column.
The text at the bottom show that 25 snapshots were taken for this program, which is one per heap allocation/
deallocation, plus a couple of extras. Massif starts by taking snapshots for every heap allocation/deallocation, but
as a program runs for longer, it takes snapshots less frequently. It also discards older snapshots as the program
goes on; when it reaches the maximum number of snapshots (100 by default, although changeable with the - -
nmax- snapshot s option) half of them are deleted. This meansthat areasonable number of snapshots are always
maintai ned.

Most snapshots are hormal, and only basic information is recorded for them. Normal snapshots are represented
in the graph by bars consisting of ":' characters.

Some snapshots are detailed. Information about where allocations happened are recorded for these snapshots, as
we will see shortly. Detailed snapshots are represented in the graph by bars consisting of ‘@' characters. The text
at the bottom show that 3 detailed snapshots were taken for this program (snapshots 9, 14 and 24). By defaullt,
every 10th snapshot is detailed, although this can be changed viathe - - det ai | ed- f r eq option.

Finaly, there is at most one peak snapshot. The peak snapshot is a detailed snapshot, and records the point
where memory consumption was greatest. The peak snapshot is represented in the graph by abar consisting of '#
characters. The text at the bottom shows that snapshot 14 was the peak.

Massif's determination of when the peak occurred can be wrong, for two reasons.

 Peak snapshots are only ever taken after a deallocation happens. This avoids lots of unnecessary peak snapshot
recordings (imagine what happens if your program allocates a lot of heap blocks in succession, hitting a new
peak every time). But it means that if your program never deallocates any blocks, no peak will be recorded. It
also meansthat if your program does deall ocate blocks but later allocates to a higher peak without subsequently
deallocating, the reported peak will be too low.

» Even with this behaviour, recording the peak accurately is slow. So by default Massif records a peak whose
size iswithin 1% of the size of the true peak. This inaccuracy in the peak measurement can be changed with
the - - peak- i naccur acy option.

The following graph is from an execution of Konqueror, the KDE web browser. It shows what graphs for larger
programs look like.

3. 9527 #
| @
| . @
| @ : :: @o¥:
| @:: :@o::
| @ :: : Qo :
| @@ @I : : : @O :
| 1@ QoD @O
| D@ Qoo Qo
| @ I @:@D:: :@a::
| @@ :@:Ca:: : Qo ::
| : O @ @:QCoo:: :@o:
| ;@ Dol oY @ @:Coo:: :@at
| L@@ LIl @ @ @ oo c@at
| @ :: @@ LIl @ @ @ oo c@at
| @ :: @@ LIl @ @ @ oo c@at
| @ ::@::::: i@ @@ O @@@:: :@o
| @@ . a: LIl @ @ @ oo c@at

15

=

Massif: a heap profiler

| OO @D I (0] Q@O :@:@@:: :@of:::

| (@3] Q@ ::Q@: I (0] Q@O :@:@@:: :@of:::
(O R L I I >M

0 626. 4

Nunber of snapshots: 63
Detail ed snapshots: [3, 4, 10, 11, 15, 16, 29, 33, 34, 36, 39, 41,
42, 43, 44, 49, 50, 51, 53, 55, 56, 57 (peak)]

Note that the larger size units are KB, MB, GB, etc. Asis typica for memory measurements, these are based
on amultiplier of 1024, rather than the standard SI multiplier of 1000. Strictly speaking, they should be written
KiB, MiB, GiB, etc.

9.2.6. The Snapshot Details

Returning to our example, the graph is followed by the detailed information for each snapshot. The first nine
snapshots are normal, so only a small amount of information is recorded for each one;

n ti me(B) total (B) usef ul - heap(B) extra-heap(B) st acks(B)
0 0 0 0 0 0
1 1,008 1,008 1, 000 8 0
2 2,016 2,016 2,000 16 0
3 3,024 3,024 3, 000 24 0
4 4,032 4,032 4, 000 32 0
5 5, 040 5, 040 5, 000 40 0
6 6, 048 6, 048 6, 000 48 0
7 7, 056 7, 056 7, 000 56 0
8 8, 064 8, 064 8, 000 64 0

Each normal snapshot records several things.

o Itsnumber.

» Thetimeit wastaken. In this case, the time unit is bytes, duetotheuse of - - t i me- uni t =B.
» Thetotal memory consumption at that point.

* The number of useful heap bytes allocated at that point. This reflects the number of bytes asked for by the
program.

» The number of extra heap bytes allocated at that point. This reflects the number of bytes allocated in excess of
what the program asked for. There are two sources of extra heap bytes.

First, every heap block has administrative bytes associated with it. The exact number of administrative bytes
depends on the details of the alocator. By default Massif assumes 8 bytes per block, as can be seen from the
example, but this number can be changed viathe - - heap- admi n option.

Second, allocators often round up the number of bytes asked for to a larger number, usually 8 or 16. Thisis
required to ensure that elements within the block are suitably aligned. If N bytes are asked for, Massif rounds
N up to the nearest multiple of the value specified by the- - al i gnnment option.

* The size of the stack(s). By default, stack profiling is off asit slows Massif down greatly. Therefore, the stack
column is zero in the example. Stack profiling can be turned on with the - - st acks=yes option.

The next snapshot is detailed. Aswell asthe basic counts, it gives an allocation tree which indicates exactly which
pieces of code were responsible for allocating heap memory:

152

Massif: a heap profiler

9 9,072 9,072 9, 000 72 0
99. 21% (9, 000B) (heap allocation functions) malloc/newnew], --alloc-fns, etc.
->99.21% (9, 000B) 0x804841A: nmin (exanple. c: 20)

The allocation tree can be read from the top down. The first line indicates al heap allocation functions such as
mal | oc and C++ new. All heap allocations go through these functions, and so all 9,000 useful bytes (which
i$99.21% of al alocated bytes) go through them. But how were nal | oc and new called? At this point, every
allocation so far has been due to line 20 inside mai n, hence the second line in the tree. The - > indicates that
main (line 20) called mal | oc.

L et's see what the subsequent output shows happened next:

n ti me(B) t ot al (B) usef ul - heap(B) extra-heap(B) st acks(B)
10 10, 080 10, 080 10, 000 80 0
11 12, 088 12,088 12, 000 88 0
12 16, 096 16, 096 16, 000 96 0
13 20, 104 20, 104 20, 000 104 0
14 20, 104 20, 104 20, 000 104 0

99. 48% (20, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc

->49. 74% (10, 000B) 0x804841A: nmi n (exanpl e.c: 20)
I

->39. 79% (8, 000B) 0x80483C2: g (exanple.c:5)

| ->19.90% (4,000B) O0x80483E2: f (exanple.c:11)

| | ->19.90% (4, 000B) 0x8048431: main (exanple.c:23)
||

| ->19.90% (4, 000B) 0x8048436: mmin (exanple.c: 25)

I

>09. 95% (2, 000B) 0x80483DA: f (exanple.c: 10)
->09. 95% (2, 000B) 0x8048431: nmmin (exanple.c: 23)

The first four snapshots are similar to the previous ones. But then the global allocation peak is reached, and
a detailed snapshot (number 14) is taken. Its allocation tree shows that 20,000B of useful heap memory has
been allocated, and the lines and arrows indicate that this is from three different code locations: line 20, which
is responsible for 10,000B (49.74%); line 5, which is responsible for 8,000B (39.79%); and line 10, which is
responsible for 2,000B (9.95%).

We can then drill down further in the allocation tree. For example, of the 8,000B asked for by line 5, half of it was
dueto acall fromline 11, and half was dueto acall from line 25.

In short, Massif collates the stack trace of every single allocation point in the program into a single tree, which
gives acomplete picture at a particular point in time of how and why all heap memory was allocated.

Note that the tree entries correspond not to functions, but to individual code locations. For example, if function A
calsmal | oc, and function B calls A twice, once on line 10 and once on line 11, then the two calls will result in
two distinct stack tracesin thetree. In contrast, if B calls A repeatedly from line 15 (e.g. due to aloop), then each
of those callswill be represented by the same stack tracein the tree.

Note al so that each tree entry with children in the example satisfies an invariant: the entry's sizeisequal to the sum
of its children's sizes. For example, the first entry has size 20,000B, and its children have sizes 10,000B, 8,000B,
and 2,000B. In general, this invariant almost always holds. However, in rare circumstances stack traces can be
malformed, in which case a stack trace can be a sub-trace of another stack trace. This means that some entriesin
the tree may not satisfy the invariant -- the entry's size will be greater than the sum of its children's sizes. This
is not a big problem, but could make the results confusing. Massif can sometimes detect when this happens; if
it does, it issues awarning:

Warni ng: Mal formed stack trace detected. In Massif's output,

153

Massif: a heap profiler

the size of an entry's child entries may not sum up
to the entry's size as they normally do.

However, Massif does not detect and warn about every such occurrence. Fortunately, malformed stack traces are
rarein practice.

Returning now to ms_print's output, the final part is similar:

n ti me(B) total (B) usef ul - heap(B) extra-heap(B) st acks(B)
15 21,112 19, 096 19, 000 96 0
16 22,120 18, 088 18, 000 88 0
17 23,128 17, 080 17, 000 80 0
18 24,136 16, 072 16, 000 72 0
19 25, 144 15, 064 15, 000 64 0
20 26, 152 14, 056 14, 000 56 0
21 27, 160 13, 048 13, 000 48 0
22 28, 168 12, 040 12, 000 40 0
23 29,176 11, 032 11, 000 32 0
24 30, 184 10, 024 10, 000 24 0

99. 76% (10, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc

->79.81% (8, 000B) 0x80483C2: g (exanple.c:5)
| ->39.90% (4,000B) 0x80483E2: f (exanple.c:11)
| ->39.90% (4,000B) 0x8048431: mmin (exanple.c:23)

|
->39. 90% (4, 000B) 0x8048436: nmi n (exanple. c: 25)

|
|
|
|
->19. 95% (2, 000B) 0x80483DA: f (exanple.c:10)

| ->19.95% (2,000B) 0x8048431: main (exanple.c:23)
|

>00. 00% (0B) in 1+ places, all below ms _print's threshold (01.00%

The final detailed snapshot shows how the heap looked at termination. The 00.00% entry represents the code
locations for which memory was allocated and then freed (line 20 in this case, the memory for which was freed
on line 28). However, no code location details are given for this entry; by default, Massif only records the details
for code locations responsible for more than 1% of useful memory bytes, and ms_print likewise only prints the
detailsfor code locations responsible for more than 1%. The entriesthat do not meet thisthreshold are aggregated.
This avoids filling up the output with large numbers of unimportant entries. The thresholds can be changed with
the- -t hr eshol d option that both Massif and ms_print support.

9.2.7. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

If the output file format string (controlled by - - massi f - out - f i |) doesnot contain %, then the outputsfrom
the parent and child will be intermingled in a single output file, which will aimost certainly make it unreadable
by ms_print.

9.2.8. Measuring All Memory in a Process

It isworth emphasising that by default Massif measures only heap memory, i.e. memory allocated with mal | oc,
cal I oc,real | oc,nmenal i gn,new, new], andafew other, similar functions. (Andit can optionally measure
stack memory, of course.) Thismeansit does not directly measure memory allocated with lower-level system calls
such as mmap, nt emap, and br k.

Heap allocation functions such asmal | oc are built on top of these system calls. For example, when needed, an
allocator will typically call mmap to allocate alarge chunk of memory, and then hand over pieces of that memory

154

Massif: a heap profiler

chunk to the client program in responseto callstomal | oc et a. Massif directly measures only these higher-level
mal | oc et al calls, not the lower-level system calls.

Furthermore, a client program may use these lower-level system calls directly to alocate memory. By default,
Massif does not measure these. Nor does it measure the size of code, data and BSS segments. Therefore, the
numbers reported by Massif may be significantly smaller than those reported by tools such ast op that measure
aprogram's total size in memory.

However, if you wish to measure all the memory used by your program, you can use the - - pages- as-
heap=yes. When this option is enabled, Massif's normal heap block profiling is replaced by lower-level page
profiling. Every page alocated via nmrap and similar system callsis treated as a distinct block. This means that
code, dataand BSS segments are all measured, asthey are just memory pages. Even the stack is measured, sinceit
isultimately allocated (and extended when necessary) via mmap; for thisreason - - st acks=yes isnot allowed
in conjunction with - - pages- as- heap=yes.

After - - pages- as- heap=yes isused, ms _print's output is mostly unchanged. One difference is that the start
of each detailed snapshot says:

(page all ocation syscalls) mmp/ nremap/ brk, --alloc-fns, etc.
instead of the usual:
(heap allocation functions) malloc/new new], --alloc-fns, etc.

The stack traces in the output may be more difficult to read, and interpreting them may require some detailed
understanding of the lower levels of aprogram like the memory allocators. But for some programs having the full
information about memory usage can be very useful.

9.2.9. Acting on Massif's Information

Massif'sinformation is generaly fairly easy to act upon. The obvious place to start looking is the peak snapshot.

It can also be useful to look at the overall shape of the graph, to see if memory usage climbs and falls as you
expect; spikesin the graph might be worth investigating.

The detailed snapshots can get quite large. It is worth viewing them in a very wide window. It's also a good idea

to view them with atext editor. That makes it easy to scroll up and down while keeping the cursor in a particular
column, which makes following the allocation chains easier.

