Valgrind Documentation

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 AUTHORS

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the section entitled The GNU Free Documentation License.

Thisis the top level of Valgrind's documentation tree. The documentation is contained in six logically separate
documents, as listed in the following Table of Contents. To get started quickly, read the Valgrind Quick Start
Guide. For full documentation on Valgrind, read the Valgrind User Manual.

Vagrind Documentation

Table of Contents

The Valgrind QUICK STt GUITEuuiiiiiii et e s iii
Valgrind USEr IMANUAL ... oottt e ettt e et et e e et et e e et e bt e e e eebb e e e eeneaeeees iv
VaAlGNNG FAQ i e e ettt et eaaans clxxiv
Valgrind Technical DOCUMENTAIONiieiiieiieii ettt et ettt et e e e ni e e eaanns iX
Valgrind DistribDUtion DOCUMENLSccouuuieiiitieee ettt e et e et e e et eeeeaa s XVii
GINU LICEINSES ..ttt ettt ettt ettt ettt e e ettt e ettt e e et et e e et et e e e e naa s cXvi

The Valgrind Quick Start Guide

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

The Valgrind Quick Start Guide

Table of Contents

The Valgrind QUICK SEAIT GUITEuuiieiii e e e e e e 1
O [gL oo [0 1o o EO PSP UPPPPTRPPPPIN 1
2. Preparing YOUE PrOGIAIMcceuu ettt e et e ettt e ettt e e et et e e et et e e et et e e et et e e et e bb e e e e e b e e e enaaas 1
3. Running your program under MemCheCKiiiiiiiiiii e 1
4. Interpreting MemChECK'S OUEPULiieieie ettt e e 1
S O V= £ PP 2
6. MOIE INFOMMEBIION ...ttt ettt ettt e et et e e et e et e e e aaa e e ennas 3

The Valgrind Quick Start Guide

The Valgrind Quick Start Guide

1. Introduction

The Vagrind tool suite provides a number of debugging and profiling tools that help you make your programs
faster and more correct. The most popular of these tools is called Memcheck. It can detect many memory-related
errors that are common in C and C++ programs and that can lead to crashes and unpredictable behaviour.

Therest of this guide gives the minimum information you need to start detecting memory errors in your program
with Memcheck. For full documentation of Memcheck and the other tools, please read the User Manual.

2. Preparing your program

Compile your program with - g to include debugging information so that Memcheck's error messages include
exact line numbers. Using - Q0 is also a good ideg, if you can tolerate the slowdown. With - OL line humbers
in error messages can be inaccurate, although generally speaking running Memcheck on code compiled at - OL
worksfairly well, and the speed improvement compared to running - Q0 isquite significant. Use of - O2 and above
is not recommended as Memcheck occasionally reports uninitialised-value errors which don't really exist.

3. Running your program under Memcheck

If you normally run your program like this:
myprog argl arg2
Use this command line:
val grind --I|eak-check=yes nyprog argl arg2
Memcheck is the default tool. The - - | eak- check option turns on the detailed memory leak detector.

Y our program will run much slower (eg. 20 to 30 times) than normal, and use alot more memory. Memcheck will
issue messages about memory errors and leaksthat it detects.

4. Interpreting Memcheck's output

Here's an example C program, in afile called a.c, with amemory error and a memory leak.

#i ncl ude <stdlib. h>

voi d f(void)
{
int* x = malloc(10 * sizeof (int));
x[10] = O; /1 problem 1: heap bl ock overrun
} /] problem2: menory leak -- x not freed

i nt mai n(voi d)

f();

return O;

}

Most error messages look like the following, which describes problem 1, the heap block overrun:

The Valgrind Quick Start Guide

==19182== Invalid wite of size 4

==19182== at 0x804838F: f (exanple.c:6)

==19182== by 0x80483AB: main (exanple.c:11)

==19182== Address 0x1BA45050 is O bytes after a block of size 40 alloc'd
==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)

==19182== by 0x8048385: f (exanple.c:5)

==19182== by 0x80483AB: main (exanple.c:11)

Thingsto notice:
e Thereisalot of information in each error message; read it carefully.
» The 19182 isthe process ID; it's usually unimportant.

» Thefirst line ("Invalid write...") tells you what kind of error it is. Here, the program wrote to some memory it
should not have due to a heap block overrun.

» Below thefirst lineisastack trace telling you where the problem occurred. Stack traces can get quite large, and
be confusing, especidly if you are using the C++ STL. Reading them from the bottom up can help. If the stack
trace is not big enough, usethe - - num cal | er s option to make it bigger.

» Thecode addresses (eg. 0x804838F) are usually unimportant, but occasionally crucia for tracking down weirder
bugs.

» Some error messages have a second component which describes the memory address involved. This one shows
that the written memory isjust past the end of a block allocated with malloc() on line 5 of example.c.

It's worth fixing errors in the order they are reported, as later errors can be caused by earlier errors. Failing to do
thisis a common cause of difficulty with Memcheck.

Memory leak messages |ook like this;

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at Ox1B8FF5CD: mall oc (vg_replace_malloc.c: 130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

The stack trace tells you where the leaked memory was allocated. Memcheck cannot tell you why the memory
leaked, unfortunately. (Ignorethe "vg_replace malloc.c", that's an implementation detail .)

There are several kinds of leaks; the two most important categories are;
 "definitely lost": your program is leaking memory -- fix it!

» "probably lost": your program is leaking memory, unless you're doing funny things with pointers (such as
moving them to point to the middle of a heap block).

Memcheck also reports uses of uninitialised values, most commonly with the message " Conditional jump or move
depends on uninitialised value(s)". It can be difficult to determine the root cause of these errors. Try using the - -
track- ori gi ns=yes to get extrainformation. This makes Memcheck run slower, but the extra information
you get often saves alot of time figuring out where the uninitialised values are coming from.

If you don't understand an error message, please consult Explanation of error messages from Memcheck in the
Valgrind User Manual which has examples of al the error messages Memcheck produces.

5. Caveats

Memcheck is not perfect; it occasionally produces false positives, and there are mechanisms for suppressing these
(see Suppressing errorsinthe Valgrind User Manual). However, it istypically right 99% of thetime, so you should

The Valgrind Quick Start Guide

be wary of ignoring its error messages. After all, you wouldn't ignore warning messages produced by a compiler,
right? The suppression mechanism is also useful if Memcheck is reporting errorsin library code that you cannot
change. The default suppression set hides alot of these, but you may come across more.

Memcheck cannot detect every memory error your program has. For example, it can't detect out-of-range reads
or writes to arrays that are allocated statically or on the stack. But it should detect many errors that could crash
your program (eg. cause a segmentation fault).

Try to make your program so clean that Memcheck reports no errors. Once you achieve this state, it is much
easier to see when changes to the program cause Memcheck to report new errors. Experience from several years
of Memcheck use shows that it is possible to make even huge programs run Memcheck-clean. For example, large
parts of KDE, OpenOffice.org and Firefox are Memcheck-clean, or very closeto it.

6. More information

Please consult the Valgrind FAQ and the Valgrind User Manual, which have much more information. Note that
the other toolsin the Valgrind distribution can be invoked with the - - t ool option.

Valgrind User Manual

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind User Manual

Table of Contents

O [gL oo (0 1o o RO OO PP PO UOUPPTRUPPPPIN 1
1.1 AN OVEVIEW OF ValGNNG ...uiiiiiie ettt e 1
1.2. HOw tO navigate thiS ManUalcoouuuniiiiiiii i 1

2. Using and understanding the Valgring COMEcoouuuuiiiiiiie e 3
2.1. What Valgrind does With YOUr PrOgrameeeeeuuieiiiie et 3
2.2, GEIING SEAMTEA ... ettt ettt 4
2.3. THE COMIMENTAIY ...eeeeneeieii ettt ettt et e et e et et e et et e e e et e e e eba s 4
2.4, REPOIING OF BITOIS ...ttt ettt ettt ettt e ettt e ettt e e ettt r e e e eabreeeeabaeeeentnaeeees 5
2.5, SUPPIESSING EITOFS ... ettt eeeeeti e e ettt e e ettt e et eeta e e e ettt e et es bt e et eebet e et esbareeeeabe s e e eesbn s eeeentnnaaeees 6
2.6. DEDUGINTOM ...ttt ettt ettt ettt e et et e e et et e et e e e e e e eeee 9
2.7. Core CommaNd-liNE OPLIONSeieerieeeiii ettt e e ettt e e et e e e e et e e eeaa e eeees 9

2.7.1. TOOI-SEIECHION OPLION ...ceetieiiit et e s 9
2.7.2. BASIC OPUIONS ...ttt ettt sttt ettt ettt ettt et et e e e et e enaan 9
2.7.3. Error-related OPLiONSuiiiiiiieiiiii ettt 12
2.7.4, MallOC-related OPLIONSuiiiiiiiee et e 19
2.7.5. UNCOMMON OPLIONS ..ottt ettt e e et e et et e e e e e era s 20
2.7.6. DEDUGGING OPLIONSvueeeiiie ettt et e ettt e et et e e e et e e e e et e e e eebanaeeens 27
2.7.7. Setting Default OPLiONSuiieiiieeiii ettt eeaaas 28
2.7.8. Dynamically Changing OptiONScccuuueiieuuieeieiii et e et e et e e et eeeeni e eeees 28
2.8. SUPPOIT FOF TRMEAASceeeie ettt e e et e e 29
2.8.1. Scheduling and Multi-Thread Performancecc.uveiiiiiiieieiiieece e 29
2.9. Handling Of SIGNaISccuuuiiiiiiei ittt e et et e e e et e e eera e aees 30
2.10. EXECULION TIEES ... eeitie ettt ettt ettt ettt et e et et e et et e et et e e e e e r e e e eab e e eenanns 30
2.11. Building and INstalling Valgringdcoouuuiiiiiiiaiei e 33
212, 1f YOU HAVE ProDIEMS ... ittt e e e e et e eeees 34
P R I 0] = o PP PP PP TUPPPTN 34
214, AN EXGMPIE RUN ..ottt e e 36
2.15. Warning Messages YOU Might SEE ... 37

3. Using and understanding the Valgrind core: Advanced TOPICScvvunieeneiiiieiieei e 38
3.1. The Client ReqUESE MECNANISITceeiii it 38
3.2. Debugging your program using Valgrind gdbserver and GDBccccoiviiiiiiiiiiiiiieie 40

3.2.1. Quick Start: debugging iN 3 SEEPSuuiiiiie e 40
3.2.2. Valgrind gdbserver overall organiSationcceeruieeiiriieeiii e 41
3.2.3. Connecting GDB t0 a Valgrind gabhSerVercc.uuiiiiiiiiiiiiiie e 41
3.2.4. Connecting to an ANdroid gaDSEIVEYcoeiiiiiiiii e 43
3.2.5. Monitor command handling by the Valgrind gdbservercccoooeviiiiiiiiiiiceeees 44
3.2.6. GDB front end commands for Valgrind gdbserver monitor commandscccuuen... 45
3.2.7. Valgrind gdbserver thread informationocoeuiiiiiiiiiiieeii e 46
3.2.8. Examining and modifying Valgrind shadow registersooovvveiieeiiiiinneiiiiineeceiiee 47
3.2.9. Limitations of the Valgrind gdsarver ... 47
3.2.10. vgdb command [iN€ OPLIONSuiiiiiieeieii e 50
3.2.11. Valgrind mONitor COMMENGSccuuuneieriieteti et e et e et e e et e et eeeenaes 52
3.3, FUNCLION WIBDPING ..ttt ettt ettt e et e et et e e et et e e et e b e e et e b neeeena s 56
331 A SIMPIE EXAMPIE ... 56
3.3.2. Wrapping SPECITICALIONSccuuuieiitiieee ettt ettt e e 57
3.3.3. WIrapping SEMANTICSceeitieeeiit et ettt ettt e e et e e e et e e e e nt e e e enba e aeees 58
334, DEDUGING . eeeetneeeett ettt ettt ettt e e et e ettt e ettt et n e e e a b et et et eaa e eee 59
3.3.5. Limitations - CONrol FIOWiiiiiiiiiiii e 59
3.3.6. Limitations - original funCtion SIgNaUIESccceuuuiiiiiiieieii e 59
337 EXAMPIES ..o 60