9.3. Using massif-visualizer

massif-visualizer is agraphical viewer for Massif data that is often easier to use than ms_print. massif-visualizer
is not shipped within Valgrind, but is available in various places online.

9.4. Massif Command-line Options

M assif-specific command-line options are:

- -heap=<yes| no> [defaul t: yes]
Specifies whether heap profiling should be done.

- - heap- adm n=<si ze> [defaul t: 8]

If heap profiling is enabled, gives the number of administrative bytes per block to use. This should be
an estimate of the average, since it may vary. For example, the allocator used by glibc on Linux requires

155

https://github.com/KDE/massif-visualizer

Massif: a heap profiler

somewhere between 4 to 15 bytes per block, depending on various factors. That allocator also requires admin
space for freed blocks, but Massif cannot account for this.

--stacks=<yes| no> [defaul t: no]

Specifies whether stack profiling should be done. This option slows Massif down greatly, and so is off by
default. Note that Massif assumes that the main stack has size zero at start-up. This is not true, but doing
otherwise accurately is difficult. Furthermore, starting at zero better indicates the size of the part of the main
stack that a user program actually has control over.

- - pages- as- heap=<yes| no> [defaul t: no]

Tells Massif to profile memory at the page level rather than at the malloc'd block level. See above for details.

- - dept h=<nunber > [defaul t: 30]

Maximum depth of the allocation trees recorded for detailed snapshots. Increasing it will make Massif run
somewhat more slowly, use more memory, and produce bigger outpuit files.

--al |l oc-f n=<nane>

Functions specified with this option will be treated as though they were a heap allocation function such as
mal | oc. Thisisuseful for functions that are wrappersto mal | oc or new, which can fill up the alocation
trees with uninteresting information. This option can be specified multiple times on the command line, to
name multiple functions.

Note that the named function will only be treated this way if it is the top entry in a stack trace, or just below
another function treated this way. For example, if you have a function nal | oc1 that wraps mal | oc, and
mal | oc2 that wrapsmal | ocl, just specifying - - al | oc-f n=mal | oc2 will have no effect. Y ou need to
specify - -al | oc-f n=mal | oc1l aswell. Thisis alittle inconvenient, but the reason is that checking for
alocation functionsisslow, and it savesalot of timeif Massif can stop looking through the stack trace entries
as soon asit finds one that doesn't match rather than having to continue through al the entries.

Note that C++ names are demangled. Note also that overloaded C++ names must be written in full. Single
guotes may be necessary to prevent the shell from breaking them up. For example:

--all oc-fn="operator newunsi gned, std::nothrowt constg&)'

Arguments of typesi ze_t needto bereplaced withunsi gned | ong on 64bit platformsand unsi gned
on 32hit platforms.

- -al | oc- f n will work with inline functions. Inline function names are not mangled, which meansthat you
only need to provide the function name and not the argument list.

--al | oc-f n does not support wildcards.

i gnor e- f n=<name>

Any direct heap alocation (i.e. acall tomal | oc, new, etc, or acall to afunction named by an - - al | oc-
f n option) that occurs in afunction specified by this option will be ignored. Thisis mostly useful for testing
purposes. This option can be specified multiple times on the command line, to name multiple functions.

Anyr eal | oc of anignored block will also beignored, evenif ther eal | oc call doesnot occur inanignored
function. This avoids the possibility of negative heap sizesif ignored blocks are shrunk withr eal | oc.

Therules for writing C++ function names are the same asfor - - al | oc- f n above.

--threshol d=<m n> [defaul t: 1.0]

The significance threshold for heap allocations, as a percentage of total memory size. Allocation tree entries
that account for less than thiswill be aggregated. Note that this should be specified in tandem with ms_print's
option of the same name.

156

Massif: a heap profiler

- - peak-inaccuracy=<m n> [defaul t: 1.0]

Massif does not necessarily record the actual global memory allocation peak; by default it records a peak only
when the global memory allocation size exceeds the previous peak by at least 1.0%. Thisis because there can
bemany local allocation peaks along the way, and doing adetailed snapshot for every onewould be expensive
and wasteful, as all but one of them will be later discarded. This inaccuracy can be changed (even to 0.0%)
viathis option, but Massif will run drastically slower as the number approaches zero.

--tinme-unit=<i|ns| B> [default: i]

The time unit used for the profiling. There are three possibilities: instructions executed (i), which is good
for most cases; real (wallclock) time (ms, i.e. milliseconds), which is sometimes useful; and bytes allocated/
deallocated on the heap and/or stack (B), which isuseful for very short-run programs, and for testing purposes,
because it is the most reproducible across different machines.

--detail ed-freq=<n> [default: 10]
Frequency of detailed snapshots. With - - det ai | ed- f r eq=1, every snapshot is detailed.
- - max- snapshot s=<n> [defaul t: 100]

The maximum number of snapshots recorded. If set to N, for al programs except very short-running ones,
the final number of snapshots will be between N/2 and N.

--massif-out-file=<file> [default: nassif.out. %]

Writethe profiledatatof i | e rather than to the default output file, massi f . out . <pi d>. The %p and %g
format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the coreoption- -1 og-fil e.

9.5. Massif Monitor Commands

The Massif tool provides monitor commands handled by the VValgrind gdbserver (see Monitor command handling
by the VValgrind gdbserver). Valgrind python code provides GDB front end commands giving an easier usage of the
massif monitor commands (see GDB front end commands for Valgrind gdbserver monitor commands). To launch
amassif monitor command viaits GDB front end command, instead of prefixing the command with "monitor",
you must usethe GDB rmassi f command (or the shorter aliases ns). Using the massif GDB front end command
provide a more flexible usage, such as auto-completion of the command by GDB. In GDB, you can use hel p
massi f to get help about the massif front end monitor commands and you can use apr opos massi f to get
all the commands mentionning the word "massif" in their name or on-line help.

* snapshot [<fil ename>] requests to take a snapshot and save it in the given <filename> (default
massif.vgdb.out).

» detail ed_snapshot [<filenane>] requests to take a detailed snapshot and save it in the given
<filename> (default massif.vgdb.out).

e all _snapshots [<fil enane>] requeststotakeall captured snapshots so far and save them in the given
<filename> (default massif.vgdb.out).

« xtnenory [<fil enane> default xtnenory. kcg. %. %] requestsMassif tool to produce an xtree
heap memory report. See Execution Trees for a detailed explanation about execution trees.

9.6. Massif Client Requests

Massif does not have a massif.h file, but it does implement two of the core client requests:
VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI| KE_BLQOCK; they are described in The Client
Request mechanism.

157

Massif: a heap profiler

9.7. ms_print Command-line Options

ms_print's options are:
-h --help
Show the help message.
--version
Show the version number.
--threshol d=<m n> [defaul t: 1.0]
Same as Massif's- - t hr eshol d option, but applied after profiling rather than during.
--Xx=<4..1000> [default: 72]
Width of the graph, in columns.
--y=<4..1000> [defaul t: 20]

Height of the graph, in rows.

9.8. Massif's Output File Format

Massif's file format is plain text (i.e. not binary) and deliberately easy to read for both humans and machines.
Nonetheless, the exact format is not described here. This is because the format is currently very Massif-specific.
In the future we hope to make the format more general, and thus suitable for possible use with other tools. Once
this has been done, the format will be documented here.

158

10. DHAT: a dynamic heap analysis
tool

To usethistool, you must specify - - t ool =dhat on the Valgrind command line.

10.1. Overview

DHAT isprimarily atool for examining how programs use their heap allocations.

It tracks the allocated blocks, and inspects every memory access to find which block, if any, it isto. It presents,
on a program point basis, information about these blocks such as sizes, lifetimes, numbers of reads and writes,
and read and write patterns.

Using thisinformation it is possible to identify program points with the following characteristics:

 potential process-lifetime leaks: blocks allocated by the point just accumulate, and are freed only at the end
of therun.

* excessive turnover: points which chew through alot of heap, even if it is not held onto for very long
 excessively transient: points which allocate very short lived blocks

 useless or underused allocations: blocks which are alocated but not completely filled in, or are filled in but
not subsequently read.

 blockswith inefficient layout -- areas never accessed, or with hot fields scattered throughout the block.

Aswith the Massif heap profiler, DHAT measures program progress by counting instructions, and so presents all
ageltime related figures as instruction counts. This sounds a little odd at first, but it makes runs repeatable in a
way which is not possible if CPU timeis used.

DHAT & so has support for copy profiling and ad hoc profiling. These are described below.

10.2. Using DHAT

First off, as for normal Valgrind use, you probably want to compile with debugging info (the - g option). But by
contrast with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your
program asit will be normally run.

Second, you need to run your program under DHAT to gather the profiling information. Y ou might need to reduce
the- - num cal | er s value to get reasonably-sized output files, especialy if you are profiling alarge program;
sometrial and error might be needed to find a good value.

Finally, you need to use DHAT's viewer (in aweb browser) to get a detailed presentation of that information.

10.2.1. Running DHAT

To run DHAT on aprogram pr og, run:

val grind --tool =dhat prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

159

DHAT: adynamic heap analysis tool

==11514== Tot al : 823,849, 731 bytes in 3,929, 133 bl ocks
==11514== At t-gmax: 133,485,082 bytes in 436,521 bl ocks
==11514== At t-end: 258,002 bytes in 2,129 bl ocks
==11514== Reads: 2,807, 182, 810 bytes

==11514== Wi tes: 1, 149, 617, 086 bytes

Thefirst line shows how many heap blocks and bytes were allocated over the entire execution.

The second line shows how many heap blocks and bytes were dlive at t - gmax, i.e. the time when the heap size
reached its global maximum (as measured in bytes).

The third line shows how many heap blocks and bytes were dive a t - end, i.e. the end of execution. In other
words, how many blocks and bytes were not explicitly freed.

The fourth and fifth lines show how many bytes within heap blocks were read and written during the entire
execution.

These lines are moderately interesting at best. More useful information can be seen with DHAT's viewer.

10.2.2. Output File

As well as printing summary information, DHAT also writes more detailed profiling information to afile. By
default thisfile is named dhat . out . <pi d> (where <pi d> is the program's process ID), but its name can be
changed withthe - - dhat - out - fi | e option. Thisfileis JSON, and intended to be viewed by DHAT's viewer,
which is described in the next section.

Thedefault . <pi d> suffix on the output file name servestwo purposes. Firstly, it meansyou don't haveto rename
old log files that you don't want to overwrite. Secondly, and more importantly, it allows correct profiling with the
--trace-chil dren=yes option of programs that spawn child processes.

The output file can be big, many megabytes for large applications built with full debugging information.

10.3. DHAT's Viewer

DHAT's viewer can be run in a web browser by loading the file dh_vi ew. ht m . Use the "Load" button to
choose a DHAT output file to view.

If loading takesalong time, it might be worth re-running DHAT withasmaller - - num cal | er s valueto reduce
the stack depths, because this can significantly reduce the size of DHAT's output files.

10.3.1. The Output Header

Thefirst part of the output shows the mode, program command and process ID. For example:

I nvocation {
Mode: heap
Conmmand: /hone/ nj n/ moz/rust 0/ bui |l d/ x86_64- unknown- | i nux- gnu/ st age2/ bi n/rustc --crate-
PI D 18816

}

The second part of the output showsthet - gnmax andt - end values again. For example:

Ti mes {
t-gmax: 8,138,210,673 instrs (86.92% of program durati on)
t-end: 9,362,544,994 instrs

160

DHAT: adynamic heap analysis tool

10.3.2. The PP Tree

The third part of the output is the largest and most interesting part, showing the program point (PP) tree.

10.3.2.1. Structure

The following image shows a screenshot of part of a PP tree. The font is very small because this screenshot is
intended to demonstrate the high-level structure of the tree rather than the detailswithin thetext. (It isalso slightly
out-of-date, and doesn't quite match the current output produced by DHAT's viewer.)

Like any tree, it has a root node, leaf nodes, and non-leaf nodes. The structure of the tree is shown by the lines
connecting nodes. Child nodes are beneath their parent and indented one level.

The sub-trees beneath anon-leaf node can be collapsed or expanded by clicking on the node. It is useful to collapse
sub-trees that you aren't interested in.

Coloursare meaningful, and areintended to ease tree navigation, but the information they represent is also present
within the text. (This means that colour-blind users are not denied any information.)

Each leaf node is coloured green. Each non-leaf node is coloured blue and has a down arrow (#) next to it when
its sub-tree is expanded. Each non-leaf node is coloured yellow and has a left arrow (#) next to it when its sub-
treeis collapsed.

The shade of green, blue or yellow used for a node indicate its significance. Darker shades represent greater
significance (in terms of bytes or blocks).

Note that the entire output is text, even the arrows and lines connecting nodes. This means you can copy and paste
any part of the output easily into an email, bug report, etc.

10.3.2.2. The Root Node

The root node looks like this:

PP 1/1 (25 children) {
Tot al : 1, 355, 253,987 bytes (100% 67,454.81/Mnstr) in 5,943,417 bl ocks (100% 29
At t-gmax: 423,930,307 bytes (100% in 1,575,682 blocks (100%, avg size 269.05 bytes
At t-end: 258,002 bytes (100% in 2,129 blocks (100%, avg size 121.18 bytes

Reads: 5, 478, 606, 988 bytes (100% 272,685.7/Mnstr), 4.04/byte
Wites: 2,040, 294, 800 bytes (100% 101,551.22/Mnstr), 1.51/byte
Al l ocated at {

#0: [root]
}

}

The root node covers the entire execution. The information is a superset of the information shown when DHAT
ran, adding details such as allocation rates, average block sizes, block lifetimes, and read and write ratios. The
next example will explain these in more detail.