4. Memcheck: & MeMOrY ITOr JELECTONcieeiiieeeit ettt ettt e e et e e et e e e s 61
A1, OVEIVIBIW ...ttt ettt ettt ettt e e ettt e et e et et e e b e e et e e et e et e e e et s 61
4.2. Explanation of error messages from Memchecko.oiiiiiiiiiiiiiii e 61

4.2.1. lllegal read / 111@gal WITE EITOISuuiiiiiiie e 61
4.2.2. Use of UninitialiSed VBIUESccoeiiiiiiiiii e 62

Valgrind User Manual

4.2.3. Use of uninitialised or unaddressable valuesin system callsccooveviiciiiniiieennnnn, 63
R 1= o= | (== 63
4.2.5. When a heap block is freed with an inappropriate deallocation function 64
4.2.6. Overlapping source and destination BlOCKScooiiiiiiiiiiii e 64
4.2.7. Fishy argumENt VBIUBSciiiiiiii e e e e e e e e e e e e e et e e e e aaes 65
4.2.8. REAIOC SIZE ZENO ...eeeei ettt e e e aae 65
e R AN [Te 10001 o] £ 65
4.2.10. MemOry 168K dELECIONu.iiii e e eae s 66

4.3. Memcheck Command-Ling OPtiONScvuuiiiiiiiiii e e e e e e e e e e eens 69
4.4, Writing SUPPIESSION FIlES ..ouuiii i e e 74
4.5, Details of Memcheck's checking Machinerycoooviiiii i 75
A5. 1. Vaid-value (V) DItS ..uuniiiiii i 75
4.5.2. Valid-address (A) DITS ..oeeueniiiiiii e 76
4.5.3. Putting it all tOgEtNEroeiii i 77

4.6. Memcheck MONItOr COMMENGSccuuuiiiiiiiieieiie e e e et e e et e e e e e eran s 78
B O T o\ Q= (U1 P 84
4.8. Memory Pools. describing and working with custom allocatorsccccvvveiiiiiiiiieiiiieeieeeis 85
4.9. Debugging MPI Paralldl Programs with Valgrindcccooiiiiiiiiiieee e 87
4.9.1. Building and installing the WIapPeErSooiiiiiiiiiecie e 87
4.9.2. GELING SAMEieeicei e 88
4.9.3. Controlling the Wrapper lHDraryooovuiiiiii e 88
e B T 1 o] PR 89
e T 1Y/ o= P 89
4.9.6. WIItING NEW WIBPPETS ..vuuiiiteiiiee it e e et e e e e e e e et e e st e e et e e et e et e e et e e et e e e ta e eaneeannns 90
4.9.7. What to expect when using the WIaPPErScooviiiiici e e 90

5. Cachegrind: a high-precision tracing pProfileroociiiiiii e e 91
LI O = a7 1 PP 91
5.2. Using Cachegrind and CQ_annOtateuiiiuiieiiii e e e e e e e et e e e e e e aeaas 91
5.2.1. RUNNING CaChegrindiiii i e e e e e e 91
I © 0 1 o 10| T = T PP 92
5.2.3. RUNNING CO_ANMNOLAEEuiiiiii i e e e e e e e e e e e e e e et e e et e eeanaaees 92
5.2.4, The Metadata SECHONcccuvtiiiiiii et e et e e et e e e ert e eeees 92
5.2.5. Global, File, and Function-level COUNLSoviiiiiiiieeiiiine e 93
5.2.6. PEr-1INE COUMLS ... ittt eeii ettt e et e et e e ettt s e e e ettt e e e et e e e eettaeeeentnaeeaees 95
5.2.7. FOTKING PrOgraMS ...uuiiiie e e e e e e e e et e et e e e e e eanns 96
5.2.8. CO_aNNOtate WaIMINGScvvuiiiiii e e e e e e e e e e e e e e et e e e e e e e et e e ean e e eanaas 97
5.2.9. Merging Cachegrind OULPUL FIlESuiiiiiiii e 97
5.2.10. Differencing Cachegrind oUtput fil€Scocoiiiiiii i, 97
5.2.11. Cache and Branch SIMUIGLIONoviiiiiiiiiiiie e 98

5.3. Cachegrind Command-lin€ OPLiONSciuuiiiiiieiii e e e e e e e e 98
5.4. cg_annotate Command-ling OPLIONSccuuiiiiiiiiiii e e e e e e e e e e eeanns 99
5.5. cg_merge Command-lin€ OPLiONSoiiuiiiiiii e e e e e e 100
5.6. cg_diff Command-line OPLIONSuiiiiiiiiii e 100
5.7. Cachegrind CHEnt REGUESESoiiuueiiiei e e e e e e e e e e e e e e e e et e eaaeees 100
5.8, SIMUIBLION DELAIS ...ttt e e e e e et e e e et e e e e e 101
5.8.1. Cache SImulation SPECITICSuiiiniiii e e e 101
5.8.2. Branch Simulation SPECIfiCScvuviiiiie e 101

Lo R oo U = os Y PPN 102

5.9. Implementation DEtailSiiiiiiieii e 103
5.9.1. HOW Cachegrind WOTKScouuiiiiiiiii e e e e e e e e e e aens 103
5.9.2. Cachegrind Output File FOrMEEcoviiiiiiii i e e e 103

6. Callgrind: a call-graph generating cache and branch prediction profilerco.ooiiiiiiiiiiin s 105
L3 @ = o= 1 PP 105
300 0 O g Tox 05 7= YN 105
B.1.2. BASIC USAJE ..evvuiiiiiiiiieeiiii ettt e ettt ettt e et e e et e e et e e et e e e et e e et e aee 106

LS N0 V7 g o= o U o T 107
6.2.1. Multiple profiling dumps from one Program FUNccueeiiiieiiiieei e e eaenn 107
6.2.2. Limiting the range of collected eVentsSccoovuiiiiii i 107

Vi

Valgrind User Manual

6.2.3. Counting global BUS BVENLSccuuiiiii i 108
6.2.4. AVOIAING CYCIES ..uniiiiii et e e e e e e e e et e e et e e e eaaaees 108
O o T o 0 = 1 P 109

6.3. Calgrind Command-1ing OPLiONScccuiiiiiiiiie e e eaa s 110
6.3.1. DUMP Creation OPLIONSciuiciiie e ee e e e e e e e e et e e e e e e e e et e e st e e et e eanaees 110
6.3.2. ACHIVILY OPLIONS . .ovuiiiii et e e e e e e e e e e e et e e et e e e e eaes 110
(SRCRCHN DT - Weoio) 1= vt 1o o] o 1 o o0 111
6.3.4. Cost entity Separation OPLIONSviiuuieiiii e e e e e e e e aen 112
6.3.5. SIMUIBEION OPLIONS .. cevuiiiiiieiie e e e e e e e e e e e e e e s e e et e e et e e et e eeaneas 113
6.3.6. Cache SIMUIGioN OPLIONSciveieiii eaneees 113

6.4. Calgrind Monitor COMMANGSccuuiiiiiieiiiiee e e e e e e e e e e et e e et e e e e s e eaanas 114
6.5. Callgrind SPECIfiC Client FEOUESESivve e e e e e e 114
6.6. callgrind_annotate Command-line OPLIONSccovuiiiiiii i 115
6.7. callgrind_control Command-1ing OPLiONSccvuuiiiiiiiiiie e 116
7. Helgrind: athread error dELECLONciiiiii e e e e e e e e e aaaas 118
45 T O = T 1 PP 118
7.2. Detected errors: Misuses of the POSIX pthreadS API ..o, 118
7.3. Detected errors: Inconsistent LOCK Orderingsccvvuieiiiiieiiiiiiii e e e e e e e 119
7.4. Detected erors: Dat@ RACESivvvii ettt e et e e e e aaeas 121
741 A SIMPIE DA RACEuuciitiiiiii e e e e e e e 121
7.4.2. Helgrind's Race Detection Algorithm ..o, 122
7.4.3. Interpreting RaCe ErrOr MESSAgESuuiiii i i e ee et e e e e e e e et e e e e e e aaaas 124

7.5. Hints and Tips for Effective Use of HElIGrindccoooiiiiiiiiiii e 126
7.6. Helgrind Command-ling OPLioNSciuiiiiiiiiii e e e e e e 129
7.7. Helgrind Monitor COMMEANASuuiiineiiieiie e ee e e e e e e e e e et e e et e et e e e et e eeaneeeens 131
7.8. HElgrind CHENt REGUESESuueiiiieiiii et e e e e e e e e et e e e eaaas 133
7.9. A TO-DO List fOr HEIGING ..o e e e eaa s 133
8. DRD: @ thread error GELECLOTiiiiiiiiieee e e e e et e et e e e ere s 134
ST O Y= oY= 1 PP 134
8.1.1. Multithreaded Programming Paradigmsccooiviiiiiiiii e 134
8.1.2. POSIX Threads Programming MOdelcciiiiiiiiiiii e, 134
8.1.3. Multithreaded Programming Problemscoooviiiiii i, 135
8.1.4. Data RACE DELECHION ... iiiiii ettt e e e e e e e e e et 135

S22 U L= oo I I PP 136
8.2.1. DRD Command-1ing OPLIONSceuuuiiiiiieiiieeiiee e e e e e e et e et e e e e e et e e e eaneees 136
8.2.2. Detected Errors: Data RACESuuiiiiiiiieeiiii et e e e eeees 138
8.2.3. Detected Errors: LOCK CONLENLIONc.uuiiiiiiiiieeiiii e e e e 139
8.2.4. Detected Errors. Misuse of the POSIX threadS APlcooovviiiiiiiiiiiiiieee e, 140
8.2.5, ClIENT REGUESES ...evviieiiiiiie ettt ettt ettt e e e e e e et e e e et n e e e et e e e eanen s 141
8.2.6. DEbUQQING CH+1L ProgramsScvuuuieiieeiiieeie e e e e e e e e e e s e e et e e e satnaesaneeennnes 143
8.2.7. Debugging GNOME Programsceeiuuieiiiiieiie e e e e e e e e et e e e eees 143
8.2.8. Debugging Boost. Thread Programscvuuieiieeiii e eeee e e e e e e e e e e aanes 143
8.2.9. Debugging OPenMP Programsuuiiiii e e e e e e e e e e e e e et e e e e eaneees 144
8.2.10. DRD and Custom Memory AlIOCEIOIScvvuniiiiiiiiii e 145
8.2.11. DRD Versus MEMCHECKcccvuiiiiiiiiiieiiiii et e e e e e eeees 145
8.2.12. RESOUICE REQUITEMENTSeetieiii et e et e e et e e e e e e e e e e e et e e et eeaan e eean s 145
8.2.13. Hints and Tips for Effective Use 0f DRDcccoiiiiiiiiiiiiii e, 146

8.3. Using the POSIX Threads APl EffeCtiVElYoiiiiiiii e 146
8.3, L. MULEX DY IBS vttt ettt e e e 146
8.3.2. ConditioN VATADIES ... 146
8.3.3. pthread _cond _timedwait and tiMEOULSoeviiiiiiiiiiii e 147

S S I 411 = o] PPN 147
8.5, FEEUDACKeiieii e aaan 147
9. MasSif: @hEaD PrOfIlEr . .oeee i e 148
LN O = T T PP 148
9.2. UsiNg MasSIT and MS PriNt ... couuiiiiieiiii e e e e e e e e s e e e et e e et e e aane e et 148
9.2.1. AN EXaMPIE PrOgram .. .couuiii i cee e e e e e e e e e e e e e e e e e e 148
LS {0 g 1 o = P 149

vii

Valgrind User Manual

9.2.3. RUNNING MS _PIINE .etuiiiiiii e e e e e e e e e e e e e et e et e e et e e eanaeeees 149
9.2.4. The OUPUL Preamblecoiiniiii e e ean s 149
LS I S X @ U1 o 10 =" o P 149
9.2.6. The SNapShOt DELAIISuuiiiiiiii e e e e e e e e e aaeees 152
S A o] o 0 = 0 PP 154
9.2.8. Measuring All MemOry iN @ PrOCESSccuuuiiiiieiiie e e e e e e e e e e e 154
9.2.9. Acting on Massif's INfOrMaionooiuuiiiiiiiii e e 155