10.3.2.3. Interior Nodes

PP nodes further down the tree show information about a subset of allocations. For example:

PP 1.1/25 (2 children) {
Tot al : 54,533,440 bytes (4.02% 2,714.28/Mnstr) in 458,839 blocks (7.72% 22.84/
At t-gmax: O bytes (0% in O blocks (0%, avg size 0 bytes
At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes

161

DHAT: adynamic heap analysis tool

Reads: 15,993,012 bytes (0.29% 796.02/Mnstr), 0.29/byte
Wites: 20,974,752 bytes (1.03% 1,043.97/Mnstr), 0.38/byte
Al l ocated at {

#1: O0x95CACC9: alloc (alloc.rs:72)

#2: O0x95CACC9: alloc (alloc.rs:148)

#3: Ox95CACC9: reserve_internal <syntax::tokenstream : TokenStream all oc::all oc::d ob:
#4: 0x95CACCIO: reserve<syntax::tokenstream : TokenStreamalloc::alloc::d obal> (raw.

#5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreans (vec.rs: 460)
#6: O0x95CACCI9: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
#7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

#8: Ox95CACC9: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Stringl

}
}

The first line indicates the node's position in the tree. The 1. 1 is a unique identifier for the node and also says
that it isthefirst child node 1 (which istheroot). The/ 25 saysthat it isone of 25 children, i.e. it has 24 siblings.
The(2 chil dr en) saysthat this node node has two children of its own.

Allocations are aggregated by their allocation stack trace. The Al | ocat ed at section showsthe allocation stack
trace that is shared by al the blocks covered by this node.

The Tot al line shows that this node accounts for 4.02% of all bytes allocated during execution, and 7.72% of
all blocks. These percentages are useful for comparing the significance of different nodes within a single profile;
a PP that accounts for 10% of bytes allocated is likely to be more interesting than one that accounts for 2%.

The Tot al line also shows allocation rates, measured in bytes and blocks per million instructions. These rates
are useful for comparing the significance of nodes across profiles made with different workloads.

Finaly, the Tot al line shows the average size and lifetimes of these blocks.

The At t - gmax line says shows that no blocks from this PP were alive when the global heap peak occurred. In
other words, these blocks do not contribute at all to the global heap peak.

The At t - end line shows that no blocks were from this PP were alive at shutdown. In other words, all those
blocks were explicitly freed before termination.

TheReads andW i t es linesshow how many byteswere read within this PP's blocks, the fraction thisrepresents
of al heap reads, and the read rate. Finally, it shows the read ratio, which is the number of reads per byte. In this
case the number is 0.29, which is quite low -- if no byte was read twice, then only 29% of the allocated bytes,
which means that at least 71% of the bytes were never read! This suggests that the blocks are being underutilized
and might be worth optimizing.

The Wi t es linesis similar to the Reads line. In this case, at most 38% of the bytes are ever written, and at
least 62% of the bytes were never written.

The Reads and Wi t es measurements suggest that the blocks are being under-utilised and might be worth

optimizing. Having said that, thiskind of under-utilisation is common in data structures that grow, such asvectors
and hash tables, and isn't always fixable.

10.3.2.4. Leaf Nodes

Thisisaleaf node:

PP 1.1.1.1/2 {

Tot al : 31, 460, 928 bytes (2.32% 1,565.9/Mnstr) in 262,171 bl ocks (4.41%

Max: 16, 779, 136 bytes in 65,543 bl ocks, avg size 256 hytes
At t-gmax: O bytes (0% in O blocks (0%, avg size O bytes

At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes
Reads: 5,964, 704 bytes (0.11% 296.88/Mnstr), 0.19/byte

162

DHAT: adynamic heap analysis tool

Wites: 10, 487,200 bytes (0.51% 521.98/Mnstr), 0.33/byte
Al l ocated at {

N1: Ox95CACC9: alloc (alloc.rs:72)

N2: Ox95CACC9: alloc (alloc.rs:148)

N3: O0x95CACCIO: reserve_internal <syntax::tokenstream : TokenStream all oc::all oc::d ob:
N4: Ox95CACCYO: reserve<syntax::tokenstream : TokenStreamalloc::alloc::d obal> (raw

N5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreanms (vec.rs: 460)
N6: Ox95CACCIO: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
NT7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

N8: Ox95CACCIO: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Stringl

N9: 0Ox95CAC39: parse_token_trees until _cl ose _delim (tokentrees.rs: 26)

N10: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Strin

#11: Ox95CAC39: parse_token trees until_close_delim (tokentrees.rs: 26)

}
}

Thel. 1. 1. 1/ 2 indicates that this node is a great-grandchild of the root; is the first grandchild of the node in
the previous example; and has no children.

#12: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Strin

Leaf nodes contain an additional Max line, indicating the peak memory use for the blocks covered by this PP.
(This peak may have occurred at atime other thant - gnax.) In this case, 31,460,298 bytes were allocated from
this PP, but the maximum size alive at once was 16,779,136 bytes.

Stack frames that begin with a” rather than a# are copied from ancestor nodes. (In this example, the first 8
frames are identical to those from the node in the previous example.) These frames could be found by tracing back
through ancestor nodes, but that can be annoying, which is why they are duplicated. This a'so means that each
node makes complete sense on its own.

10.3.2.5. Access Counts

If all blocks covered by a PP node have the same size, an additional Accesses field will be present. It indicates
how the reads and writes within these blocks were distributed. For example:

Tot al : 8,388,672 bytes (0.62% 417.53/Mnstr) in 262,146 bl ocks (4.41%

13. 05/ M nst.

At t-gnmax: 8,388,672 bytes (1.98% in 262,146 bl ocks (16.64%, avg size 32 bytes

At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes
Reads: 9,109,682 bytes (0.17% 453.41/Mnstr), 1.09/byte
Wites: 7,340,088 bytes (0.36% 365.34/Mnstr), 0.88/byte
Accesses: {

[O] 65547 7 8 4 65529 # # # 16 # # # 12 # # # # # # # # # # # 65542 # # # - -

}

Every block covered by this PP was 32 bytes. Within all of those blocks, byte 0 was accessed (read or written)
65,547 times, byte 1 was accessed 7 times, byte 2 was accessed 8 times, and so on.

The ditto symbol (#) means "same access count as the previous byte".
A dash (-) means "zero". (It isused instead of O because it makes unaccessed regions more easily identifiable.)
Theinfinity symbol (#, not present in this example) means "exceeded the maximum tracked count".

Block layout can often be inferred from counts. For example, these blocks probably have four separate byte-sized
fields, followed by afour-byte field, and so on.

The size of the blocks that measure and display access countsis limited to 1024 bytes. This is done to limit the
performance overhead and also to keep the size of the generated output reasonable. However, it is possible to
override thislimit using client requests. The use-case for thisisto first run DHAT normally, and then identify any
large blocks that you would like to further investigate with access count histograms. The client request is declared

163

DHAT: adynamic heap analysis tool

indhat / dhat . h andis called DHAT _HI STOGRAM MEMORY. The macro should be placed immediately after
the call to the allocator, and use the pointer returned by the allocator.

/1 LargeStruct bigger than 1024 bytes
struct LargeStruct* |Is = mall oc(sizeof (struct LargeStruct));
DHAT_HI STOGRAM_MEMORY(| s) ;

The memory that can be profiled in this way with user requests has a further upper limit of 25kbytes. Be aware
that the access counts will al be set to zero. This means that the access counts will not include any reads or
writes performed during initialisation. An example where thiswill happen are uses of C++ newwith user-defined
constructors.

Access counts can be useful for identifying data alignment holes or other layout inefficiencies.

10.3.2.6. Aggregate Nodes

The PPtreeisvery large and many nodes represent tiny numbers of blocks and bytes. Therefore, DHAT's viewer
aggregates insignificant nodes like this:

PP 1.14.2/2 {
Tot al : 5,175 bl ocks (0.09% 0.26/ M nstr)
Al l ocated at {
[5 insignificant]
}
}

Much of the detail is stripped away, leaving only basic measurements, along with an indication of how many nodes
were aggregated together (5 in this case).

10.3.3. The Output Footer

Below the PP treeis alinelike this:

PP significance threshold: total >= 59,434.17 bl ocks (1%

It shows the function used to determine if a PP node is significant. All nodes that don't satisfy this function
are aggregated. It is occasionally useful if you don't understand why a PP node has been aggregated. The exact
threshold depends on the sort metric (see below).

Finally, the bottom of the page shows alegend that explains some of the terms, abbreviations and symbols used
in the output.

10.3.4. Sort Metrics

Theorder in which sub-trees are sorted can be changed viathe " Sort metric" drop-down menu at thetop of DHAT's
viewer. Different sort metrics can be useful for finding different things. Some sort metrics also incorporate some
filtering, so that only nodes meeting a particular criteria are shown.

Total (bytes)

The total number of bytes allocated during the execution. Highly useful for evaluating heap churn, though
not quite as useful as"Total (blocks)".

Total (blocks)

Thetotal number of blocks allocated during the execution. Highly useful for evaluating heap churn; reducing
the number of callsto the allocator can significantly speed up a program. This isthe default sort metric.

164

DHAT: adynamic heap analysis tool

Total (blocks), tiny

Like "Tota (blocks)", but shows only very small blocks. Moderately useful, because such blocks are often
easy to avoid allocating.

Total (blocks), short-lived

Like "Tota (blocks)", but shows only very short-lived blocks. Moderately useful, because such blocks are
often easy to avoid allocating.

Total (bytes), zero reads or zero writes

Like "Total (bytes)", but shows only blocks that are never read or never written to (or both). Highly useful,
because such blocks indicate poor use of memory and are often easy to avoid allocating. For example,
sometimes a block is allocated and written to but then only read if a condition C istrue; in that case, it may
be possible to delay creating the block until condition C istrue. Alternatively, sometimes blocks are created
and never used; such blocks aretrivial to remove.

Total (blocks), zero reads or zero writes
Like "Total (bytes), zero reads or zero writes" but for blocks. Highly useful.
Total (bytes), low-access

Like "Total (bytes)", but shows only blocks that have low numbers of reads or low numbers of writes (or
both). Moderately useful, because such blocks indicate poor use of memory.

Total (blocks), low-access
Like "Total (bytes), low-access', but for blocks.
At t-gmax (bytes)

This shows the breakdown of memory at the point of peak heap memory usage. Highly useful for reducing
peak memory usage.

At t-end (bytes)

This shows the breakdown of memory at program termination. Highly useful for identifying process-lifetime
lesks.

Reads (bytes)
The number of bytes read within heap blocks. Occasionally useful.
Reads (bytes), high-access

Like "Reads (bytes)", but only shows blocks with high read ratios. Occasionally useful for identifying hot
areas of memory.

Writes (bytes)
Like "Reads (bytes)", but for writes. Occasionally useful.
Writes (bytes), high-access
Like "Reads (bytes), high-access', but for writes. Occasionally useful.
The values within a node that represent the chosen sort metric are shown in bold, so they stand out.

Hereispart of aPP nodefound with "Total (blocks), tiny", showing blockswith an average size of only 8.67 bytes:

165

DHAT: adynamic heap analysis tool

Tot al : 3,407, 848 bytes (0.25% 169.62/Mnstr) in 393,214 bl ocks (6.62% 19.57/M nst|

Here is part of a PP node found with "Total (blocks), short-lived”, showing blocks with an average lifetime of
only 181.75 instructions:

Tot al : 23,068,584 bytes (1.7% 1,148.19/Mnstr) in 262,143 bl ocks (4.41% 13.05/ M n

Here is an example of a PP identified with "Total (blocks), zero reads or zero writes', showing blocks that are
allocated but never touched:

Tot al : 7,339,920 bytes (0.54% 365.33/Mnstr) in 262,140 bl ocks (4.41% 13.05/ M nst|
Max: 3,669, 960 bytes in 131,070 bl ocks, avg size 28 hytes

At t-gmax: 3,336,400 bytes (0.79% in 119, 157 bl ocks (7.56%, avg size 28 bytes

At t-end: O bytes (0% in O blocks (0%, avg size O bytes

Reads: 0 bytes (0% O/Mnstr), 0/byte

Wites: 0 bytes (0% O/Mnstr), 0/byte

All the blocks identified by these PPs are good candidates for optimization.

10.4. Treatment of realloc

real | oc isatricky function and there are several different waysthat DHAT could handle it.

Imagineanal | oc(100) call followed by ar eal | oc(200) call. This combination is considered to add two
tothetotal block count, and 300 bytesto the total bytes count. (An alternative would be to only add oneto the total
block count, and 200 bytes to the total bytes count, asif asingle mal | oc(200) call had occurred. While this
would be defensible from a semantic point of view, it is silly from an operational point of view, because making
two calls to allocator functions is more expensive than one call, and DHAT is a profiler that aims to help with
runtime costs.)

Furthermore, the implicit copying of the 100 bytes is added to the reads and writes counts. Without this, the read
and write counts would be under-measured and misleading.

However, DHAT only increases the current heap size by 100 bytes for this combination, and does not change the
current block count. (As opposed to increasing the current heap size by 200 bytes and then decreasing it by 100
bytes.) Asaresult, it can only increase the global heap peak (if indeed, this resultsin a new peak) by 100 bytes.

Finally, the program point assigned to the block allocated by the mal | oc(100) call is retained once the block
isreallocated. Which means that all 300 bytes are attributed to that program point, and no separate program point
iscreated for ther eal | oc(200) call. This may be surprising, but it has one large benefit.

Imagine some code that starts with an empty buffer, and then gradually adds data to that buffer from numerous
different pointsin the code, reallocating the buffer each timeit getsfull. (E.g. code generation in acompiler might
work this way.) With the described approach, the first heap block and all subsequent heap blocks are attributed
to the same program point. While thisis something of alie -- the first program point isn't actually responsible for
the other allocations -- it is arguably better than having the program points spread around in a distribution that
unpredictably depends on whenever the reall ocations were triggered.

10.5. Copy profiling

If DHAT isinvoked with - - rode=copy, instead of profiling heap operations (allocations and deall ocations), it
profiles copy operations, such asmentpy, menmove, st r cpy, and bcopy. Thisis sometimes useful.
Here is an example PP node from this mode:

PP 1.1.2/5 (4 children) {

166

DHAT: adynamic heap analysis tool

Tot al : 1,210, 925 bytes (10.03% 4,358.66/Mnstr) in 112,717 bl ocks (35.2%
Copi ed at {

N1: 0x4842524: memmove (vg_replace_strmem c: 1289)

#2: Ox1FOAOD: copy_nonover| appi ng<u8> (intrinsics.rs:1858)

#3: Ox1FOAOD: copy_fromslice<u8> (nod.rs:2524)

#4: Ox1FOAOD: spec_extend<u8> (vec.rs: 2227)

#5: Ox1FOAOD: extend_fromslice<u8> (vec.rs:1619)

#6: Ox1FOAOD: push_str (string.rs:821)

#7: Ox1FOAOD: write_str (string.rs:2418)

#8: Ox1FOAOD: <&mut Was core::fnt::Wite> :wite_str (nod.rs:195)

}
}

It is very similar to the PP nodes for heap profiling, but with less information, because copy profiling doesn't
involve any tracking of memory regions with lifetimes.

10.6. Ad hoc profiling

If DHAT isinvoked with - - nbde=ad- hoc, instead of profiling heap operations (allocations and deallocations),
it profiles callsto the DHAT _AD HOC EVENT client request, which isdeclared indhat / dhat . h.

Hereis an example PP node from this mode:

PP 1.1.1.1/2 {
Tot al : 30 units (17.65% 115.97/Mnstr) in 1 events (14.29% 3.87/Mnstr),
Cccurred at {
N1: 0x109407: g (ad-hoc.c:4)
N2: 0x109425: f (ad-hoc.c:8)
#3: 0x109497: main (ad-hoc.c: 14)

}
}

Thiskind of profiling is useful when you know a code path is hot but you want to know more about it.

For example, you might want to know which callsites of a hot function account for most of the calls. You could
put a DHAT_AD_HOC_EVENT(1) ; cal at the start of that function.

Alternatively, you might want to know the typical length of a vector in a hot location. You could put a
DHAT_AD HOC EVENT(| en); call at the appropriate location, when | en isthe length of the vector.

10.7. DHAT Command-line Options

DHAT-specific command-line options are:
--dhat-out-file=<file>

Write the profile datato f i | e rather than to the default output file, dhat . out . <pi d>. The % and %g
format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the core option- - | og-fi l e.

- - node=<heap| copy| ad- hoc> [defaul t: heap]
The profiling mode: heap profiling, copy profiling, or ad hoc profiling.

Notethat stacks by default have 12 frames. This may be morethan necessary, inwhich casethe- - num cal | er s
flag can be used to reduce the number, which may make DHAT run dlightly faster.

167

405. 72,

avg si

11. Lackey: an example tool

To use thistool, you must specify - - t ool =I ackey on the Valgrind command line.

11.1. Overview

Lackey isasimpleValgrind tool that doesvariouskinds of basic program measurement. It addsquitealot of simple
instrumentation to the program'’s code. It is primarily intended to be of use as an example tool, and consequently
emphasises clarity of implementation over performance.

11.2. Lackey Command-line Options

Lackey-specific command-line options are:
- - basi c-count s=<no| yes> [defaul t: yes]

When enabled, Lackey prints the following statistics and information about the execution of the client
program:

1. Thenumber of callsto thefunction specified by the- - f nnane option (thedefaultismai n). If theprogram
has had its symbols stripped, the count will always be zero.

2. The number of conditional branches encountered and the number and proportion of those taken.

3. The number of superblocks entered and completed by the program. Note that due to optimisations done
by the JIT, thisisnot at al an accurate value.

4. The number of guest (x86, amd64, ppc, etc.) instructions and IR statements executed. IR is Vagrind's
RISC-like intermediate representation viawhich all instrumentation is done.

5. Ratios between some of these counts.
6. The exit code of the client program.
--det ai | ed- count s=<no| yes> [default: no]

When enabled, Lackey prints atable containing counts of loads, stores and ALU operations, differentiated by
their IR types. The IR types are identified by their IR name ("11", "18", ... "1128", "F32", "F64", and "V 128").

--trace- mem=<no| yes> [defaul t: no]

When enabled, Lackey prints the size and address of almost every memory access made by the program. See
the comments at the top of thefilel ackey/ | k_mai n. c for details about the output format, how it works,
and inaccuracies in the address trace. Note that this option produces immense amounts of output.

--trace-superbl ocks=<no| yes> [defaul t: no]

When enabled, Lackey prints out the address of every superblock (a single entry, multiple exit, linear chunk
of code) executed by the program. Thisis primarily of interest to Valgrind developers. See the comments at
the top of thefilel ackey/ | k_mai n. ¢ for details about the output format. Note that this option produces
large amounts of outpult.

- -fnname=<nane> [defaul t: main]

Changes the function for which calls are counted when - - basi c- count s=yes is specified.

168

12. Nulgrind: the minimal Valgrind
tool

To usethistool, you must specify - - t ool =none on the Valgrind command line.

12.1. Overview

Nulgrind isthe simplest possible VValgrind tool. It performs no instrumentation or analysis of a program, just runs
it normally. It ismainly of use for Valgrind's developers for debugging and regression testing.

Nonetheless you can run programs with Nulgrind. They will run roughly 5 times more slowly than normal, for no
useful effect. Notethat you need to usethe option - - t ool =none torunNulgrind(ie. not- - t ool =nul gri nd).

169

13. BBV: an experimental basic block
vector generation tool

To usethistool, you must specify - - t ool =exp- bbv on the Vagrind command line.

13.1. Overview

A basic block isalinear section of code with one entry point and one exit point. A basic block vector (BBV) isa
list of all basic blocks entered during program execution, and a count of how many times each basic block was run.

BBV isatool that generatesbasic block vectorsfor usewith the SimPoint analysistool. The SimPoint methodol ogy
enables speeding up architectural simulations by only running asmall portion of a program and then extrapolating
total behavior from this small portion. Most programs exhibit phase-based behavior, which means that at various
times during execution a program will encounter intervals of time where the code behaves similarly to a previous
interval. If you can detect these intervals and group them together, an approximation of the total program behavior
can be obtained by only simulating a bare minimum number of intervals, and then scaling the results.

In computer architecture research, running a benchmark on a cycle-accurate simulator can cause slowdowns on
the order of 1000 times, making it take days, weeks, or even longer to run full benchmarks. By utilizing SimPoint
this can be reduced significantly, usually by 90-95%, while still retaining reasonable accuracy.

A more complete introduction to how SimPoint works can be found in the paper "Automatically Characterizing
Large Scale Program Behavior" by T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

13.2. Using Basic Block Vectors to create
SimPoints

To quickly create abasic block vector file, you will call Valgrind like this:
val grind --tool =exp-bbv /bin/ls

In this case we are running on / bi n/ | s, but this can be any program. By default afile caled bb. out . PI D
will be created, where PID isreplaced by the process ID of the running process. Thisfile contains the basic block
vector. For long-running programsthisfile can be quite large, so it might be wise to compressit with gzip or some
other compression program.

To create actual SimPoint results, you will need the SimPoint utility, available from the SimPoint webpage.
Assuming you have downloaded SimPoint 3.2 and compiled it, create SimPoint results with a command like the
following:

./ Si mPoi nt . 3. 2/ bi n/ si npoi nt -i nput Vect ors&i pped \
-l oadFVFi | e bb. out.1234.gz \
-k 5 -saveSi npoints results.sinpts \
- saveSi npoi nt Wi ghts resul ts. wei ghts

where bb.out.1234.gz is your compressed basic block vector file generated by BBV.

The SimPoint utility does random linear projection using 15-dimensions, then does k-mean clustering to calculate
which intervals are of interest. In this example we specify 5 intervals with the -k 5 option.

Theoutputsfromthe SimPointrunarether esul t s. si npt s andr esul t s. wei ght s files. Thefirst holdsthe
5 most relevant interval s of the program. The seconds hol dsthe weight to scale each interval by when extrapolating
full-program behavior. The intervals and the weights can be used in conjunction with a simulator that supports

170

http://www.cse.ucsd.edu/~calder/simpoint/
http://www.cse.ucsd.edu/~calder/simpoint/

BBV: an experimental basic block vector generation tool

fast-forwarding; you fast-forward to the interval of interest, collect stats for the desired interval length, then use
statistics gathered in conjunction with the weights to calculate your results.

13.3. BBY Command-line Options

BBV -specific command-line options are:
--bb-out-fil e=<nanme> [defaul t: bb. out. %p]

This option selects the name of the basic block vector file. The % and %g format specifiers can be used to
embed the process ID and/or the contents of an environment variable in the name, asis the case for the core
option--log-file.

--pc-out-file=<name> [default: pc.out. %]

This option selects the name of the PC file. This file holds program counter addresses and function name
info for the various basic blocks. This can be used in conjunction with the basic block vector file to fast-
forward via function names instead of just instruction counts. The % and % format specifiers can be used
to embed the process ID and/or the contents of an environment variable in the name, as is the case for the
coreoption- -1 og-file.

nt erval - si ze=<nunber> [default: 100000000]

This option selectsthe size of theinterval to use. The default is 100 million instructions, which isacommonly
used value. Other sizes can be used; smaller intervals can help programs with finer-grained phases. However
smaller interval size can lead to accuracy issues due to warm-up effects (When fast-forwarding the various
architectural featureswill beun-initialized, and it will take some number of instructions beforethey "warm up"
tothestateafull simulation would be at without the fast-forwarding. Largeinterval sizestend to mitigatethis.)

nstr-count-only [default: no]

This option tells the tool to only display instruction count totals, and to not generate the actual basic block
vector file. Thisisuseful for debugging, and for gathering instruction count info without generating the large
basic block vector files.

13.4. Basic Block Vector File Format

The Basic Block Vector is dumped at fixed intervals. Thisis commonly done every 100 million instructions; the
--interval - si ze option can be used to change this.

The output file looks like this:

T:45:1024 :189: 99343
T:11: 78573 :15:1353 :56:1
T:18:45 :12: 135353 :56: 78 314: 4324263

Each new interval startswith aT. Thisisfollowed on the same line by a series of basic block and frequency pairs,
one for each basic block that was entered during the interval. The format for each block/frequency pair isacolon,
followed by a number that uniquely identifies the basic block, another colon, and then the frequency (which is
the number of times the block was entered, multiplied by the number of instructions in the block). The pairs are
separated from each other by a space.

The frequency count is multiplied by the number of instructions that are in the basic block, in order to weigh the
count so that instructions in small basic blocks aren't counted as more important than instructions in large basic
blocks.

The SimPoint program only processes lines that start with a "T". All other lines are ignored. Traditionally
commentsareindicated by startingalinewitha"#" character. Some other BBV generation tools, such as PinPoints,

171

BBV: an experimental basic block vector generation tool

generate lines beginning with letters other than "T" to indicate more information about the program being run. We
do not generate these, as the SimPoint utility ignores them.

13.5. Implementation

Vagrind provides al of the information necessary to create BBV files. In the current implementation, all
instructions are instrumented. This is slower (by approximately a factor of two) than a method that instruments
at the basic block level, but there are some complications (especially with rep prefix detection) that make that
method more difficult.

Valgrind actually provides instrumentation at a superblock level. A superblock has one entry point but unlike
basic blocks can have multiple exit points. Once a branch occurs into the middle of ablock, it is split into a new
basic block. Because Valgrind cannot produce "true" basic blocks, the generated BBV vectors will be different
than those generated by other tools. In practice this does not seem to affect the accuracy of the SimPoint results.
Wedo internally forcethe - - vex- guest - chase=no option to Valgrind which forces amore basic-block-like
behavior.

When asuperblock isrun for thefirst time, it isinstrumented with our BBV routine. A block info (bblnfo) structure
is allocated which holds the various information and statistics for the block. A unique block ID is assigned to the
block, and then the structure is placed into an ordered set. Then each nativeinstruction in the block isinstrumented
to call an instruction counting routine with a pointer to the block info structure as an argument.

At run-time, our instruction counting routines are called once per native instruction. The relevant block info
structure is accessed and the block count and total instruction count is updated. If the total instruction count
overflows theinterval size then we walk the ordered set, writing out the statistics for any block that was accessed
in theinterval, then resetting the block countersto zero.