9.3. USING MASSIT-VISUAIIZENovuiiiiieii e e e e e e e e e e eaaas 155
9.4. Massif Command-liNe OPLiONSciiuiiiii e e e e e aes 155
9.5. Ma@sSif MONItOr COMMENGSeieiiiieeiiiis et e et e et e e e et s e e e et reeeettreeeertaeeeerenaeaees 157
9.6. MESSIT ClIENT REGUESES ...evvtieeiiiii ettt e et e et e e et e e e et e e e eaan e eeennnns 158
9.7. ms_print Command-line OPLIONSceiuiiiiiii e e 158
9.8. Massif's OULPUL FIlE FOIMELoveiiiii e e e e e 158
10. DHAT: adynamic heap analySIS tOO0]cciuuiiiiiiiii e e e e 159
FO. L. OVEIVIBIW ettt e e e e e e e et e e e e ettt e e e et b e e e et ete s e e e eeta e e e enttnaeeeetnaeaenes 159
02 U £ T oo] 1N OSSP 159
10.2.1. RUNNING DHAT Lot e et e e et e e et e e e era s 159
10.2.2. OUIPUL FITE .ottt e e e e et a e e e et e e e eaaaaeeees 160

10.3. DHAT'S VIBWET ...ttt e ettt e e e et e e e et e e e e et e e e e et e e e eett e e e eeteaeeaatnaeaees 160
10.3.1. The OULPUE HEBAENcceeviieeiiii e e e et a e e eea e eees 160

L0 o I T e I (= PP 161
10.3.3. The OULPUL FOOLENiiiicii e e e e e e e e e e e an s 164
10.3.4, SO MELTICS ..eevtieieite ettt e et e et e e e et e e e et e e e e et naeeeaen s 164

10.4. Treatment OF FEAIIOCiiieii e e e e e e e eeeat e eeees 166
O @0 o) VA o 1011 111 [166
10.6. Ad NOC PrOfIING .ovvniiiiei e e e e e e e e e e e 167
10.7. DHAT Command-lin€ OPLIONSccuuiiiiieiiiieiieee et e e e e e e e et e e e eeanas 167
11. Lackey: an example tO0]coouiiiiiii e e 168
0 @ = 4T PN 168
11.2. Lackey Command-ling OPLiONSccuuiiiiiiiiiieeiie e ee e e e e e e e e e e e e e e et e e et e e eanaeees 168
12. Nulgrind: the minimal Valgrind tO0lco.iiiiiiiii e e e e 169
@ = 4T T PPN 169
13. BBV: an experimental basic block vector generation toolcooeviiiiiii i 170
T @ = 4T T PN 170
13.2. Using Basic Block Vectors to create SIMPOINESccuuiiiiieiiiiieii e 170
13.3. BBV Command-ling€ OPtioNSiiiiiiiiiiiiii e e e e e e e e e e e e aens 171
13.4. BasiC BIOCK VECtOr Fil@ FOMMELccvvuiieiiiie et e e e e e 171
TR 1ol = 4= 1 1 o 172
13.6. Threaded EXeCUtable SUPPOITccuuiiii e e e e e e e e e e e e eanees 172
G A £ T 7 (o] o PP 172
13,8, PEITOIMMANCE ...ttt ettt et e e e 173

viii

1. Introduction
1.1. An Overview of Valgrind

Vagrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools each
of which performs some kind of debugging, profiling, or similar task that helps you improve your programs.
Vagrind's architectureis modular, so new tools can be created easily and without disturbing the existing structure.

A number of useful tools are supplied as standard.

1. Memcheck isamemory error detector. It helps you make your programs, particularly those written in C and
C++, more correct.

2. Cachegrind is acache and branch-prediction profiler. It helps you make your programs run faster.

3. Callgrind isacall-graph generating cache profiler. It has some overlap with Cachegrind, but also gathers some
information that Cachegrind does not.

4. Helgrind isathread error detector. It helps you make your multi-threaded programs more correct.

5. DRD isaso athread error detector. It issimilar to Helgrind but uses different analysis techniques and so may
find different problems.

6. Massif isaheap profiler. It helps you make your programs use less memory.

7. DHAT isadifferent kind of heap profiler. It helps you understand issues of block lifetimes, block utilisation,
and layout inefficiencies.

8. BBV is an experimental SimPoint basic block vector generator. It is useful to people doing computer
architecture research and development.

There are also a couple of minor tools that aren't useful to most users: Lackey is an example tool that illustrates
some instrumentation basics; and Nulgrind isthe minimal Valgrind tool that does no analysis or instrumentation,
and is only useful for testing purposes.

Valgrind is closely tied to details of the CPU and operating system, and to a lesser extent, the compiler and basic
Clibraries. Nonetheless, it supports a number of widely-used platforms, listed in full at http://www.valgrind.org/.

Vagrind is built viathe standard Unix . / conf i gur e, make, make i nst al | process; full details are given
in the README file in the distribution.

Valgrind is licensed under the The GNU General Public License, version 2. Theval gri nd/ *. h headers that
you may wish to include in your code (eg. val gri nd. h, nencheck. h, hel gri nd. h, etc.) are distributed
under aBSD-stylelicense, so you may include them in your code without worrying about license conflicts. Some
of the PThreadstest cases, pt h_*. ¢, aretaken from " Pthreads Programming" by Bradford Nichols, Dick Buittlar
& Jacqueline Proulx Farrell, ISBN 1-56592-115-1, published by O'Reilly & Associates, Inc.

If you contribute codeto Valgrind, please ensure your contributionsarelicensed as"GPLV2, or (at your option) any
later version." Thisisso asto alow the possibility of easily upgrading the licenseto GPLv3 in future. If you want
to modify codein the VEX subdirectory, please aso see the file VEX/HACKING.README in the distribution.

1.2. How to navigate this manual

This manual's structure reflects the structure of Valgrind itself. First, we describe the Valgrind core, how to use
it, and the options it supports. Then, each tool has its own chapter in this manual. You only need to read the
documentation for the core and for the tool(s) you actually use, although you may find it helpful to be at least a
little bit familiar with what all tools do. If you're new to al this, you probably want to run the Memcheck tool and
you might find the The Valgrind Quick Start Guide useful.

http://www.valgrind.org/

Introduction

Be aware that the core understands some command line options, and the tools have their own options which they
know about. This means there is no central place describing all the options that are accepted -- you have to read
the options documentation both for Valgrind's core and for the tool you want to use.

2. Using and understanding the
Valgrind core

This chapter describesthe Valgrind core services, command-line options and behaviours. That meansit isrelevant
regardless of what particular tool you areusing. Theinformation should be sufficient for you to make effective day-
to-day use of Valgrind. Advanced topics related to the Valgrind core are described in Valgrind's core: advanced
topics.

A point of terminology: most referencesto "Valgrind” in this chapter refer to the Valgrind core services.

2.1. What Valgrind does with your program

Vagrind isdesigned to be as non-intrusive as possible. It works directly with existing executables. Y ou don't need
to recompile, relink, or otherwise modify the program to be checked.

You invoke Valgrind like this:

val grind [val grind-options] your-prog [your-prog-options]

The most important optionis- - t ool which dictates which Valgrind tool to run. For example, if want to run the
command| s -1 using the memory-checking tool Memcheck, issue this command:

val grind --tool =nentheck |s -I
However, Memcheck isthe default, so if you want to use it you can omit the - - t ool option.

Regardless of which tool isin use, Valgrind takes control of your program beforeit starts. Debugging information
is read from the executable and associated libraries, so that error messages and other outputs can be phrased in
terms of source code locations, when appropriate.

Y our program is then run on a synthetic CPU provided by the Vagrind core. Asnew code is executed for the first
time, the core hands the code to the selected tool. The tool addsits own instrumentation code to this and hands the
result back to the core, which coordinates the continued execution of this instrumented code.

The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck adds
code to check every memory access and every value computed, making it run 10-50 times slower than natively.
At the other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causesin
total "only" about a 4 times slowdown.

Vagrind simulates every single instruction your program executes. Because of this, the active tool checks, or
profiles, not only the code in your application but also in al supporting dynamically-linked libraries, including
the C library, graphical libraries, and so on.

If you're using an error-detection tool, Valgrind may detect errors in system libraries, for example the GNU C
or X11 libraries, which you have to use. You might not be interested in these errors, since you probably have
no control over that code. Therefore, Valgrind allows you to selectively suppress errors, by recording them in
a suppressions file which is read when Valgrind starts up. The build mechanism selects default suppressions
which give reasonable behaviour for the OS and libraries detected on your machine. To make it easier to
write suppressions, you can use the - - gen- suppr essi ons=yes option. This tells Valgrind to print out a
suppression for each reported error, which you can then copy into a suppressions file.

Valgrind will try to match the behaviour of applications compiled to run on the same OS and librariesthat Valgrind
was built with. If you use different libraries or a different OS version there may be some small differences in
behaviour.

Different error-checking tools report different kinds of errors. The suppression mechanism therefore allows you
to say which tool or tool(s) each suppression applies to.

Using and understanding the Valgrind core

2.2. Getting started

First off, consider whether it might be beneficial to recompile your application and supporting libraries with
debugging info enabled (the - g option). Without debugging info, the best Valgrind toolswill be ableto do isguess
which function a particular piece of code belongs to, which makes both error messages and profiling output nearly
useless. With - g, you'll get messages which point directly to the relevant source code lines.

Another option you might like to consider, if you are working with C++, is- f no-i nl i ne. That makesit easier
to see the function-call chain, which can help reduce confusion when navigating around large C++ apps. For
example, debugging OpenOffice.org with Memcheck is a bit easier when using this option. Y ou don't have to do
this, but doing so helps Valgrind produce more accurate and |ess confusing error reports. Chances are you're set up
like this already, if you intended to debug your program with GNU GDB, or some other debugger. Alternatively,
theValgrind option - - r ead- i nl i ne-i nf o=yes instructs Valgrind to read the debug information describing
inlining information. With this, function call chain will be properly shown, even when your applicationiscompiled
with inlining.

If you are planning to use Memcheck: On rare occasions, compiler optimisations (at - O2 and above, and sometimes
- O1) have been observed to generate code which fools Memcheck into wrongly reporting uninitialised value
errors, or missing uninitialised value errors. We have looked in detail into fixing this, and unfortunately the result
isthat doing so would give afurther significant slowdown in what is already a slow tool. So the best solution isto
turn off optimisation altogether. Since this often makes things unmanageably slow, areasonable compromiseisto
use - O. This gets you the majority of the benefits of higher optimisation levels whilst keeping relatively small the
chances of false positives or false negatives from Memcheck. Also, you should compile your code with - Wl |
because it can identify some or al of the problemsthat Vagrind can miss at the higher optimisation levels. (Using
-\Wal | isalso agood ideain general.) All other tools (as far as we know) are unaffected by optimisation level,
and for profiling tools like Cachegrind it is better to compile your program at its normal optimisation level.

Vagrind understands the DWARF2/3/4 formats used by GCC 3.1 and later. The reader for "stabs" debugging
format (used by GCC versions prior to 3.1) has been disabled in Valgrind 3.9.0.

When you're ready to roll, run Valgrind as described above. Note that you should run the real (machine-code)
executable here. If your application is started by, for example, a shell or Perl script, you'll need to modify it to
invoke Valgrind on the real executables. Running such scripts directly under Valgrind will result in you getting
error reports pertaining to / bi n/ sh, / usr/ bi n/ per |, or whatever interpreter you're using. This may not be
what you want and can be confusing. Y ou can force the issue by giving theoption- -t r ace- chi | dr en=yes,
but confusion is till likely.

2.3. The Commentary

Valgrind tools write acommentary, a stream of text, detailing error reports and other significant events. All lines
in the commentary have following form:

==12345== sone- nessage-from Val gri nd

The12345 istheprocess|D. Thisschememakesit easy to distinguish program output from Valgrind commentary,
and also easy to differentiate commentaries from different processes which have become merged together, for
whatever reason.