On the x86 and amd64 architectures the counting code has extra code to handle rep-prefixed string instructions.
This is because actual hardware counts a rep-prefixed instruction as one instruction, while a naive Vagrind
implementation would count it as many (possibly hundreds, thousands or even millions) of instructions. We handle
rep-prefixed instructions specially, in order to make the results match those obtained with hardware performance
counters.

BBV aso counts the fldcw instruction. This instruction is used on x86 machines in various ways; it is most
commonly found when converting floating point valuesinto integers. On Pentium 4 systemstheretired instruction
performance counter counts this instruction as two instructions (all other known processors only count it as one).
This can affect results when using SimPoint on Pentium 4 systems. We provide the fldcw count so that users can
evaluate whether it will impact their results enough to avoid using Pentium 4 machines for their experiments. It
would be possible to add an option to this tool that mimics the double-counting so that the generated BBV files
would be usable for experiments using hardware performance counters on Pentium 4 systems.

13.6. Threaded Executable Support

BBV supports threaded programs. When a program has multiple threads, an additional basic block vector fileis
created for each thread (each additional fileisthe specified filename with the thread number appended at the end).

There is no official method of using SimPoint with threaded workloads. The most common method is to run
SimPoaint on each thread's results independently, and use some method of deterministic execution to try to match
the original workload. This should be possible with the current BBV.

13.7. Validation

BBV has been tested on x86, and64, and ppc32 platforms. An earlier version of BBV was tested in detail
using hardware performance counters, thiswork is described in a paper from the HiPEAC'08 conference, "Using
Dynamic Binary Instrumentation to Generate Multi-Platform SimPoints: Methodology and Accuracy" by V.M.
Weaver and SA. McKee.

172

BBV: an experimental basic block vector generation tool

13.8. Performance

Using this program slows down execution by roughly afactor of 40 over native execution. This varies depending
on the machine used and the benchmark being run. On the SPEC CPU 2000 benchmarks running on a 3.4GHz

Pentium D processor, the slowdown ranges from 24x (mcf) to 340x (vortex.2).

173

Valgrind FAQ

Release 3.24.0.GIT ?? Oct 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind FAQ

Table of Contents

Valgrind Frequently ASKEd QUESLIONSuuuiieiiieiieii ettt ettt e e e e e e e e e 1

clxxv

Valgrind Frequently Asked Questions

Valgrind Frequently Asked Questions

B 2 7o (o 1 o 1
1.1. How do you pronounce "Valgrind™?ceeuiori e e e e e e e e eans 1
1.2. Where does the name "Valgrind" come from?c.ooviiiiiiii i e 1
2. Compiling, installing and CONFIQUITNGvuvnieie e e e e e e ean s 2
2.1. When building Valgrind, 'make' dies partway with an assertion failure, something like this: 2
2.2. When building Valgrind, 'make’ fails With this:cccoiiiiiii e 2
3. Valgrind aborts UNEXPECIEAIYcveeiiii et e e e e 2
3.1. Programs run OK on Valgrind, but at exit produce a bunch of errors involving
__libc_freeres and then die with a segmentation fault.cccoooiiiiiiiii i, 2
3.2. My (buggy) program dies lHKe this:iiiiiiiiii e e e e e e 2
3.3. My program dies, printing a message like thisaong theway:ccoovviiiiiiiiin i, 2
3.4. | tried running a Java program (or another program that uses a just-in-time compiler) under
Vagrind but something went wrong. Does Valgrind handle such programs?cccceevueneees 3
4. Valgrind behaves UNEXPECLEAIYu.iiieieii et e e e e e e et e e e e e e e ean s 3
4.1. My program uses the C++ STL and string classes. Valgrind reports 'still reachable’ memory
leaks involving these classes at the exit of the program, but there should be none. 3
4.2. The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them? 3
4.3. The stack traces given by Memcheck (or another tool) seem to have the wrong function namein
them. What's happening?cooniii e e e e e e e e e et e e aee 4
4.4. My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening? 5
4.5. Memcheck doesn't report any errors and | know my program has errors.ccceeevvviveeinnerennnn. 5
4.6. Why doesn't Memcheck find the array overruns in this program?ccoovvviieiiieiii v, 5
4.7. Why does Memcheck report many "Mismatched free() / delete / delete []" errors when my code
1301 = o PSPPI 6
T o= LT o U PR 6
5.1. | tried writing a suppression but it didn't work. Can you write my suppression for me? 6
5.2. With Memcheck's memory leak detector, what's the difference between "definitely lost",
"indirectly lost", "possibly lost", "still reachable", and "suppressed”?coovveveveeiiievineninnnnns 6

5.3. Memcheck's uninitialised value errors are hard to track down, because they are often reported
some time after they are caused. Could Memcheck record atrail of operations to better link
the cause to the effect? Or maybe just eagerly report any copies of uninitialised memory

A= =S USSP 7

5.4. Isit possible to attach Valgrind to a program that is already running?cccocveeveviiiiiiiineninnen, 7

6. HOW TO Get FUMEr ASSISIANCE .. .ccvviiiiiiii e et e et e et e e et e e aeanss 7
6.1. Where can | get MOre hEIP? ..o.vniii e e e e e e e e e e 7

1. Background
1.1. How do you pronounce "Valgrind"?

The"Va" asin theword "value". The "grind" is pronounced with a short 'i* -- ie. "grinned" (rhymes with
"tinned") rather than "grined" (rhymes with "find").

Don't feel bad: almost everyone getsit wrong at first.
12. Where doesthe name"Vagrind" come from?

From Nordic mythology. Originally (before release) the project was named Heimdall, after the watchman
of the Nordic gods. He could "see a hundred miles by day or night, hear the grass growing, see the wool
growing on a sheep's back", etc. Thiswould have been agreat name, but it was already taken by a security
package "Heimdal".

Keepingwiththe Nordic theme, Valgrind was chosen. Valgrind isthe name of themain entranceto Vahalla
(the Hall of the Chosen Slain in Asgard). Over this entrance there resides a wolf and over it there is the
head of aboar and on it perches ahuge eagle, whose eyes can seeto thefar regions of the nineworlds. Only
those judged worthy by the guardians are allowed to passthrough Valgrind. All others are refused entrance.

Valgrind Frequently Asked Questions

It's not short for "value grinder", although that's not a bad guess.

2. Compiling, installing and configuring
2.1, When building Valgrind, 'make' dies partway with an assertion failure, something like this:
% nmake: expand. c:489: allocated vari abl e_append:
Assertion 'current_variable set list->next !'= 0" failed.
It's probably a bug in 'make’. Some, but not all, instances of version 3.79.1 have this bug, see this. Try
upgrading to a more recent version of ‘'make’. Alternatively, we have heard that unsetting the CFLAGS
environment variable avoids the problem.
2.2. When building Valgrind, 'make' fails with this:
fusr/bin/ld: cannot find -lc

collect2: Id returned 1 exit status

Y ou need to install the glibc-static-devel package.

3. Valgrind aborts unexpectedly

3.1. Programsrun OK on Valgrind, but at exit produce a bunch of errorsinvolving __|i bc_freeres and
then die with a segmentation fault.

When the program exits, Valgrind runs the procedure __ | i bc_freeres in glibc. Thisis a hook for
memory debuggers, so they can ask glibc to free up any memory it has used. Doing that is needed to ensure
that Valgrind doesn't incorrectly report space leaksin glibc.

Theproblemisthat running | i bc_freer es inolder glibc versions causes this crash.

Workaround for 1.1.X and later versions of Valgrind: usethe- - run- 1 i bc- f r eer es=no option. You
may then get space leak reports for glibc allocations (please don't report these to the glibc people, since
they are not real leaks), but at least the program runs.

3.2. My (buggy) program dies like this:

val grind: monmallocfree.c: 248 (get_bszB as_is): Assertion 'bszB lo == bszB hi' fail
or like this:
val grind: mnallocfree.c: 442 (nk_i nuse_bszB): Assertion 'bszB != 0" failed.

or otherwise aborts or crashesin m_mallocfree.c.

If Memcheck (the memory checker) shows any invalid reads, invalid writes or invalid frees in your
program, the above may happen. Reason is that your program may trash Valgrind's low-level memory
manager, which then dies with the above assertion, or something similar. The cure isto fix your program
so that it doesn't do any illegal memory accesses. The above failure will hopefully go away after that.

3.3. My program dies, printing a message like this along the way:
vex x86->I R unhandl ed instruction bytes: 0x66 OxF Ox2E 0x5
One possibility isthat your program has abug and erroneously jumpsto a non-code address, in which case

you'll get a SIGILL signal. Memcheck may issue a warning just before this happens, but it might not if
the jump happens to land in addressable memory.

http://www.mail-archive.com/bug-make@gnu.org/msg01658.html

Valgrind Frequently Asked Questions

3.4.

Another possihility is that Valgrind does not handle the instruction. If you are using an older Valgrind, a
newer version might handle the instruction. However, all instruction sets have some obscure, rarely used
instructions. Also, on amd64 there are an almost limitless number of combinations of redundant instruction
prefixes, many of them undocumented but accepted by CPUs. So Valgrind will still have decoding failures
from time to time. If this happens, please file a bug report.

| tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind but
something went wrong. Does Valgrind handle such programs?

Va grind can handle dynamically generated code, so long as none of the generated codeislater overwritten
by other generated code. If this happens, though, things will go wrong as VValgrind will continue running
its tranglations of the old code (thisis true on x86 and amd64, on PowerPC there are explicit cache flush
instructions which Valgrind detects and honours). Y ou should try running with - - snc- check=al | in
this case. Valgrind will run much more slowly, but should detect the use of the out-of-date code.

Alternatively, if you have the source code to the JT compiler you can insert calls to the
VALGRI ND_DI SCARD_TRANSLATI ONS client request to mark out-of-date code, saving you from using
--snc-check=al | .

Apart from this, in theory Valgrind can run any Java program just fine, even those that use JNI and are
partially implemented in other languages like C and C++. In practice, Java implementations tend to do
nasty things that most programs do not, and Va grind sometimes falls over these corner cases.

If your Javaprograms do not run under Valgrind, evenwith - - snc- check=al | , pleasefileabug report
and hopefully wel'll be able to fix the problem.

4. Valgrind behaves unexpectedly

4.1.

4.2.

My program usesthe C++ STL and string classes. Valgrind reports 'still reachable’ memory leaksinvolving
these classes at the exit of the program, but there should be none.

First of al: relax, it's probably not abug, but afeature. Many implementations of the C++ standard libraries
usetheir own memory pool alocators. Memory for quite anumber of destructed objectsis not immediately
freed and given back to the OS, but kept in the pool(s) for later re-use. The fact that the pools are not freed
at the exit of the program cause Valgrind to report this memory as still reachable. The behaviour not to
free pools at the exit could be called a bug of the library though.

Using GCC, you can force the STL to use malloc and to free memory as soon as possible by globally
disabling memory caching. Beware! Doing so will probably slow down your program, sometimes
drasticaly.

* WithGCC 2.91, 2.95, 3.0and 3.1, compileal sourceusing the STL with- D__USE_NMALLQOC. Beware!
Thiswas removed from GCC starting with version 3.3.

» With GCC 3.2.2 and later, you should export the environment variable GL1 BCPP_FORCE_NEWbefore
running your program.

e With GCC 3.4 and later, that variable has changed name to GLI BCXX_FORCE_NEW

There are other ways to disable memory pooling: using the mal | oc_al | oc template with your
objects (not portable, but should work for GCC) or even writing your own memory allocators. But all
this goes beyond the scope of this FAQ. Start by reading http://gcc.gnu.org/onlinedocs/libstdc++/fag/
index.html#4_4 leak if you absolutely want to do that. But beware: allocators belong to the more messy
parts of the STL and people went to great lengths to make the STL portable across platforms. Chances are
good that your solution will work on your platform, but not on others.

The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them?

If they're not long enough, use - - num cal | er s to make them longer.

http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak
http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak

Valgrind Frequently Asked Questions

4.3.

If they're not detailed enough, make sure you are compiling with - g to add debug information. And don't
strip symbol tables (programs should be unstripped unless you run 'strip' on them; some libraries ship
stripped).

Also, for leak reports involving shared objects, if the shared object is unloaded before the program
terminates, Valgrind will discard the debug information and the error message will befull of 2?7 entries. If
you use the option - - keep- debugi nf o=yes, then Valgrind will keep the debug information in order
to show the stack traces, at the price of increased memory. An aternate workaround is to avoid calling
dl cl ose onthese shared objects.