By default, Valgrind tools write only essential messages to the commentary, so as to avoid flooding you with
information of secondary importance. If you want more information about what is happening, re-run, passing the
- v option to Valgrind. A second - v gives yet more detail.

Y ou can direct the commentary to three different places:

1. Thedefault: send it to afile descriptor, which isby default 2 (stderr). So, if you give the core no options, it will
write commentary to the standard error stream. If you want to send it to some other file descriptor, for example
number 9, you can specify - - | og- f d=9.

Using and understanding the Valgrind core

Thisisthe ssimplest and most common arrangement, but can cause problems when Valgrinding entire trees of
processes which expect specific file descriptors, particularly stdin/stdout/stderr, to be available for their own
use.

2. A lessintrusive option isto write the commentary to afile, which you specify by - - 1 og-fi | e=fi | enane.
There are special format specifiers that can be used to use a process ID or an environment variable name in
the log file name. These are useful/necessary if your program invokes multiple processes (especialy for MPI
programs). See the basic options section for more details.

3. The least intrusive option is to send the commentary to a network socket. The socket is specified as an IP
address and port number pair, like this: - - | 0g- socket =192. 168. 0. 1: 12345 if you want to send the
output to host 1P 192.168.0.1 port 12345 (note: we have no ideaif 12345 isaport of pre-existing significance).
Y ou can also omit the port number: - - | 0og- socket =192. 168. 0. 1, in which case a default port of 1500
isused. This default is defined by the constant VG_CLO_DEFAULT_LOGPORT in the sources.

Note, unfortunately, that you have to use an IP address here, rather than a hostname.

Writing to a network socket is pointless if you don't have something listening at the other end. We provide a
simplelistener program, val gri nd- 1 i st ener , which accepts connections on the specified port and copies
whatever it is sent to stdout. Probably someone will tell us thisis ahorrible security risk. It seems likely that
people will write more sophisticated listenersin the fullness of time.

val grind-1i st ener canaccept simultaneous connections from up to 50 Valgrinded processes. In front of
each line of output it prints the current number of active connections in round brackets.

val gri nd-1i st ener acceptsthree command-line options:
-e --exit-at-zero

When the number of connected processes falls back to zero, exit. Without this, it will run forever, that is,
until you send it Control-C.

- - max- connect =I NTEGER

By default, the listener can connect to up to 50 processes. Occasionally, that number istoo small. Usethis
option to provide a different limit. E.g. - - max- connect =100.

port number

Changes the port it listens on from the default (1500). The specified port must be in the range 1024 to
65535. The same restriction applies to port numbers specified by a- - | 0g- socket to Valgrind itself.

If aValgrinded process fails to connect to a listener, for whatever reason (the listener isn't running, invalid or
unreachable host or port, etc), Valgrind switches back to writing the commentary to stderr. The same goes for
any process which loses an established connection to alistener. In other words, killing the listener doesn't kill
the processes sending data to it.

Here is an important point about the relationship between the commentary and profiling output from tools. The
commentary contains a mix of messages from the VValgrind core and the selected tool. If the tool reports errors, it
will report them to the commentary. However, if the tool does profiling, the profile data will be written to afile
of some kind, depending on the tool, and independent of what - - | 0g- * optionsarein force. The commentary is
intended to be alow-bandwidth, human-readable channel. Profiling data, on the other hand, is usually voluminous
and not meaningful without further processing, which is why we have chosen this arrangement.

2.4. Reporting of errors

When an error-checking tool detects something bad happening in the program, an error message is written to the
commentary. Here's an example from Memcheck:

Using and understanding the Valgrind core

==25832== I nvalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize(int, int, int) (bogon.cpp:45)
==25832== by 0x80487AF: mai n (bogon. cpp: 66)

==25832== Address OxBFFFF74C is not stack'd, malloc'd or free'd

This message saysthat the program did an illegal 4-byte read of address OXBFFFF74C, which, asfar as Memcheck
can tell, is not a valid stack address, nor corresponds to any current heap blocks or recently freed heap blocks.
Theread is happening at line 45 of bogon. cpp, called from line 66 of the samefile, etc. For errors associated
with anidentified (current or freed) heap block, for example reading freed memory, Vagrind reports not only the
location where the error happened, but also where the associated heap block was allocated/freed.

Valgrind remembers all error reports. When an error is detected, it is compared against old reports, to seeif it is
aduplicate. If so, the error is noted, but no further commentary is emitted. This avoids you being swamped with
bazillions of duplicate error reports.

If you want to know how many times each error occurred, run with the - v option. When execution finishes, all
the reports are printed out, along with, and sorted by, their occurrence counts. This makes it easy to see which
errors have occurred most frequently.

Errors are reported before the associated operation actually happens. For example, if you're using Memcheck and
your program attempts to read from address zero, Memcheck will emit a message to this effect, and your program
will then likely die with a segmentation fault.

In general, you should try and fix errors in the order that they are reported. Not doing so can be confusing. For
example, a program which copies uninitialised values to several memory locations, and later uses them, will
generate severa error messages, when run on Memcheck. The first such error message may well give the most
direct clue to the root cause of the problem.

The process of detecting duplicate errors is quite an expensive one and can become a significant performance
overhead if your program generates huge quantities of errors. To avoid serious problems, Valgrind will simply
stop collecting errors after 1,000 different errors have been seen, or 10,000,000 errors in total have been seen.
In this situation you might as well stop your program and fix it, because Valgrind won't tell you anything else
useful after this. Note that the 1,000/10,000,000 limits apply after suppressed errors are removed. Theselimitsare
definedinm_er r or mgr . ¢ and can be increased if necessary.

To avoid this cutoff you can usethe --error-1i m t=no option. Then Vagrind will always show errors,
regardless of how many there are. Use this option carefully, since it may have a bad effect on performance.

2.5. Suppressing errors

The error-checking tools detect numerous problems in the system libraries, such as the C library, which come
pre-installed with your OS. You can't easily fix these, but you don't want to see these errors (and yes, there are
many!) So Valgrind reads a list of errors to suppress at startup. A default suppression file is created by the . /
conf i gur e script when the system is built.

Y ou can modify and add to the suppressions file at your leisure, or, better, write your own. Multiple suppression
filesare allowed. Thisisuseful if part of your project contains errors you can't or don't want to fix, yet you don't
want to continuously be reminded of them.

Note: By far the easiest way to add suppressionsisto usethe- - gen- suppr essi ons=yes option described
in Core Command-line Options. This generates suppressions automatically. For best results, though, you may
want to edit the output of - - gen- suppr essi ons=yes by hand, in which case it would be advisable to read
through this section.

Each error to be suppressed is described very specifically, to minimise the possibility that a suppression-directive
inadvertently suppresses a bunch of similar errors which you did want to see. The suppression mechanism is
designed to allow precise yet flexible specification of errors to suppress.

If you usethe- v option, at the end of execution, Valgrind prints out one line for each used suppression, giving the
number of timesit got used, itsname and thefilename and line number where the suppression isdefined. Depending

Using and understanding the Valgrind core

on the suppression kind, the filename and line number are optionally followed by additional information (such as
the number of blocks and bytes suppressed by a Memcheck |eak suppression). Here's the suppressions used by a
runofval grind -v --tool =nencheck Is -1:

--1610-- used_suppression: 2 dl -hack3-cond-1 /usr/lib/val grind/default.supp: 1234
--1610-- used_suppression: 2 glibc-2.5. x-on-SUSE- 10. 2- (PPC) -2a /usr/lib/val grind/ di

Multiple suppressionsfiles are allowed. Valgrind loads suppression patternsfrom $PREFI X/ | i b/ val gri nd/
defaul t.supp unless --defaul t-suppressi ons=no has been specified. You can ask to add
suppressions from additional files by specifying - - suppr essi ons=/ pat h/to/fil e. supp one or more
times.

If you want to understand more about suppressions, look at an existing suppressions file whilst reading the
following documentation. Thefilegl i bc- 2. 3. supp, inthe source distribution, provides some good examples.

Blank and comment linesin asuppression file are ignored. Comment lines are made of 0 or more blanks followed
by a# character followed by some text.

Each suppression has the following components:;

* Firstline: itsname. Thismerely gives ahandy nameto the suppression, by whichit isreferred to in the summary
of used suppressions printed out when a program finishes. It's not important what the name is; any identifying
string will do.

» Second line: name of the tool(s) that the suppression is for (if more than one, comma-separated), and the name
of the suppression itself, separated by a colon (n.b.: no spaces are allowed), eg:

t ool _nanel, t ool _name2: suppr essi on_nane

Recall that Valgrind is a modular system, in which different instrumentation tools can observe your program
whilst it is running. Since different tools detect different kinds of errors, it is necessary to say which tool(s) the
suppression is meaningful to.

Tools will complain, at startup, if a tool does not understand any suppression directed to it. Tools ignore
suppressions which are not directed to them. As aresult, it is quite practical to put suppressions for all tools
into the same suppression file.

* Next line: a small number of suppression types have extra information after the second line (eg. the Par am
suppression for Memcheck)

* Remaining lines: Thisis the calling context for the error -- the chain of function calls that led to it. There can
be up to 24 of these lines.

L ocations may be names of either shared objects, functions, or source lines. They begin with obj : ,fun: , or
src: respectively. Function, object, and file names to match against may use the wildcard characters* and ?.
Source lines are specified using theform f i | enane[: | i neNunber] .

Important note: C++ function names must be mangled. If you are writing suppressions by hand, use the - -
demangl e=no option to get the mangled namesin your error messages. An example of amangled C++ name
is_ZNOQLi st Vi ewdshowEv. Thisisthe form that the GNU C++ compiler usesinternally, and the form that
must be used in suppression files. The equivalent demangled name, QLi st Vi ew. : show() , iswhat you see
at the C++ source code level.

A location line may aso be simply ". . . " (three dots). This is a frame-level wildcard, which matches zero
or more frames. Frame level wildcards are useful because they make it easy to ignore varying numbers of
uninteresting frames in between frames of interest. That is often important when writing suppressions which
are intended to be robust against variations in the amount of function inlining done by compilers.

* Finaly, the entire suppression must be between curly braces. Each brace must be the first character on its own
line.

Using and understanding the Valgrind core

A suppression only suppresses an error when the error matchesall the detailsin the suppression. Here'san example:

{
__gconv_transform ascii_internal/__nbrtowc/ nmbt owc
Mentheck: Val ue4d
fun: __gconv_transform ascii _internal

fun: __nbr*toc
fun: nbt owc

}

What it meansis: for Memcheck only, suppress a use-of-uninitialised-value error, when the data size is 4, when it
occursin the function __gconv_transform ascii _i nt ernal , when that is called from any function of
name matching __ nbr *t oc, when that is called from nbt owc. It doesn't apply under any other circumstances.
The string by which this suppressionisidentified totheuseris__gconv_t ransform ascii _i nternal /
___nbrtowc/ nbt ownc.

(See Writing suppression files for more details on the specifics of Memcheck's suppression kinds.)

Another example, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/]ibXaw.so.7.0

Mentheck: Val ue4d

obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/1ibX1l1. so0.6.2
obj:/usr/ X11R6/1ib/libXaw. so. 7.0

}

This suppresses any size 4 uninitialised-value error which occurs anywherein| i bX11. so. 6. 2, when caled
from anywhere in the same library, when called from anywherein| i bXaw. so. 7. 0. Theinexact specification
of locations is regrettable, but is about all you can hope for, given that the X11 libraries shipped on the Linux
distro on which this example was made have had their symbol tables removed.

An example of the src: specification, again for the Memcheck tool:

{
|i bX11.s0.6.2/1ibX11.s0.6.2/1ibXaw.so.7.0

Menctheck: Val ue4
src:valid.c:321

}

This suppresses any size-4 uninitialised-value error which occursat line321inval i d. c.

Although the above two examples do not make this clear, you can freely mix obj : , fun: ,and src: linesin
asuppression.

Finally, here's an example using three frame-level wildcards:

a-contrived- exanpl e
Mencheck: Leak
fun: mal | oc

fun: ddd

fun: ccc

Using and understanding the Valgrind core

fun: mai n
}

This suppresses Memcheck memory-leak errors, in the case where the alocation was done by nmai n calling
(though any number of intermediaries, including zero) ccc, calling onwardsviaddd and eventually tomal | oc. .

2.6. Debuginfod

Vagrind supports the downloading of debuginfo files via debuginfod, an HTTP server for distributing ELF/
DWARF debugging information. When a debuginfo file cannot be found locally, Valgrind is able to query
debuginfod servers for the file using the file's build-id.

In order to use this feature debugi nfod-find must be installed and the $DEBUG NFOD_URLS
environment variable must contain space-separated URLs of debuginfod servers. Valgrind does not support
debugi nfod-fi nd verbose output that is normally enabled with $DEBUG NFOD_PROGRESS and
$DEBUG NFCD_VERBGCSE. These environment variables will be ignored. This feature is supported on Linux
only.

For more information regarding debuginfod, see Elfutils Debuginfod .

2.7. Core Command-line Options

As mentioned above, Valgrind's core accepts acommon set of options. Thetools also accept tool-specific options,
which are documented separately for each tool.

Valgrind's default settings succeed in giving reasonable behaviour in most cases. We group the available options
by rough categories.

2.7.1. Tool-selection Option

The single most important option.
--t ool =<t ool nane> [defaul t: nentheck]

Run the Valgrind tool called t ool nane, e.g. memcheck, cachegrind, callgrind, helgrind, drd, massif, dhat,
lackey, none, exp-bbv, etc.

2.7.2. Basic Options

These options work with all tools.
-h --help

Show help for all options, both for the core and for the selected tool. If the option is repeated it is equivalent
togiving - - hel p- debug.

- - hel p- debug

Sameas- - hel p, but also lists debugging options which usually are only of use to Valgrind's devel opers.
--version

Show the version number of the VValgrind core. Tools can have their own version numbers. Thereis ascheme

in place to ensure that tools only execute when the core version is one they are known to work with. Thiswas
done to minimise the chances of strange problems arising from tool-vs-core version incompatibilities.

https://sourceware.org/elfutils/Debuginfod.html

Using and understanding the Valgrind core

-q,--qui et

Run silently, and only print error messages. Useful if you are running regression tests or have some other
automated test machinery.

-V, --verbose

Be more verbose. Gives extra information on various aspects of your program, such as: the shared objects
loaded, the suppressions used, the progress of the instrumentation and execution engines, and warnings about
unusual behaviour. Repeating the option increases the verbosity level.

--trace-chil dren=<yes| no> [defaul t: no]

When enabled, Valgrind will trace into sub-processes initiated via the exec system call. This is necessary
for multi-process programs.

Note that Valgrind does trace into the child of af or k (it would be difficult not to, since f or k makes an
identical copy of a process), so this option is arguably badly named. However, most children of f or k calls
immediately call exec anyway.

--trace-chil dren-ski p=pattl, patt2,...

This option only has an effect when - - t r ace- chi | dr en=yes is specified. It alows for some children
to be skipped. The option takes a comma separated list of patterns for the names of child executables that
Vagrind should not trace into. Patterns may include the metacharacters ? and *, which have the usual
meaning.

This can be useful for pruning uninteresting branches from atree of processes being run on Valgrind. But you
should be careful when using it. When Valgrind skips tracing into an executable, it doesn't just skip tracing
that executable, it also skips tracing any of that executabl€e's child processes. In other words, the flag doesn't
merely cause tracing to stop at the specified executables -- it skips tracing of entire process subtrees rooted
at any of the specified executables.

--trace-chil dren-ski p-by-arg=pattl, patt2,...

Thisisthesameas--trace-chi | dr en- ski p, with one difference: the decision as to whether to trace
into a child process is made by examining the arguments to the child process, rather than the name of its
executable.

--child-silent-after-fork=<yes|no> [default: no]

When enabled, Valgrind will not show any debugging or logging output for the child process resulting from a
f or k call. This can make the output less confusing (although more misleading) when dealing with processes
that create children. It is particularly useful in conjunction with - - t r ace- chi | dr en=. Use of this option
is also strongly recommended if you are requesting XML output (- - xni =yes), since otherwise the XML
from child and parent may become mixed up, which usually makes it useless.

--vgdb=<no| yes|ful | > [default: yes]

Valgrind will provide "gdbserver" functionality when - - vgdb=yes or - - vgdb=f ul | is specified. This
allows an external GNU GDB debugger to control and debug your program when it runs on Valgrind.
--vgdb=ful I incurs significant performance overheads, but provides more precise breakpoints and
watchpoints. See Debugging your program using Valgrind's gdbserver and GDB for a detailed description.

If the embedded gdbserver is enabled but no gdb is currently being used, the vgdb command line utility can
send "monitor commands" to Valgrind from a shell. The Valgrind core provides a set of VValgrind monitor
commands. A tool can optionally provide tool specific monitor commands, which are documented in the tool
specific chapter.

--vgdb- error=<nunber> [default: 999999999]

Use this option when the Valgrind gdbserver is enabled with - - vgdb=yes or - - vgdb=f ul | . Tools that
report errorswill wait for "nunber " errorsto be reported before freezing the program and waiting for you to

10

Using and understanding the Valgrind core

connect with GDB. It follows that a value of zero will cause the gdbserver to be started before your program
is executed. Thisistypically used to insert GDB breakpoints before execution, and al so works with tools that
do not report errors, such as Massif.

--vgdb- st op- at =<set > [defaul t: none]

Usethisoption whenthe VValgrind gdbserver isenabled with - - vgdb=yes or - - vgdb=f ul | . TheVagrind
gdbserver will beinvoked for each error after - - vgdb- er r or have been reported. Y ou can additionally ask
the Valgrind gdbserver to be invoked for other events, specified in one of the following ways:

e acommaseparated list of oneor moreof start up exit abexit val gri ndabexit.

Thevaluesst art up exi t val gri ndabexi t respectively indicate to invoke gdbserver before your
program is executed, after the last instruction of your program, on Valgrind abnormal exit (e.g. internal
error, out of memory, ...).

The option abexi t is similar to exi t but tells to invoke gdbserver only when your application exits
abnormally (i.e. with an exit code different of 0).

Note: st art up and - - vgdb- er r or =0 will both cause Valgrind gdbserver to be invoked before your
programisexecuted. The- - vgdb- er r or =0 will in addition cause your program to stop on all subsequent
errors.

e all to specify the complete set. It is equivadent to --vgdb-stop-
at =startup, exit, abexit, val gri ndabexit.

* none for the empty set.
--track-fds=<yes|no|all> [default: no]

When enabled, Valgrind will print out alist of open file descriptors on exit or on request, via the gdbserver
monitor commandyv. i nf o open_f ds. Alongwith eachfiledescriptor is printed astack backtrace of where
the file was opened and any details relating to the file descriptor such as the file name or socket details. Use
al | toincludereportingonst di n, st dout and st derr.

--nodi fy-fds=<no| yes| hi gh> [defaul t: no]

When enabled, when the program opens a new file descriptor, the highest available file descriptor is returned
instead of the lowest one. Useyes to restrict the feature from the 0/1/2 file descriptors as they're often used
for stdout/stderr redirection.

--tinme-stanp=<yes| no> [default: no]

When enabled, each message is preceded with an indication of the elapsed wallclock time since startup,
expressed as days, hours, minutes, seconds and milliseconds.

--log-fd=<nunber> [default: 2, stderr]

Specifies that Valgrind should send all of its messages to the specified file descriptor. The default, 2, isthe
standard error channel (stderr). Note that this may interfere with the client's own use of stderr, as Valgrind's
output will be interleaved with any output that the client sends to stderr.

--log-file=<fil enane>

Specifiesthat Valgrind should send all of its messagesto the specified file. If thefile nameis empty, it causes
an abort. There are three special format specifiers that can be used in the file name.

%p is replaced with the current process ID. Thisis very useful for program that invoke multiple processes.
WARNING: If youuse- -t race- chi | dr en=yes and your program invokes multiple processes OR your
program forks without calling exec afterwards, and you don't use this specifier (or the %g specifier below), the
Vagrind output from all those processes will go into one file, possibly jumbled up, and possibly incompl ete.

11

Using and understanding the Valgrind core

Note: If the program forks and calls exec afterwards, Valgrind output of the child from the period between
fork and exec will be lost. Fortunately this gap is realy tiny for most programs; and modern programs use
posi X_spawn anyway.

% is replaced with afile sequence number unique for this process. Thisis useful for processes that produces
several files from the same filename template.

%g{ FOO} is replaced with the contents of the environment variable FOQO. If the { FOO} part is malformed,
it causes an abort. This specifier israrely needed, but very useful in certain circumstances (eg. when running
MPI programs). Theideaisthat you specify avariable which will be set differently for each processin thejob,
for example BPROC_RANK or whatever is applicable in your MPI setup. If the named environment variable
is not set, it causes an abort. Note that in some shells, the { and } characters may need to be escaped with
abackslash.

9®%is replaced with %
If an %is followed by any other character, it causes an abort.
If the file name specifies arelative file name, it is put in the program's initial working directory: thisis the

current directory when the program started its execution after the fork or after the exec. If it specifies an
absolute file name (ie. startswith /") then it is put there.

0g- socket =<i p- addr ess: port - nunber >

Specifies that Valgrind should send all of its messages to the specified port at the specified IP address.
The port may be omitted, in which case port 1500 is used. If a connection cannot be made to the specified
socket, Valgrind falls back to writing output to the standard error (stderr). This option isintended to be used
in conjunction with the val gri nd-1i st ener program. For further details, see the commentary in the
manual.

- - enabl e- debugi nf od=<no| yes> [defaul t: yes]

When enabled Valgrind will attempt to download missing debuginfo from debuginfod servers if space-
separated server URLs are present in the $DEBUG NFOD_URLS environment variable. This option is
supported on Linux only.

2.7.3. Error-related Options

These options are used by all tools that can report errors, e.g. Memcheck, but not Cachegrind.
--xm =<yes| no> [default: no]

When enabled, the important parts of the output (e.g. tool error messages) will bein XML format rather than
plain text. Furthermore, the XML output will be sent to a different output channel than the plain text output.
Therefore, you also must use one of - - xm -fd,--xm -fil e or--xm -socket to specify where the
XML isto be sent.

Lessimportant messages will still be printed in plain text, but because the XML output and plain text output
are sent to different output channels (the destination of the plain text output is still controlled by - - | og- f d,
--log-fileand--1o0g-socket) thisshould not cause problems.

Thisoptionisaimed at making life easier for toolsthat consume Valgrind's output asinput, such as GUI front
ends. Currently this option works with Memcheck, Helgrind and DRD. The output format is specified in the
filedocs/ i nt ernal s/ xm - out put - pr ot ocol 4. t xt inthe sourcetreefor Valgrind 3.5.0 or later.

Therecommended optionsfor aGUI to pass, when requesting XML output, are; - - xm =yes toenable XML
output, - - xm - fi | e to send the XML output to a (presumably GUI-selected) file, - -1 og-fi | e to send
the plain text output to a second GUI-selected file, - - chi | d-si |l ent-after-fork=yes, and-q to
restrict the plain text output to critical error messages created by Valgrind itself. For example, failure to read

12

Using and understanding the Valgrind core

aspecified suppressionsfile counts as acritical error message. In thisway, for asuccessful run the text output
filewill be empty. But if it isn't empty, then it will contain important information which the GUI user should
be made aware of.

--xm - fd=<nunber> [defaul t: -1, disabled]

Specifies that Valgrind should send its XML output to the specified file descriptor. It must be used in
conjunction with - - xm =yes.

--xm -file=<fil enane>

Specifies that Valgrind should send its XML output to the specified file. It must be used in conjunction with
--xm =yes. Any % or %g sequences appearing in the filename are expanded in exactly the same way as
they arefor - - 1 og- f i | e. Seethe description of --log-file for details.