Also, - f oni t - f rame- poi nt er and- f st ack- check can make stack traces worse.
Some exampl e sub-traces:

» With debug information and unstripped (best):

Invalid wite of size 1
at 0x80483BF: really (mallocl.c: 20)
by 0x8048370: main (mallocl.c:9)

With no debug information, unstripped:

Invalid wite of size 1
at 0x80483BF: really (in /auto/homes/njn25/grind/ head5/ a. out)
by 0x8048370: main (in /auto/homes/njn25/grind/ head5/ a. out)

With no debug information, stripped:

Invalid wite of size 1
at 0x80483BF: (within /auto/hones/njn25/grind/ head5/ a. out)
by 0x8048370: (within /auto/hones/njn25/grind/ head5/a. out)
by 0x42015703: _ libc_start _main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. (within /auto/hones/njn25/grind/ head5/a. out)

With debug information and -fomit-frame-pointer:

Invalid wite of size 1
at 0x80483C4: really (mallocl.c: 20)
by 0x42015703: _ libc_start_main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. ??? (start.S:81)

» A leak error message involving an unloaded shared object:

84 bytes in 1 blocks are possibly lost in loss record 488 of 713
at O0x1B9036DA: operator new(unsigned) (vg_replace_nalloc.c:132)
by Ox1DB63EEB:. 2?7
by 0x1DB4B800: ?7?7?
by O0x1D65E007: ?7?7?
by Ox8049EE6: mmi n (mai n.cpp: 24)

The stack traces given by Memcheck (or another tool) seem to have the wrong function name in them.
What's happening?

Occasionaly Valgrind stack traces get the wrong function names. This is caused by glibc using aiases
to effectively give one function two names. Most of the time Vagrind chooses a suitable name, but very

Valgrind Frequently Asked Questions

4.4,

45.

4.6.

occasionaly it getsit wrong. Exampleswe know of are printing bcnp instead of mentnp, i ndex instead
of strchr,andri ndex instead of strrchr.

My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening?

When a program runs under Valgrind, its environment is slightly different to when it runs natively. For
example, the memory layout is different, and the way that threads are scheduled is different.

Most of the time this doesn't make any difference, but it can, particularly if your program is buggy.
For example, if your program crashes because it erroneously accesses memory that is unaddressable,
it's possible that this memory will not be unaddressable when run under Valgrind. Alternatively, if your
program has data races, these may not manifest under Valgrind.

Thereisn't anything you can do to change this, it's just the nature of the way Valgrind works that it cannot
exactly replicate a native execution environment. | n the case where your program crashes due to amemory
error when run natively but not when run under Valgrind, in most cases Memcheck should identify the
bad memory operation.

Memcheck doesn't report any errors and | know my program has errors.
There are two possible causes of this.

First, by default, Valgrind only tracesthe top-level process. Soif your program spawns children, they won't
betraced by Valgrind by default. Also, if your program is started by ashell script, Perl script, or something
similar, Valgrind will trace the shell, or the Perl interpreter, or equivalent.

To trace child processes, usethe- -t race- chi | dr en=yes option.

If you aretracing large trees of processes, it can be less disruptive to have the output sent over the network.
Give Valgrind the option - - | 0g- socket =127. 0. 0. 1: 12345 (if you want logging output sent to
port 12345 on| ocal host). You can use the valgrind-listener program to listen on that port:

val grind-1istener 12345
Obviously you have to start the listener process first. See the manual for more details.

Second, if your program is statically linked, most Valgrind tools will only work well if they are able to
replace certain functions, such asmal | oc, with their own versions. By default, statically linked mal | oc
functi ons arenot replaced. A key indicator of thisisif Memcheck says:

Al'l heap bl ocks were freed -- no | eaks are possible

when you know your program calls mal | oc. The workaround is to use the option - - sonarne-
synonyns=somal | oc=NONE or to avoid statically linking your program.

There will aso be no replacement if you use an aternative mal | oc | i brary such as tcmalloc,
jemaloac, ... In such a case, the option - - sonane- synonyns=sonal | oc=zzzz (where zzzz is the
soname of the alternative malloc library) will allow Vagrind to replace the functions.

Why doesn't Memcheck find the array overrunsin this program?

int static[5];
i nt mai n(voi d)
{

i nt stack[5];

static[5] = 0;

Valgrind Frequently Asked Questions

stack [5] = O;

return O;

}

Unfortunately, Memcheck doesn't do bounds checking on global or stack arrays. We'd like to, but it's just
not possible to do in areasonable way that fits with how Memcheck works. Sorry.

4.7. Why does Memcheck report many "Mismatched free() / delete/ delete []" errors when my codeis correct?
There are two possible causes of this.

First, check if you are using an optimized build of Google tcmalloc (part of Google perftools). This
library usesasingle aliasfor free/scalar delete/array delete as an unmeasurable micro-optimization. There
is smply no way for Memcheck to tell which of these was originally used. There are a few possible
workarounds.

* Build tcmalloc with "CPPFLAGS=-DTCMALLOC_NO_ALIASES' (best).
» Use adebug build of tcmalloc (debug builds turn off the alias micro-optimization).
* Do not link with tcmalloc for the builds that you use for Memecheck testing.

Second, if you are replacing operator new or operator del ete make sure that the compiler does not perform
optimizations such asinlining on callsto these functions. Such optimizations can prevent Memcheck from
correctly identifying the allocator or deallocator that is being used.

The following two code snippets show how you can do thiswith GCC and LLVM (clang).

/l GCC
voi d operator del ete(voi d*) noexcept _ attribute ((__externally visible));

/1 LLVM (cl ang)
__attribute ((__visibility ("default"))) void operator del ete(void*) noexcept;

If all elsefails, you might have to use "--show-mismatched-frees=no"

5. Miscellaneous
5.1. | tried writing asuppression but it didn't work. Can you write my suppression for me?

Yes! Usethe- - gen- suppr essi ons=yes feature to spit out suppressions automatically for you. Y ou
can then edit them if you like, eg. combining similar automatically generated suppressions using wildcards
like' ** .

If you really want to write suppressions by hand, read the manual carefully. Note particularly that C++
function names must be mangled (that is, not demangled).

5.2. With Memcheck's memory leak detector, what's the difference between "definitely lost”, "indirectly lost”,
"possibly lost", "still reachable”, and "suppressed"?

The details are in the Memcheck section of the user manual.
In short:
 "definitely lost" means your program is leaking memory -- fix those leaks!

 "indirectly lost" means your program is leaking memory in a pointer-based structure. (E.g. if the root
nodeof abinary treeis"definitely lost", al thechildrenwill be"indirectly lost".) If youfix the" definitely
lost" leaks, the "indirectly lost" leaks should go away.

Valgrind Frequently Asked Questions

53.

54.

» "possibly lost" meansyour programisleaking memory, unlessyou're doing unusual thingswith pointers
that could cause them to point into the middle of an alocated block; see the user manual for some
possible causes. Use - - show possi bl y-1 ost =no if you don't want to see these reports.

 "dtill reachable" means your program is probably ok -- it didn't free some memory it could have. This
is quite common and often reasonable. Don't use - - show r eachabl e=yes if you don't want to see
these reports.

» "suppressed" means that aleak error has been suppressed. There are some suppressions in the default
suppression files. Y ou can ignore suppressed errors.

Memcheck's uninitialised value errors are hard to track down, because they are often reported some time
after they are caused. Could Memcheck record atrail of operations to better link the cause to the effect?
Or maybe just eagerly report any copies of uninitialised memory values?

Prior to version 3.4.0, the answer was "we don't know how to do it without huge performance penalties’.
Asof 3.4.0, try using the- - t r ack- or i gi ns=yes option. It will run slower than usual, but will give
you extrainformation about the origin of uninitialised values.

Or if you want to do it the old fashioned way, you can use the client request
VALGRI ND_CHECK_VALUE_|I S_DEFI NED to help track these errors down -- work backwards from
the point where the uninitialised error occurs, checking suspect values until you find the cause. This
requires editing, compiling and re-running your program multiple times, which is a pain, but still easier
than debugging the problem without Memcheck's help.

As for eager reporting of copies of uninitialised memory values, this has been suggested multiple
times. Unfortunately, almost all programs legitimately copy uninitialised memory values around (because
compilers pad structs to preserve alignment) and eager checking leads to hundreds of false positives.
Therefore Memcheck does not support eager checking at thistime.

Isit possible to attach Valgrind to a program that is already running?

No. The environment that Valgrind provides for running programs is significantly different to that for
normal programs, e.g. due to different layout of memory. Therefore Valgrind hasto have full control from
the very start.

It is possible to achieve something like this by running your program without any instrumentation (which
involves a slow-down of about 5x, less than that of most tools), and then adding instrumentation once
you get to a point of interest. Support for this must be provided by the tool, however, and Callgrind isthe
only tool that currently has such support. See the instructions on the cal | gri nd_cont r ol program
for details.

6. How To Get Further Assistance

6.1.

Where can | get more help?
Read the appropriate section(s) of the Valgrind Documentation.

Search the valgrind-users mailing list archives, using the group name
gmane. conp. debuggi ng. val gri nd.

If you think an answer in this FAQ isincomplete or inaccurate, please e-mail valgrind@valgrind.org.

If you havetried all of these things and are still stuck, you can try mailing the valgrind-users mailing list.
Note that an email has a better change of being answered usefully if it is clearly written. Also remember
that, despite the fact that most of the community are very helpful and responsive to emailed questions, you
are probably requesting help from unpaid volunteers, so you have no guarantee of receiving an answer.

http://www.valgrind.org/docs/manual/index.html
http://search.gmane.org
http://news.gmane.org/gmane.comp.debugging.valgrind
mailto:valgrind@valgrind.org
http://www.valgrind.org/support/mailing_lists.html

Valgrind Technical Documentation

Release 3.24.0.GIT ?? Oct 2024
Copyright © 2000-2022 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Vagrind Technical Documentation

Table of Contents

1. The Design and Implementation of Valgringdoveiiiiiiiiiiii e 1
2. Writing @ NewW Valgrind TOOIcoouuuuiiiiiii ettt ettt et e e e e e eenees 2
2% W [i oo (8 1o o EO TR P T TUP PR 2
2.2, BaSICS ittt et 2
2.2. 1. HOW tOOIS WOFK ...ttt et ettt ettt e e ettt e e e et e e e enb e eeenes 2
2.2.2. GELING the COUE ...ttt e 2
2.2.3. GELLING SEAEAee ettt e e e e e aae 2
224, WIITING TN COUE ... ittt et e e et e e e e eees 3
2.2.5, INITIAHSAIION ..ottt et ettt 3
2.2.6. INSIFUMENTBLION ... ettt ettt e ettt e e et e ettt e ettt e e e eebaeeeenbnaeeeens 4
2.2.7. FINAIISALION ...t e e aee 4
2.2.8. Other Important INfOrMELIONiiiiieiiiiii e 4

2.3, AQVENCED TOPICS .. eeettueeteit ettt ettt ettt ettt et e e ettt e e et b e et e b e et e b e et et eeeba s 5
2.3.1. DEDUGOING TIPS - teettueteett ettt ettt ettt ettt e et et e e et e e et e e e b s 5
2.3.2. SUPPIESSIONS ...ttt eteet ettt ettt e et ettt s e ettt e e et e b e e e e et et e b e et e e e s 5
2.3.3. DOCUMENTALIONceeeti ettt ettt et e et e et e e e et e e e eaaas 5
2.3.4, REQGIESSION TESESuueiiiii i ee ettt ettt ettt e et e ettt e e et e e et et e e e e e e 6
2.3.5. PrOFITING ..t 6
2.3.6. Other MaKefile HaCKErYoiiiiiiieii e 7
2.3.7. The Coreftool INTEITACEuu it 7

24, FINBl WOPAS ...t e et ettt ettt e e et e e e e et e eeeebn e eene 7
3. Callgrind Format SPECITICALIONiiiiitiee ittt et e e et e e ettt e e e e et e e eeneneeees 8
L. OVEIVIBIW .ttt ettt ettt e e e e e 8
311 BASIC SHTUCIUIE ...ttt ettt et e et e et e e e e e e nb e e ennas 8
3.1.2. SIMPIE EXAMPIE ... e e 8
313, ASSOCIALIONS ... ettt ettt ettt ettt ettt e e e et e e e e e e aee 9

3. 1.4, EXtended EXAMPIE ... 9

3. 1.5, NAME COMPIESSION ...eeetiietetii ettt ettt e et e et e et e et et e et et e et et e e e eba s 10
3.1.6. SUDPOSITION COMPIESSIONeeettieeeeti ettt ettt et et e e e et e e e e e e eneans 11
317, MISCEITANEOUSceeetieeeiii ettt e e e e e enaa s 11

B2 REFEIIICE .. ittt 12
N B € = 01 1= PP 12
3.2.2. Description Of HEBdEr LiNESuiiiiiiiiiiii et 13
3.2.3. Destription Of BOOY LINESccouuuiiiiiiiiet ittt et eeaens 15

1. The Design and Implementation of
Valgrind

A number of academic publications nicely describe many aspects of Vagrind'sdesign and implementation. Online
copies of all of them, and others, are available on the Valgrind publications page.

The following paper gives a good overview of Valgrind, and explains how it differs from other dynamic binary
instrumentation frameworks such as Pin and DynamoRI O.

e Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. Nicholas Nether cote and
Julian Sewar d. Proceedingsof ACM SIGPL AN 2007 Conferenceon Programming L anguage Design and
Implementation (PL DI 2007), San Diego, California, USA, June 2007.

The following two papers together give a comprehensive description of how most of Memcheck works. The
first paper describesin detail how Memcheck's undefined value error detection (a.k.a. V bits) works. The second
paper describes in detail how Memcheck's shadow memory isimplemented, and compares it to other alternative
approaches.

* Using Valgrind to detect undefined value errors with bit-precision. Julian Seward and Nicholas
Nether cote. Proceedings of the USENIX'05 Annual Technical Conference, Anaheim, California, USA,
April 2005.