--xm - socket =<i p- addr ess: port - nunber >

Specifies that Valgrind should send its XML output the specified port at the specified |P address. It must
be used in conjunction with - - xm =yes. The form of the argument is the same as that used by - - | og-
socket . Seethe description of - - | og- socket for further details.

--xml - user-comrent =<stri ng>

Embeds an extra user comment string at the start of the XML output. Only works when - - xml =yes is
specified; ignored otherwise.

- -demangl e=<yes| no> [defaul t: yes]

Enable/disable automatic demangling (decoding) of C++, D, Rust, Java, Ada names. Enabled by default.
When enabled, Valgrind will attempt to trandate encoded names in the listed languages back to something
approaching the original. Note that the callgrind tool always disables Adademangling in order to differentiate
overloaded functions and procedures in the callgraph. The demangler handles symbols mangled by g++
versions 2.X, 3.X and 4.X.

An important fact about demangling is that function names mentioned in suppressions files should be in
their mangled form. Va grind does not demangl e function names when searching for applicable suppressions,
because to do otherwise would make suppression file contents dependent on the state of VValgrind'sdemangling
machinery, and also slow down suppression matching.

--num cal | ers=<nunber > [defaul t: 12]
Specifies the maximum number of entries shown in stack traces that identify program locations. Note that
errors are commoned up using only the top four function locations (the place in the current function, and that

of itsthree immediate callers). So this doesn't affect the total number of errors reported.

The maximum value for thisis 500. Note that higher settings will make Valgrind run a bit more slowly and
take a bit more memory, but can be useful when working with programs with deeply-nested call chains.

- - unw- st ack- scan- t hr esh=<nunber > [defaul t: 0] , --unw stack-scan-
frames=<nunber> [default: 5]

Stack-scanning support is available only on ARM targets.

These flags enable and control stack unwinding by stack scanning. When the normal stack unwinding
mechanisms -- usage of Dwarf CFI records, and frame-pointer following -- fail, stack scanning may be able
to recover a stack trace.

Note that stack scanning is an imprecise, heuristic mechanism that may give very misleading results, or none

at all. It should be used only in emergencies, when normal unwinding fails, and it isimportant to nevertheless
have stack traces.

13

Using and understanding the Valgrind core

Stack scanning is a simple technique: the unwinder reads words from the stack, and tries to guess which of
them might be return addresses, by checking to see if they point just after ARM or Thumb call instructions.
If so, the word is added to the backtrace.

The main danger occurs when afunction call returns, leaving its return address exposed, and a new function
is called, but the new function does not overwrite the old address. The result of thisisthat the backtrace may
contain entries for functions which have already returned, and so be very confusing.

A second limitation of thisimplementation is that it will scan only the page (4KB, normally) containing the
starting stack pointer. If the stack frames are large, this may result in only a few (or not even any) being
present in the trace. Also, if you are unlucky and have an initial stack pointer near the end of its containing
page, the scan may miss al interesting frames.

By default stack scanning is disabled. The normal use caseisto ask for it when a stack trace would otherwise
bevery short. So, to enableit, use- - unw st ack- scan-t hr esh=nunber . ThisrequestsValgrind totry
using stack scanning to "extend" stack traces which contain fewer than nurmber frames.

If stack scanning does take place, it will only generate at most the number of frames specified by - - unw
st ack- scan- f r anes. Typically, stack scanning generates so many garbage entriesthat thisvalueis set to
alow value (5) by default. In no case will a stack trace larger than the value specified by - - num cal | er s
be created.

--error-limt=<yes|no> [default: yes]
When enabled, Valgrind stops reporting errors after 10,000,000 in total, or 1,000 different ones, have been
seen. Thisisto stop the error tracking machinery from becoming a huge performance overhead in programs
with many errors.

--error-exitcode=<nunber> [default: O]

Specifies an alternative exit code to return if Valgrind reported any errorsin the run. When set to the default
value (zero), the return value from Valgrind will always be the return value of the process being simulated.
When set to a nonzero value, that value is returned instead, if Valgrind detects any errors. Thisis useful for
using Valgrind as part of an automated test suite, sinceit makesit easy to detect test cases for which Valgrind
has reported errors, just by inspecting return codes. When set to anonzero value and Valgrind detects no error,
the return value of Valgrind will be the return value of the program being simulated.

--exit-on-first-error=<yes|no> [default: no]
If this option is enabled, Valgrind exits on the first error. A nonzero exit value must be defined using - -
error-exitcode option. Useful if you are running regression tests or have some other automated test
machinery.

--error-markers=<begi n>, <end> [default: none]

When errors are output as plain text (i.e. XML not used), - - er r or - mar ker s instructs to output a line
containing the begi n (end) string before (after) each error.

Such marker lines facilitate searching for errors and/or extracting errorsin an output file that contain valgrind
errors mixed with the program output.

Note that empty markers are accepted. So, only using a begin (or an end) marker is possible.
--showerror-1list=no|yes|all [default: no]

If this option is yes, for tools that report errors, valgrind will show the list of detected errors and the list of
used suppressions at exit. The value all indicates to also show the list of suppressed errors.

Notethat at verbosity 2 and above, valgrind automatically showsthelist of detected errorsand the list of used
suppressions at exit, unless- - show error -1 i st=no isseected.

14

Using and understanding the Valgrind core

Specifying - s isequivalentto- - show error-1i st =yes.
--sigill-diagnostics=<yes|no> [default: yes]

Enable/disable printing of illegal instruction diagnostics. Enabled by default, but defaults to disabled when
- - qui et isgiven. The default can always be explicitly overridden by giving this option.

When enabled, a warning message will be printed, along with some diagnostics, whenever an instruction is
encountered that VValgrind cannot decode or translate, before the program isgiven aSIGILL signal. Often an
illegal instruction indicates a bug in the program or missing support for the particular instruction in Valgrind.
But some programs do deliberately try to execute an instruction that might be missing and trap the SIGILL
signal to detect processor features. Using this flag makes it possible to avoid the diagnostic output that you
would otherwise get in such cases.

- - keep- debugi nf o=<yes| no> [defaul t: no]

When enabled, keep ("archive") symbols and all other debuginfo for unloaded code. This allows saved stack
traces to include file/line info for code that has been diclose'd (or similar). Be careful with this, since it can
lead to unbounded memory use for programs which repeatedly load and unload shared objects.

Some tools and some functionalities have only limited support for archived debug info. Memcheck fully
supportsit. Generally, tools that report errors can use archived debug info to show the error stack traces. The
known limitations are: Helgrind's past access stack trace of arace condition is does not use archived debug
info. Massif (and more generally the xtree Massif output format) does not make use of archived debug info.
Only Memcheck has been (somewhat) tested with - - keep- debugi nf o=yes, so other tools may have
unknown limitations.

- - show bel ow mai n=<yes| no> [defaul t: no]

By default, stack traces for errors do not show any functions that appear beneath mai n because most
of the time it's uninteresting C library stuff and/or gobbledygook. Alternatively, if mai n is not present
in the stack trace, stack traces will not show any functions below nmai n-like functions such as glibc's
__libc_start_nain. Furthermore, if mai n-like functions are present in the trace, they are normalised
as(bel ow mai n), in order to make the output more deterministic.

If thisoption isenabled, all stack trace entrieswill be shown and mai n-like functionswill not be normalised.
--full path-after=<string> [default: don't show source paths]

By default Valgrind only shows the filenames in stack traces, but not full paths to source files. When using
Vagrind in large projects where the sources reside in multiple different directories, this can be inconvenient.
--ful | pat h-af t er provides aflexible solution to this problem. When this option is present, the path to
each source file is shown, with the following all-important caveat: if st ri ng isfound in the path, then the
path up to and including st ri ng is omitted, else the path is shown unmodified. Note that st ri ng is not
required to be a prefix of the path.

For example, consider afilenamed/ hone/ j anedoe/ bl ah/ src/ f oo/ bar/ xyzzy. c. Specifying - -
ful | pat h-after=/hone/janedoe/ bl ah/ src/ will cause Vagrind to show the name as f oo/
bar/xyzzy. c.

Because the string is not required to be a prefix, - - f ul | pat h-af t er=src/ will produce the same
output. This is useful when the path contains arbitrary machine-generated characters. For example, the
path / ny/ bui | d/ di r/ C32A1B47/ bl ah/ src/ f oo/ xyzzy can be pruned to f 0o/ xyzzy using - -
full path-after=/blah/src/.

If you simply want to see the full path, just specify an empty string: - - f ul | pat h- aft er =. Thisisn't a
special case, merely alogical consequence of the aboverules.

Finally, youcanuse- - f ul | pat h- af t er multiple times. Any appearance of it causes Valgrind to switch
to producing full paths and applying the above filtering rule. Each produced path is compared against all the

15

Using and understanding the Valgrind core

--ful | pat h- af t er -specified strings, in the order specified. The first string to match causes the path to
be truncated as described above. If none match, the full path is shown. This facilitates chopping off prefixes
when the sources are drawn from a number of unrelated directories.

- -extra-debugi nf o- pat h=<pat h> [defaul t: undefined and unused]
By default Valgrind searches in severa well-known paths for debug objects, such as/ usr/ | i b/ debug/ .

However, there may be scenarios where you may wish to put debug objects at an arbitrary location, such
as external storage when running Valgrind on a mobile device with limited local storage. Another example
might be a situation where you do not have permission to install debug object packages on the system where
you are running Valgrind.

In these scenarios, you may provide an absolute path as an extra, final place for Vagrind to search for
debug objects by specifying - - ext r a- debugi nf o- pat h=/ pat h/ t o/ debug/ obj ect s. The given
path will be prepended to the absolute path name of the searched-for object. For example, if Valgrind is
looking for the debuginfo for / W x/ y/ zz. so and - - ext r a- debugi nf o- pat h=/ a/ b/ c is specified,
it will look for adebug object at / a/ b/ ¢/ w/ x/y/ zz. so.

This flag should only be specified once. If it is specified multiple times, only the last instance is honoured.
- -debugi nf o- server =i paddr: port [default: undefined and unused]
Thisis anew, experimental, feature introduced in version 3.9.0.

In some scenarios it may be convenient to read debuginfo from objects stored on a different machine. With
thisflag, Valgrind will query adebuginfo server runningoni paddr and listening on port por t , if it cannot
find the debuginfo object in the local filesystem.

The debuginfo server must accept TCP connections on port por t . The debuginfo server is contained in the
source file auxpr ogs/ val gri nd-di - server. c. It will only serve from the directory it is started in.
port defaultsto 1500 in both client and server if not specified.

If Valgrind looks for the debuginfo for / w x/y/ zz. so by using the debuginfo server, it will strip the
pathname components and merely request zz. so on the server. That in turn will look only in its current
working directory for a matching debuginfo object.

The debuginfo data is transmitted in small fragments (8 KB) as requested by Vagrind. Each block is
compressed using LZO to reduce transmission time. The implementation has been tuned for best performance
over asingle-stage 802.11g (WiFi) network link.

Note that checks for matching primary vs debug objects, using GNU debuglink CRC scheme, are performed
even when using the debuginfo server. To disable such checking, you need to also specify - - al | ow
m smat ched- debugi nf o=yes.

By default the Valgrind build system will build val gri nd- di - ser ver for the target platform, which is
almost certainly not what you want. So far we have been unable to find out how to get automake/autoconf to
build it for the build platform. If you want to useit, you will have to recompileit by hand using the command
shown at the top of auxpr ogs/ val gri nd- di - server. c.

Vagrind can also download debuginfo viadebuginfod. See the DEBUGINFOD section for moreinformation.
--al | ow m smat ched- debugi nf o=no| yes [no]

When reading debuginfo from separate debuginfo objects, Valgrind will by default check that the main
and debuginfo objects match, using the GNU debuglink mechanism. This guarantees that it does not read
debuginfo from out of date debuginfo objects, and also ensures that Valgrind can't crash as a result of
mismatches.

Thischeck canbeoverriddenusing - - al | ow m snmat ched- debugi nf o=yes. Thismay beuseful when
the debuginfo and main objects have not been split in the proper way. Be careful when using this, though:

16

Using and understanding the Valgrind core

it disables all consistency checking, and Valgrind has been observed to crash when the main and debuginfo
objects don't match.

--suppressions=<filenane> [default: $PREFI X/ |ib/val grind/default.supp]

Specifies an extra file from which to read descriptions of errors to suppress. You may use up to 100 extra
suppression files.

--gen-suppressi ons=<yes| no|al |l > [defaul t: no]

When set toyes, Valgrind will pause after every error shown and print the line;
---- Print suppression ? --- [Return/Nn/Y/y/Cc] ----

Pressing Ret , or N Ret orn Ret, causes Valgrind continue execution without printing a suppression for
thiserror.

PressingY Ret ory Ret causesValgrind to write a suppression for this error. Y ou can then cut and paste
it into asuppression fileif you don't want to hear about the error in the future.

When settoal |, Vagrind will print a suppression for every reported error, without querying the user.

This option is particularly useful with C++ programs, as it prints out the suppressions with mangled names,
as required.

Note that the suppressions printed are as specific as possible. Y ou may want to common up similar ones,
by adding wildcards to function names, and by using frame-level wildcards. The wildcarding facilities are
powerful yet flexible, and with abit of careful editing, you may be able to suppress awhole family of related
errors with only afew suppressions.

Sometimes two different errors are suppressed by the same suppression, in which case Valgrind will output
the suppression more than once, but you only need to have one copy in your suppression file (but having
more than one won't cause problems). Also, the suppression nameisgivenas<i nsert a suppr essi on
nane her e>; the name doesn't really matter, it's only used with the - v option which prints out all used
suppression records.

nput - f d=<nunber> [default: 0, stdin]

Whenusing - - gen- suppr essi ons=yes, Valgrind will stop so asto read keyboard input from you when
each error occurs. By default it readsfrom the standard input (stdin), which is problematic for programswhich
close stdin. This option allows you to specify an aternative file descriptor from which to read input.

--dsymutil =no| yes [yes]

Thisoption is only relevant when running Valgrind on macOS.

macOS uses a deferred debug information (debuginfo) linking scheme. When object files containing
debuginfo arelinked into a. dyl i b or an executable, the debuginfo is not copied into the final file. Instead,
the debuginfo must be linked manually by running dsynut i | , asystem-provided utility, on the executable
or. dyl i b. Theresulting combined debuginfo is placed in adirectory alongside the executable or . dyl i b,
but with the extension . dSYM

With- - dsynut i | =no, Valgrind will detect caseswherethe. d SYMdirectory iseither missing, or ispresent
but does not appear to match the associated executable or . dyl i b, most likely because it is out of date. In
these cases, Valgrind will print awarning message but take no further action.

With - -dsymuti | =yes, Valgrind will, in such cases, automatically rundsymut i | asnecessary to bring
the debuginfo up to date. For al practical purposes, if you aways use - - dsynut i | =yes, then there is
never any need to run dsynut i | manually or as part of your applications's build system, since Valgrind
will run it as necessary.

Valgrind will not attempt to run dsymut i | on any executable or library in/ usr/,/bin/,/sbin/,/
opt/,/sw,/System ,/Library/ or/ Applications/ sincedsynutil will alwaysfail in such

17

Using and understanding the Valgrind core

situations. It fails both because the debuginfo for such pre-installed system components is not available
anywhere, and also because it would require write privileges in those directories.

Be careful whenusing - - dsynut i | =yes, sinceit will cause pre-existing . dSYMdirectoriesto be silently
deleted and re-created. Also note that dsynut i | isquite slow, sometimes excessively so.

- - max- st ackf rane=<nunber > [defaul t: 2000000]

The maximum size of a stack frame. If the stack pointer moves by more than this amount then Valgrind will
assume that the program is switching to a different stack.

You may need to use this option if your program has large stack-allocated arrays. Valgrind keeps track
of your program's stack pointer. If it changes by more than the threshold amount, Valgrind assumes your
program is switching to adifferent stack, and Memcheck behaves differently than it would for a stack pointer
change smaller than the threshold. Usually this heuristic workswell. However, if your program allocates large
structures on the stack, this heuristic will be fooled, and Memcheck will subsequently report large numbers
of invalid stack accesses. This option allows you to change the threshold to a different value.

Y ou should only consider use of this option if Valgrind's debug output directs you to do so. In that case it
will tell you the new threshold you should specify.

In general, allocating large structures on the stack is abad idea, because you can easily run out of stack space,
especialy on systems with limited memory or which expect to support large numbers of threads each with a
small stack, and al so because the error checking performed by Memcheck is more effective for heap-allocated
data than for stack-allocated data. If you have to use this option, you may wish to consider rewriting your
code to all ocate on the heap rather than on the stack.

--mai n- st acksi ze=<nunber> [default: use current 'ulinmt' val ue]
Specifies the size of the main thread's stack.

To simplify its memory management, Valgrind reserves al required space for the main thread's stack at
startup. That means it needs to know the required stack size at startup.

By default, Valgrind usesthe current "ulimit" value for the stack size, or 16 MB, whichever islower. In many
cases this gives a stack size in the range 8 to 16 MB, which almost never overflows for most applications.

If you need alarger total stack size, use- - nai n- st acksi ze to specify it. Only set it as high as you need,
since reserving far more space than you need (that is, hundreds of megabytes more than you need) constrains
Valgrind's memory allocators and may reduce the total amount of memory that Valgrind can use. Thisisonly
really of significance on 32-bit machines.

On Linux, you may request a stack of size up to 2GB. Valgrind will stop with a diagnostic message if the
stack cannot be allocated.

- - mai n- st acksi ze only affects the stack size for the program's initial thread. It has no bearing on the
size of thread stacks, as Valgrind does not allocate those.

You may need to use both - - mai n- st acksi ze and - - max- st ackf r ane together. It is important to
understand that - - mai n- st acksi ze sets the maximum total stack size, whilst - - max- st ackf rane
specifies the largest size of any one stack frame. You will have to work out the - - mai n- st acksi ze
value for yourself (usualy, if your applications segfaults). But Vagrind will tell you the needed - - max-
st ackf r ame size, if necessary.

Asdiscussed further in the description of - - max- st ackf r ane, arequirement for alarge stack isa sign of
potential portability problems. Y ou are best advised to place all large datain heap-allocated memory.

- - max- t hr eads=<nunber > [defaul t: 500]

By default, Vagrind can handle to up to 500 threads. Occasionally, that number istoo small. Use this option
to provide adifferent limit. E.g. - - max-t hr eads=3000.

18

Using and understanding the Valgrind core

--real l oc-zero-bytes-frees=yes|no [default: yes for glibc no otherwi se]

The behaviour of r eal | oc() with asize of zero isimplementation defined in C17 and undefined in C23.
Valgrind tries to work in the same way as the underlying system and C runtime library that it was configured
and built on. However, if you use a different C runtime library then this default may be wrong. If the value
isyes thenr eal | oc will deallocate the memory and return NULL. If the valueisno thenr eal | oc will
not deallocate the memory and the size will be handled as though it were one byte.

As an example, if you use Vagrind installed via a package on a Linux distro using GNU libc but link your
test executable with mud libc or the JEMalloc library then consider using - - r eal | oc- zer o- byt es-
frees=no.

Address Sanitizer has a similar and even wordier option
all ocator _frees_and returns_null _on_reall oc_zero.

2.7.4. malloc-related Options

For tools that use their own version of mal | oc (e.g. Memcheck, Massif, Helgrind, DRD), the following options
apply.

--al i gnnent =<nunber > [default: 8 or 16, depending on the platforni

By default Valgrind'snal | oc, r eal | oc, etc, return ablock whose starting addressis 8-byte aligned or 16-
byte aligned (the value depends on the platform and matches the platform default). This option alows you
to specify adifferent alignment. The supplied value must be greater than or equal to the default, less than or
equal to 4096, and must be a power of two.

--redzone- si ze=<nunber > [default: depends on the tool]

Vagrind'smal | oc, reall oc, etc, add padding blocks before and after each heap block allocated by the
program being run. Such padding blocks are called redzones. The default value for the redzone size depends
on the tool. For example, Memcheck adds and protects a minimum of 16 bytes before and after each block
allocated by the client. Thisalowsit to detect block underruns or overruns of up to 16 bytes.

Increasing the redzone size makes it possible to detect overruns of larger distances, but increases the amount
of memory used by Valgrind. Decreasing the redzone size will reduce the memory needed by Valgrind but
also reduces the chances of detecting over/underruns, so is not recommended.

--xtree-menory=none| al |l ocs|full [none]

Tools replacing Vagrind'smal | oc, real | oc, etc, can optionally produce an execution tree detailing
which piece of code is responsible for heap memory usage. See Execution Trees for a detailed explanation
about execution trees.

When set to none, no memory execution tree is produced.

When settoal | ocs, the memory execution tree gives the current number of alocated bytes and the current
number of allocated blocks.

Whensettof ul | ,thememory executiontreegives6 different measurements: the current number of allocated
bytes and blocks (same values as for al | ocs), the total number of allocated bytes and blocks, the total
number of freed bytes and blocks.

Note that the overhead in cpu and memory to produce an xtree depends on the tool. The overhead in cpu is
small for the value al | ocs, as the information needed to produce this report is maintained in any case by
the tool. For massif and helgrind, specifying f ul | implies to capture a stack trace for each free operation,
while normally these tools only capture an allocation stack trace. For Memcheck, the cpu overhead for the
valuef ul | issmall, asthiscan only beusedin combination with - - keep- st ackt r aces=al | oc- and-

freeor--keep-stacktraces=al |l oc-t hen-free,whichaready recordsastack tracefor each free

19

Using and understanding the Valgrind core

operation. The memory overhead varies between 5 and 10 words per unique stacktrace in the xtree, plus the
memory needed to record the stack trace for the free operations, if needed specificaly for the xtree.

--xtree-nmenory-file=<fil ename> [default: xtnenory.kcg. %]

Specifiesthat Vagrind should produce the xtree memory report in the specified file. Any %p or %g sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.

If the filename contains the extension . s, then the produced file format will be a massif output file format.
If the filename contains the extension . kcg or no extension is provided or recognised, then the produced file
format will be a callgrind output format.

See Execution Trees for a detailed explanation about execution trees formats.

2.7.5. Uncommon Options

These options apply to all tools, as they affect certain obscure workings of the Valgrind core. Most people won't
need to use them.

--snct- check=<none| stack|all|all-non-file> [default: all-non-file for x86/
and64/ s390x, stack for other archs]

This option controls Valgrind's detection of self-modifying code. If no checking is done, when a program
executes some code, then overwrites it with new code, and executes the new code, Valgrind will continue to
execute the trandations it made for the old code. Thiswill likely lead to incorrect behaviour and/or crashes.

For "modern" architectures -- anything that's not x86, and64 or s390x -- the defaultisst ack. Thisisbecause
a correct program must take explicit action to reestablish D-I cache coherence following code modification.
Valgrind observes and honours such actions, with the result that self-modifying codeis transparently handled
with zero extra cost.

For x86, amd64 and s390x, the program is not required to notify the hardware of required D-I coherence
syncing. Hence the default isal | - non-fi | e, which covers the normal case of generating code into an
anonymous (non-file-backed) mmap'd area.

The meanings of the four available settings are as follows. No detection (none), detect self-modifying code
on the stack (which is used by GCC to implement nested functions) (st ack), detect self-modifying code
everywhere (al |), and detect self-modifying code everywhere except in file-backed mappings (al | - non-
file).

Runningwithal | will slow Valgrind down noticeably. Running with none will rarely speed things up, since
very little code getsdynamically generated in most programs. The VALGRI ND_DI SCARD_TRANSLATI ONS
client requestisan alternativeto- - snt- check=al | and- - snt- check=al | - non-fi | e that requires
more programmer effort but allows Valgrind to run your program faster, by telling it precisely when
translations need to be re-made.

--snt-check=al | - non-fil e providesacheaper but morelimited version of - - snc- check=al | . It
adds checksto any trandlationsthat do not originate from file-backed memory mappings. Typical applications
that generate code, for example JITsin web browsers, generate code into anonymous mmaped areas, whereas
the "fixed" code of the browser always lives in file-backed mappings. - - sntc- check=al | -non-fil e
takes advantage of this observation, limiting the overhead of checking to code which is likely to be JT
generated.