How to Shadow Every Byte of Memory Used by a Program. Nicholas Nethercote and Julian Seward.
Proceedings of the Third International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE 2007), San Diego, California, USA, June 2007.

The following paper describes Callgrind.

* A Tool Suite for Simulation Based Analysis of Memory Access Behavior. Josef Weidendorfer, Markus
Kowarschik and Carsten Trinitis. Proceedings of the 4th International Conference on Computational
Science (ICCS 2004), Krakow, Poland, June 2004.

Thefollowing dissertation describes Valgrind in some detail (many of these details are now out-of-date) aswell as
Cachegrind, Annelid and Redux. It also covers some underlying theory about dynamic binary analysisin general
and what all these tools have in common.

* Dynamic Binary Analysis and Instrumentation. Nicholas Nethercote. PhD Dissertation, University of
Cambridge, November 2004.

http://www.valgrind.org/docs/pubs.html

2. Writing a New Valgrind Tool

So you want to write a Valgrind tool ? Here are some instructions that may help.

2.1. Introduction

The key idea behind Valgrind's architecture is the division between its core and tools.

The core provides the common low-level infrastructure to support program instrumentation, including the JT
compiler, low-level memory manager, signal handling and athread scheduler. It also provides certain servicesthat
are useful to some but not al tools, such as support for error recording, and support for replacing heap allocation
functionssuch asmal | oc.

But the core leaves certain operations undefined, which must be filled by tools. Most notably, tools define how
program code should be instrumented. They can also call certain functions to indicate to the core that they would
like to use certain services, or be notified when certain interesting events occur. But the core takes care of all
the hard work.

2.2. Basics

2.2.1. How tools work

Tools must define various functions for instrumenting programs that are called by Valgrind's core. They are then
linked against Valgrind's core to define a complete Valgrind tool which will be used when the - - t ool option
is used to select it.

2.2.2. Getting the code

To write your own tool, you'll need the Valgrind source code. Y ou'll need a clone from the git repository for the
automake/autoconf build instructions to work. See the information about how to do clone from the repository at
the Valgrind website.

2.2.3. Getting started

Vagrind usesGNU aut omake and aut oconf for the creation of Makefiles and configuration. But don't worry,
these instructions should be enough to get you started even if you know nothing about those tools.

In what follows, al filenames are relative to Valgrind's top-level directory val gri nd/ .

1. Choose aname for the tool, and atwo-letter abbreviation that can be used as a short prefix. We'll usef oobar
and f b asan example.

2. Makethree new directoriesf oobar / , f oobar/ docs/ andf oobar/tests/.
3. Create an empty filef oobar/t est s/ Makefil e. am

4. Copy none/ Makefi | e. aminto f oobar /. Edit it by replacing all occurrences of the strings " none" ,
"nl_"and"nl-" with"foobar","fb_" and"fb-" respectively.

5. Copynone/ nl _nai n. cintof oobar/ ,renamingitasf b_nai n. c. Edititby changingthedet ai | s lines
innl _pre_cl o_init tosomething appropriate for the tool. These fields are used in the startup message,
exceptforbug reports_towhichisusedif atool assertionfails. Also, replacethestring” nl _" throughout
with"fb_" again.

6. Edit Makef i | e. am adding the new directory f oobar tothe TOOLS or EXP_TQOOLS variables.

http://www.valgrind.org/downloads/repository.html

Writing aNew Valgrind Tool

7. Editconfigure. ac,addingf oobar/ Makefi | e andf oobar/ t est s/ Makefi | e tothe AC_QUTPUT
list.

8. Run:

aut ogen. sh

./configure --prefix= pwd /inst
make

make install

It should automake, configure and compile without errors, putting copies of thetool inf oobar/ andi nst/
lib/valgrind/.

9. You can test it with acommand like:

i nst/bin/val grind --tool =f oobar date

(almost any program should work; dat e isjust an example). The output should be something like this:

==738== foobar-0.0.1, a foobarring tool.

==738== Copyri ght (C 2002-2017, and GNU GPL'd, by J. Progranmer.

==738== Using Valgrind-3.14.0.d T and Li bVEX; rerun with -h for copyright info
==738== Comuand: date

Tue Nov 27 12:40:49 EST 2017

The tool does nothing except run the program uninstrumented.

These steps don't have to be followed exactly -- you can choose different names for your source files, and use a
different - - prefi x for. /confi gure.

Now that we've setup, built and tested the simplest possible tool, onto the interesting stuff...

2.2.4. Writing the code

A tool must define at least these four functions:

pre_clo_init()
post _clo_init()
i nstrunent ()
fini()

The names can be different to the above, but these are the usua names. The first one is registered
using the macro VG DETERM NE_| NTERFACE VERSI ON. The last three are registered using the
VG (basi c_tool funcs) function.

In addition, if atool wants to use some of the optional services provided by the core, it may have to define other
functions and tell the core about them.

2.2.5. Initialisation

Most of the initialisation should be done in pre_cl o_i nit. Only use post _cl o_i ni t if atool provides
command line options and must do some initialisation after option processing takes place (" ¢l 0" stands for
"command line options").

Writing aNew Valgrind Tool

First of al, various "details' need to be set for a tool, using the functions VG (det ai |l s_*). Some are al
compulsory, some aren't. Some are used when constructing the startup message, det ai | _bug_reports_to
isused if VG_(t ool _pani c) isever caled, or atool assertion fails. Others have other uses.

Second, various "needs' can be set for atool, using the functions VG _(needs_*) . They are mostly booleans,
and can be left untouched (they default to Fal se). They determine whether a tool can do various things such
as. record, report and suppress errors; process command line options; wrap system calls; record extrainformation
about heap blocks; etc.

For example, if a tool wants the cores help in recording and reporting errors, it must cal
VG (needs_t ool _errors) and provide definitions of eight functions for comparing errors, printing out
errors, reading suppressions from a suppressions file, etc. While writing these functions requires some work, it's
much less than doing error handling from scratch because the core is doing most of the work.

Third, thetool canindicatewhich eventsin coreit wantsto be notified about, using thefunctionsVG _(t rack_*) .
These include things such as heap blocks being allocated, the stack pointer changing, a mutex being locked, etc.
If atool wants to know about this, it should provide a pointer to a function, which will be called when that event
happens.

For example, if the tool want to be notified when a new heap block is alocated, it should call
VG (track_new_nmem heap) with an appropriate function pointer, and the assigned function will be called
each time this happens.

More information about "details’, "needs' and "trackable events' can be found in incl ude/
pub_tool tooliface.h.

2.2.6. Instrumentation

i nstrunent is the interesting one. It allows you to instrument VEX IR, which is Valgrind's RISC-like
intermediate language. VEX IR is described in the comments of the header file VEX/ pub/ | i bvex_ir. h.

The easiest way to instrument VEX IR isto insert callsto C functions when interesting things happen. See the tool

"Lackey" (I ackey/ | k_mai n. c) for asimple example of this, or Cachegrind (cachegri nd/ cg_mmai n. c¢)
for amore complex example.

2.2.7. Finalisation

This is where you can present the final results, such as a summary of the information collected. Any log files
should be written out at this point.

2.2.8. Other Important Information

Please note that the core/tool split infrastructure is quite complex and not brilliantly documented. Here are some
important points, but there are undoubtedly many othersthat | should note but haven't thought of .

Thefilesi ncl ude/ pub_t ool _*. h contain al the types, macros, functions, etc. that atool should (hopefully)
need, and aretheonly . h filesatool should needto#i ncl ude. They have areasonable amount of documentation
in it that should hopefully be enough to get you going.

Note that you can't use anything from the C library (there are deep reasonsfor this, trust us). Valgrind provides an
implementation of areasonable subset of the C library, details of which arein pub_t ool _I'i bc*. h.

When writing atool, in theory you shouldn't need to look at any of the code in Valgrind's core, but in practice it
might be useful sometimes to help understand something.

The i ncl ude/ pub_t ool _basi cs. h and VEX/ pub/|i bvex_basi ct ypes. h files have some basic
types that are widely used.

Writing aNew Valgrind Tool

Ultimately, the tools distributed (Memcheck, Cachegrind, Lackey, etc.) are probably the best documentation of
all, for the moment.

The VG_ macro isused heavily. Thisjust prepends alonger string in front of names to avoid potential namespace
clashes. It isdefinedini ncl ude/ pub_t ool _basi cs. h.

There are some assorted notes about various aspects of the implementation indocs/ i nt er nal s/ . Much of it
isn't that relevant to tool-writers, however.

2.3. Advanced Topics

Once atool becomes more complicated, there are some extra things you may want/need to do.

2.3.1. Debugging Tips

Writing and debugging toolsis not trivial. Here are some suggestions for solving common problems.

If you are getting segmentation faultsin C functions used by your tool, the usual GDB command:

gdb <prog> core
usually gives the location of the segmentation fault.

If you want to debug C functions used by your tool, there are instructions on how to do so in the file
READVE_DEVEL OPERS.

If you are having problems with your VEX IR instrumentation, it's likely that GDB won't be ableto help at all. In
this case, Vagrind's- -t race- f | ags option isinvaluable for observing the results of instrumentation.

If you just want to know whether a program point has been reached, using the O NK macro (in i ncl ude/
pub_t ool _|ibcprint. h)canbeeaser than using GDB.

The other debugging command line options can be useful too (runval gri nd - - hel p- debug for thelist).

2.3.2. Suppressions

If your tool reports errors and you want to suppress some common ones, you can add suppressions to the
suppression files. The relevant files are * . supp; the final suppression file is aggregated from these files by
combining the relevant . supp files depending on the versions of linux, X and glibc on a system.

Suppression types have theformt ool _name: suppr essi on_nane. Thet ool _nane here isthe name you
specify for the tool during initidisation with VG _(det ai | s_nane) .

2.3.3. Documentation

If you are feeling conscientious and want to write some documentation for your tool, please use XML asthe rest
of Valgrind does. The file docs/ READVE has more details on getting the XML toolchain to work; this can be
difficult, unfortunately.

To write the documentation, follow these steps (using f oobar asthe example tool name again):
1. Thedocsgoinf oobar/ docs/ , which you will have created when you started writing the tool.

2. Copy the XML documentation file for the tool Nulgrind fromnone/ docs/ nl - manual . xm tof oobar/
docs/, and renameittof oobar/ docs/ f b- manual . xmi .

Note: thereis atetex bug involving underscoresin filenames, so don't use

Writing aNew Valgrind Tool

. Write the documentation. There are some helpful bits and pieces on using XML markup in docs/ xm /

xm _hel p. txt.

. Include it in the User Manual by adding the relevant entry to docs/ xm / manual . xm . Copy and edit an

existing entry.

. Include it in the man page by adding the relevant entry to docs/ xm / val gri nd- manpage. xm . Copy

and edit an existing entry.

. Vaidatef oobar/ docs/ f b- manual . xm using the following command from within docs/ :

make valid

Y ou may get errors that look like this:

I xm/index.xm :5: element chapter: validity error : No declaration for
attri bute base of elenment chapter

Ignore (only) these -- they're not important.

Because the XML toolchain is fragile, it is important to ensure that f b- manual . xm won't break the
documentation set build. Note that just because an XML file happily transforms to html does not necessarily
mean the same holds true for pdf/ps.

. You can (re-)generate the HTML docs while you are writing f b- manual . xm to help you see how it's

looking. The generated filesend up indocs/ ht m / . Use the following command, within docs/ :

make htnl - docs

. When you have finished, try to generate PDF and PostScript output to check all iswell, from within docs/ :

make print-docs
Check the output . pdf and. ps filesindocs/ print/.

Note that the toolchain is even more fragile for the print docs, so don't feel too bad if you can't get it working.

2.3.4. Regression Tests

Valgrind has some support for regression tests. If you want to write regression tests for your tool:

1

2.

Thetestsgoinf oobar/t est s/, which you will have created when you started writing the tool.

Writef oobar/t est s/ Makefi |l e. am Usenentheck/ t est s/ Makef i | e. amasan example.

. Writethe tests, . vgt est test description files, . st dout . exp and . st derr. exp expected output files.

(Notethat Valgrind'soutput goesto stderr.) Some detail son writing and running tests are given in the comments
at the top of thetesting scriptt est s/ vg_regt est .

. Writealfilter for stderr resultsf oobar/test s/ filter _stderr.ltcancaltheexistingfiltersint est s/ .

Seenentheck/tests/filter_stderr for an example; in particular note the $di r trick that ensures
the filter works correctly from any directory.

2.3.5. Profiling

Lots of profiling tools have trouble running Valgrind. For example, trying to use gprof is hopeless.

Writing aNew Valgrind Tool

Probably the best way to profile atool is with OProfile on Linux.

Y ou can also use Cachegrind onit. Read READVE DEVEL OPERS for detailson running VVal grind under Vagrind;
it'sabit fragile but can usually be made to work.

2.3.6. Other Makefile Hackery

If you add any directories under f oobar / , you will need to add an appropriate Makef i | e. amtoit, and add a
corresponding entry to the AC_OUTPUT listinconfi gur e. ac.

If you add any scripts to your tool (see Cachegrind for an example) you need to add them to the bi n_SCRI PTS
variableinf oobar / Makef i | e. amand possible also to the AC_OUTPUT listinconfi gure. ac.

2.3.7. The Coreltool Interface

The coreftool interface evolves over time, but it's pretty stable. We deliberately do not provide backward
compatibility with old interfaces, because it is too difficult and too restrictive. We view this as a good thing -- if
we had to be backward compatible with earlier versions, many improvements now in the system could not have
been added.

Because tools are statically linked with the core, if a tool compiles successfully then it should be compatible
with the core. We would not deliberately violate this property by, for example, changing the behaviour of a core
function without changing its prototype.

2.4. Final Words

Writing a new Valgrind tool is not easy, but the tools you can write with Valgrind are among the most powerful
programming tools there are. Happy programming!

3. Callgrind Format Specification

This chapter describes the Callgrind Format, Version 1.

The format description is meant for the user to be able to understand the file contents; but more important, it is
given for authors of measurement or visualization tools to be able to write and read this format.

3.1. Overview

The profile dataformat is ASCII based. It iswritten by Callgrind, and it is upwards compatible to the format used
by Cachegrind (ie. Cachegrind uses a subset). It can be read by callgrind_annotate and K Cachegrind.

This chapter gives on overview of format features and examples. For detailed syntax, look at the format reference.

3.1.1. Basic Structure

To uniquely specify that afileisacallgrind profile, it should add "# callgrind format" asfirst line. Thisis optional
but recommended for easy format detection.

Each file has a header part of an arbitrary number of lines of the format "key: value". After the header, lines
specifying profile costs follow. Everywhere, comments on own lines starting with '# are alowed. The header
lines with keys "positions" and "events" define the meaning of cost lines in the second part of the file: the value
of "positions" is alist of subpositions, and the value of "events' is alist of event type names. Cost lines consist
of subpositions followed by 64-bit counters for the events, in the order specified by the "positions' and "events"
header line.

The"events' header lineisawaysrequired in contrast to the optional linefor "positions’, which defaultsto "line",
i.e. aline number of some source file. In addition, the second part of the file contains position specifications of
the form "spec=name". "spec" can be e.g. "fn" for afunction name or "fl" for afile name. Cost lines are always
related to the function/file specifications given directly before.

3.1.2. Simple Example

Theevent namesin the following example are quite arbitrary, and are not related to event names used by Callgrind.
Especially, cycle counts matching real processors probably will never be generated by any Valgrind tools, asthese
are bound to simulations of simple machine models for acceptable slowdown. However, any profiling tool could
use the format described in this chapter.

callgrind format

events: Cycles Instructions Flops
fl=file.f

fn=mai n

15 90 14 2

16 20 12

The above example gives profile information for event types "Cycles’, "Instructions’, and "Flops'. Thus, cost
lines give the number of CPU cycles passed by, number of executed instructions, and number of floating point
operations executed while running code corresponding to some source position. Asthereisno line specifying the
value of "positions’, it defaultsto "line", which means that the first number of acost lineis aways aline number.

Thus, the first cost line specifiesthat in line 15 of sourcefilefi | e. f thereis code belonging to function mai n.
While running, 90 CPU cycles passed by, and 2 of the 14 instructions executed were floating point operations.
Similarly, the next line specifies that there were 12 instructions executed in the context of function mai n which
can berelated to line 16 infilefi | e. f, taking 20 CPU cycles. If a cost line specifies less event counts than
given in the "events' line, the rest is assumed to be zero. |.e. there was no floating point instruction executed
relating to line 16.

Callgrind Format Specification

Note that regular cost lines always give self (also called exclusive) cost of code at a given position. If you specify
multiple cost lines for the same position, these will be summed up. On the other hand, in the example above there
is no specification of how many times function mai n actually was called: profile data only contains sums.

3.1.3. Associations

The most important extension to the original format of Cachegrind isthe ability to specify call relationship among
functions. More generaly, you specify associations among positions. For this, the second part of the file also can
contain association specifications. Theselook similar to position specifications, but consist of two lines. For calls,
the format looks like

cal I s=(Call Count) (Target position)
(Source position) (Inclusive cost of call)

The destination only specifies subpositions like line number. Therefore, to be able to specify a call to another
function in another sourcefile, you have to precede the above lineswith a"cfn=" specification for the name of the
called function, and optionally a"cfi=" specification if thefunction isin another sourcefile ("cfl=" isan aternative
specification for "cfi=" because of historical reasons, and both should be supported by format readers). The second
line looks like a regular cost line with the difference that inclusive cost spent inside of the function call has to
be specified.

Other associations are for example (conditional) jumps. See the reference below for details.

3.1.4. Extended Example

The following example shows 3 functions, mai n, f uncl, and f unc2. Function mai n callsf unc1 once and
func2 3times. funcl callsf unc2 2 times.

callgrind format
events: Instructions

fl=filel.c
f n=mai n

16 20
cfn=funcl
cal l s=1 50
16 400
cfi=file2.c
cfn=func2
cal l s=3 20
16 400

fn=funcl

51 100
cfi=file2.c
cfn=func2
cal l s=2 20
51 300

fl=file2.c
f n=func?2
20 700

One can seethat in mai n only code from line 16 is executed where al so the other functions are called. Inclusive
cost of mai n is820, which isthe sum of self cost 20 and costs spent in the calls: 400 for thesinglecall tof uncl
and 400 as sum for the three callsto f unc2.

Callgrind Format Specification

Functionf unclislocatedinfi | el. c,thesameasmai n. Therefore, a"cfi=" specification for thecall tof uncl
isnot needed. The function f unc1 only consists of codeat line51of fi | el. ¢, wheref unc2 iscalled.

3.1.5. Name Compression

With the introduction of association specifications like callsit is needed to specify the same function or samefile
name multiple times. As absolute filenames or symbol names in C++ can be quite long, it is advantageous to be
ableto specify integer IDsfor position specifications. Here, theterm "position” correspondsto afile name (source
or object file) or function name.

To support name compression, a position specification can be not only of the format "spec=name", but also
"spec=(ID) name" to specify a mapping of an integer ID to a name, and "spec=(ID)" to reference a previously
defined ID mapping. Thereisaseparate |D mapping for each position specification, i.e. you can use ID 1 for both
afile name and a symbol name.

With string compression, the example from above looks like this:

call grind format
events: Instructions

fl=(1) filel.c
fn=(1) main

16 20

cfn=(2) funcl
call s=1 50

16 400

cfi=(2) file2.c
cfn=(3) func2
cal 1 s=3 20

16 400

fn=(2)
51 100
cfi=(2)
cfn=(3)
cal l s=2 20
51 300

fl=(2)
fn=(3)
20 700

As position specifications carry no information themselves, but only change the meaning of subsequent cost lines
or associations, they can appear everywhere in the file without any negative consequence. Especially, you can
define name compression mappings directly after the header, and before any cost lines. Thus, the above example
can also be written as

callgrind format
events: Instructions

define file | D nmapping
fl=(1) filel.c

fl=(2) file2.c

define function | D mappi ng
fn=(1) main

fn=(2) funcl

fn=(3) func2

f1=(1)

10

Callgrind Format Specification

fn=(1)
16 20

3.1.6. Subposition Compression

If aCallgrind datafile should hold costsfor each assembler instruction of aprogram, you specify subposition "instr"
in the "positions:" header line, and each cost line has to include the address of some instruction. Addresses are
allowed to have a size of 64 bitsto support 64-bit architectures. Thus, repeating similar, long addresses for almost
every line in the data file can enlarge the file size quite significantly, and motivates for subposition compression:
instead of every cost line starting with a 16 character long address, one is allowed to specify relative addresses.
Thisrelative specification is not only allowed for instruction addresses, but aso for line numbers; both addresses
and line numbers are called "subpositions’.

A relative subposition always is based on the corresponding subposition of the last cost line, and starts with
a"+" to specify a positive difference, a "-" to specify a negative difference, or consists of "*" to specify the
same subposition. Because absolute subpositions always are positive (ie. never prefixed by "-"), any relative
specification is non-ambiguous; additionally, absol ute and rel ative subposition specifications can be mixed freely.
Assume the following example (subpositions can always be specified as hexadecimal numbers, beginning with

"0x"):

callgrind format
positions: instr line
events: ticks

f n=f unc

0x80001234 90 1
0x80001237 90 5
0x80001238 91 6

With subposition compression, thislooks like

callgrind formt
positions: instr line
events: ticks

f n=f unc
0x80001234 90 1
+3 * 5
+1 +1 6

Remark: For assembler annotation to work, instruction addresses have to be corrected to correspond to addresses
found in the original binary. |.e. for relocatable shared objects, often aload offset has to be subtracted.

3.1.7. Miscellaneous

3.1.7.1. Cost Summary Information

For the visualization to be able to show cost percentage, a sum of the cost of the full run hasto be known. Usually,
it isassumed that thisisthe sum of al cost linesin afile. But sometimes, thisisnot correct. Thus, you can specify
a"summary:" line in the header giving the full cost for the profile run. An import filter may use this to show a
progress bar while loading alarge datafile.

3.1.7.2. Long Names for Event Types and inherited Types
Event types for cost lines are specified in the "events:" line with an abbreviated name. For visualization, it makes

sense to be able to specify some longer, more descriptive name. For an event type "Ir" which means "Instruction
Fetches', this can be specified the header line

11

Callgrind Format Specification

event: Ir : Instruction Fetches
events: |Ir Dr

In thisexample, "Dr" itself has no long name associated. The order of "event:" lines and the "events:" lineis of no
importance. Additionally, inherited event types can be introduced for which no raw data is available, but which
are calculated from given types. Suppose the last example, you could add

event: Sum=Ir + Dr

to specify an additional event type "Sum", which is calculated by adding costs for "Ir and "Dr".

3.2. Reference

3.2.1. Grammar

Profil eDataFile := Format Spec? Format Versi on? Creator? Part Dat a*
Format Spec := "# callgrind format\n"

For mat Version := "version: 1\n"

Creator := "creator:" NoNewLi neChar* "\n"

PartData : = (HeaderLine "\n")+ (BodyLine "\n")+

HeaderLine := (enpty |ine)
| ('# NoNewLi neChar*)

| PartDetail
| Description
| Event Specification
| Cost Li neDef
PartDetail := TargetComand | TargetlD
Target Command : = "cnd: " Space* NoNewlLi neChar*
TargetID := ("pid"|"thread"|"part™) ":" Space* Number
Description := "desc:" Space* Nane Space* ":" NoNewlLi neChar*
Event Specification := "event:" Space* Nane | nheritedDef? LongNanmeDef ?
I nheritedDef := "=" InheritedExpr

| nheritedExpr := Nane
| Nunber Space* ("*" Space*)? Nane
| I'nheritedExpr Space* "+" Space* |nheritedExpr

LongNanmeDef := ":" NoNewLi neChar*
Cost Li neDef := "events:" Space* Nanme (Space+ Nane)*
| "positions:" "instr"? (Space+ "line")?

BodyLi ne := (enpty line)
| ('# NoNewLi neChar*)
| CostLine
| PositionSpec
| Call Spec
| UncondJunpSpec

12

Callgrind Format Specification

| CondJunpSpec
Cost Li ne : = SubPositionLi st Costs?
SubPosi tionLi st := (SubPosition+ Space+) +
SubPosition := Nunber | "+" Nunber | "-" Nunber | "*"
Costs := (Nunber Space+)+
Posi ti onSpec := Position "=" Space* PositionNane
Position := CostPosition | CalledPosition
CostPosition := "ob" | "fI" | "fi" | "fe" | "fn"
Cal |l edPosition := " "cob" | "cfi" | "cfl" | "cfn"

PositionNane := ("(" Nunmber ")")? (Space* NoNewLi neChar*)?

Cal |l Spec := CallLine "\n" CostLine

CallLine := "calls=" Space* Nunber Space+ SubPositi onLi st

UncondJunpSpec : = "junp=" Space* Nunber Space+ SubPositi onLi st
CondJunpSpec : = "jcnd=" Space* Nunber Space+ Nunber Space+ SubPositi onLi st
Space := " " | "\t"

Nunber := HexNunber | (Digit)+

Digit :="0" | ... ["9"
HexNumber := "O0x" (Digit | HexChar)+
HexChar :="a" | ... | "f" | "A" | ... | "F"

Name = Al pha (Digit | Al pha)*
Alpha ="a" | ... | "z" | "A" | ... | "Z"
NoNewLi neChar := all characters wthout "\n"

A profiledatafile ("ProfileDataFile") startswith basic information such asaformat marker, the version and creator
information, and then has alist of parts, where each part has its own header and body. Partstypically are different
threads and/or time spans/phases within a profiled application run.

Note that callgrind_annotate currently only supports profile data files with one part. Callgrind may produce
multiple parts for one profile run, but defaults to one output file for each part.

3.2.2. Description of Header Lines

Basic information in the first lines of a profile datafile:

o« # callgrind formt [Callgrind]
Thisline specifiesthat the fileisacallgrind profile, and it hasto be thefirst line. It was added |ate to the format
(with Valgrind 3.13) and is optional, as all readers also should work with older callgrind profiles not including

this line. However, generation of this line is recommended to allow desktop environments and file managers
to uniquely detect the format.

13

Callgrind Format Specification

e version: nunber [Calgrind]

This is used to distinguish future profile data formats. A major version of 0 or 1 is supposed to be upwards
compatible with Cachegrind's format. It is optional; if not appearing, version 1 isassumed. Otherwise, it hasto
follow directly after the format specification (i.e. bethefirst lineif the optional format specification is skipped).