--read-inline-info=<yes|no> [default: see bel oy
When enabled, Valgrind will read information about inlined function calls from DWARF3 debug info. This

sows Valgrind startup and makes it use more memory (typically for each inlined piece of code, 6 words and
space for the function name), but it results in more descriptive stacktraces. Currently, this functionality is

20

Using and understanding the Valgrind core

enabled by default only for Linux, FreeBSD, Android and Solaris targets and only for the tools Memcheck,
Massif, Helgrind and DRD. Here is an example of some stacktraceswith - - r ead-i nl i ne- i nf o=no:

==15380== Conditional junmp or nobve depends on uninitialised val ue(s)

==15380== at Ox80484EA: main (inlinfo.c:6)

==15380==

==15380== Conditional junmp or nobve depends on uninitialised val ue(s)
==15380== at 0x8048550: fun_noninline (inlinfo.c:6)

==15380== by 0x804850E: main (inlinfo.c:34)

==15380==

==15380== Conditional junmp or nobve depends on uninitialised val ue(s)
==15380== at 0x8048520: main (inlinfo.c:6)

And here are the same errors with - - r ead- i nl i ne- i nf o=yes:

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)

==15377== at 0Ox80484EA: fun_d (inlinfo.c:6)

==15377== by O0x80484EA: fun_c (inlinfo.c:14)

==15377== by O0x80484EA: fun_b (inlinfo.c:20)

==15377== by O0x80484EA: fun_a (inlinfo.c:26)

==15377== by O0x80484EA: main (inlinfo.c:33)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048550: fun_d (inlinfo.c:6)

==15377== by 0x8048550: fun_noninline (inlinfo.c:41)

==15377== by 0x804850E: main (inlinfo.c:34)

==15377==

==15377== Condi tional junmp or nobve depends on uninitialised val ue(s)
==15377== at 0x8048520: fun_d (inlinfo.c:6)

==15377== by 0x8048520: main (inlinfo.c:35)

--read-var-info=<yes|no> [default: no]

When enabled, Valgrind will read information about variable types and locations from DWARF3 debug info.
ThisslowsValgrind startup significantly and makesit use significantly morememory, but for thetool sthat can
take advantage of it (Memcheck, Helgrind, DRD) it can result in more precise error messages. For example,
here are some standard errors issued by Memcheck:

==15363== Uninitialised byte(s) found during client check request

==15363== at 0x80484A9: croak (varinfol.c: 28)

==15363== by 0x8048544: nmain (varinfol.c:55)

==15363== Address 0x80497f7 is 7 bytes inside data synbol "gl obal _i2"
==15363==

==15363== Uninitialised byte(s) found during client check request
==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048550: rmmin (varinfol.c:56)

==15363== Address Oxbea0dOcc is on thread 1's stack

==15363== in frane #1, created by main (varinfol.c:45)

And here are the same errorswith - - r ead- var - i nf o=yes:

==15370== Uninitialised byte(s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048544: nmmin (varinfol.c:55)

==15370== Location 0x80497f7 is 0 bytes inside global i2[7],

21

Using and understanding the Valgrind core

==15370== a gl obal vari able declared at varinfol.c:41

==15370==

==15370== Uninitialised byte(s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048550: main (varinfol.c:56)

==15370== Locati on Oxbeb4aOcc is O bytes inside |ocal var "local"

==15370== declared at varinfol.c:46, in frame #1 of thread 1
--vgdb- pol | =<nunber > [defaul t: 5000]

As part of its main loop, the Vagrind scheduler will poll to check if some activity (such as an externa
command or some input from a gdb) has to be handled by gdbserver. This activity poll will be done after
having run the given number of basic blocks (or dightly more than the given number of basic blocks). This
poll is quite cheap so the default value is set relatively low. You might further decrease this value if vgdb
cannot use ptrace system call to interrupt Valgrindif al threadsare (most of thetime) blocked in asystem call.

- -vgdb- shadow-r egi st ers=no| yes [default: no]

When activated, gdbserver will expose the Valgrind shadow registers to GDB. With this, the value of the
Valgrind shadow registers can be examined or changed using GDB. Exposing shadow registers only works
with GDB version 7.1 or later.

--vgdb-prefix=<prefix> [default: /tnp/vgdb-pipe]

To communicate with gdb/vgdb, the Valgrind gdbserver creates 3 files (2 named FIFOs and a mmap shared
memory file). The prefix option controls the directory and prefix for the creation of thesefiles.

--run-libc-freeres=<yes| no> [default: yes]
Thisoption is only relevant when running Valgrind on Linux with GNU libc.

TheGNU Clibrary (I i bc. so), whichisused by all programs, may allocate memory for itsown uses. Usually
it doesn't bother to free that memory when the program ends—there would be no point, since the Linux kernel
reclaims all process resources when a process exits anyway, so it would just slow things down.

The glibc authors realised that this behaviour causes leak checkers, such as Vagrind, to falsely report
leaks in glibc, when a leak check is done at exit. In order to avoid this, they provided a routine called
__libc_freeres specificaly to make glibc release all memory it has allocated. Memcheck thereforetries
torun__libc_freeres atexit.

Unfortunately, in some very old versions of glibc, __ | i bc_freeres is sufficiently buggy to cause
segmentation faults. This was particularly noticeable on Red Hat 7.1. So this option is provided in order to
inhibit therunof __| i bc_freeres. If your program seems to run fine on Valgrind, but segfaults at exit,
youmay findthat - - run- | i bc- f r eer es=no fixesthat, although at the cost of possibly falsely reporting
spaceleaksinl i bc. so.

--run-cxx-freeres=<yes| no> [default: yes]

Thisoptionisonly relevant when running Valgrind on Linux, FreeBSD or Solaris C++ programsusing libstdc
++.

The GNU Standard C++ library (I i bst dc++. s0), which is used by all C++ programs compiled with g+
+, may alocate memory for its own uses. Usually it doesn't bother to free that memory when the program
ends—there would be no point, since the kernel reclaims all process resources when a process exits anyway,
so it would just slow things down.

The gce authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report leaks
in libstdc++, when a leak check is done at exit. In order to avoid this, they provided a routine called
__gnu_cxx:: __freeres specifically to make libstdc++ release all memory it has alocated. Memcheck
thereforetriestorun __gnu_cxx:: __ freeres at exit.

22

Using and understanding the Valgrind core

For the sake of flexibility and unforeseen problemswith __gnu_cxx:: __ freer es,option--run- cxx-
f r eer es=no exists, athough at the cost of possibly falsely reporting spaceleaksin| i bst dc++. so.

--simhints=hintl,hint2,...

Pass miscellaneous hints to Valgrind which dightly modify the simulated behaviour in nonstandard or
dangerous ways, possibly to help the simulation of strange features. By default no hints are enabled. Use with
caution! Currently known hints are:

* lax-ioctls: Beverylaxaboutioctl handling; the only assumption isthat the size is correct. Doesn't
require the full buffer to be initialised when writing. Without this, using some device drivers with alarge
number of strange ioctl commands becomes very tiresome.

» fuse-conpati bl e: Enablespecia handling for certain system calls that may block in a FUSE file-
system. This may be necessary when running Valgrind on a multi-threaded program that uses one thread
to manage a FUSE file-system and another thread to access that file-system.

* enabl e-out er: Enable some special magic needed when the program being run isitself Valgrind.

e no-inner-prefix: Disableprintingaprefix > infront of each stdout or stderr output linein aninner
Valgrind being run by an outer Valgrind. Thisisuseful when running Valgrind regression testsin an outer/
inner setup. Note that the prefix > will always be printed in front of the inner debug logging lines.

* no-nptl - pt hr ead- st ackcache: Thishint is only relevant when running Valgrind on Linux; it
isignored on FreeBSD, Solaris and macOS.

TheGNU glibc pthread library (I i bpt hr ead. so), whichisused by pthread programs, maintainsacache
of pthread stacks. When a pthread terminates, the memory used for the pthread stack and some thread local
storage related data structure are not always directly released. This memory is kept in a cache (up to a
certain size), and isre-used if anew thread is started.

This cache causes the helgrind tool to report some false positive race condition errors on this cached
memory, as helgrind does not understand the internal glibc cache synchronisation primitives. So, when
using helgrind, disabling the cache helps to avoid false positive race conditions, in particular when using
thread local storage variables (e.g. variablesusing the __t hr ead qualifier).

When using the memcheck tool, disabling the cache ensures the memory used by glibc to handle __thread
variablesis directly released when a thread terminates.

Note: Valgrind disables the cache using some internal knowledge of the glibc stack cache implementation
and by examining the debug information of the pthread library. This technique is thus somewhat fragile
and might not work for all glibc versions. This has been successfully tested with various glibc versions
(e.g. 2.11, 2.16, 2.18) on various platforms.

* | ax-doors: (Solaris only) Be very lax about door syscall handling over unrecognised door file
descriptors. Does not require that full buffer is initialised when writing. Without this, programs using
libdoor(3L1B) functionality with completely proprietary semantics may report large number of false
positives.

o fallback-11sc: (MIPSand ARM64 only): Enables an aternative implementation of Load-Linked
(LL) and Store-Conditional (SC) instructions. The standard implementation gives more correct behaviour,
but can cause indefinite looping on certain processor implementations that are intolerant of extra memory
references between LL and SC. So far this is known only to happen on Cavium 3 cores. Y ou should not
need to use this flag, since the relevant cores are detected at startup and the alternative implementation is
automatically enabled if necessary. Thereisno equivalent anti-flag: you cannot force-disablethe aternative
implementation, if it is automatically enabled. The underlying problem exists because the "standard"
implementation of LL and SC is done by copying through LL and SC instructions into the instrumented
code. However, tools may insert extra instrumentation memory references in between the LL and SC
instructions. These memory references are not present in the origina uninstrumented code, and their
presence in the instrumented code can cause the SC instructions to persistently fail, leading to indefinite

23

Using and understanding the Valgrind core

loopingin LL-SC blocks. Thealternativeimplementation gives correct behaviour of LL and SCinstructions
between threadsin aprocess, up to and including the ABA scenario. It also gives correct behaviour between
a Valgrinded thread and a non-Valgrinded thread running in a different process, that communicate via
shared memory, but only up to and including correct CAS behaviour -- in this case the ABA scenario may
not be correctly handled.

- - schedul i ng- quant ume<nunber > [default: 100000]

The - - schedul i ng- quant um option controls the maximum number of basic blocks executed by a
thread before releasing the lock used by Valgrind to serialise thread execution. Smaller values give finer
interleaving but increases the scheduling overhead. Finer interleaving can be useful to reproduce race
conditions with helgrind or DRD. For more details about the Valgrind thread seriaisation scheme and its
impact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

--fair-sched=<no|yes|try> [defaul t: no]

The- - f ai r - sched option controls the locking mechanism used by Valgrind to serialise thread execution.
The locking mechanism controlsthe way the threads are scheduled, and different settings give different trade-
offs between fairness and performance. For more details about the Valgrind thread serialisation scheme and
itsimpact on performance and thread scheduling, see Scheduling and Multi-Thread Performance.

» Thevaue- -fair-sched=yes activatesafair scheduler. In short, if multiple threads are ready to run,
the threads will be scheduled in a round robin fashion. This mechanism is not available on al platforms
or Linux versions. If not available, using - - f ai r - sched=yes will cause Valgrind to terminate with
an error.

Y ou may find this setting improves overall responsivenessif you are running an interactive multithreaded
program, for example aweb browser, on Vagrind.

e Thevalue- -fai r-sched=t ry activatesfair scheduling if available on the platform. Otherwise, it will
automatically fall back to- - f ai r - sched=no.

» Thevaue- - f ai r - sched=no activates a scheduler which does not guarantee fairness between threads
ready to run, but which in general gives the highest performance.

--kernel -variant=variant1, variant?2,...

Handle system callsand ioctls arising from minor variants of the default kernel for this platform. Thisisuseful
for running on hacked kernels or with kernel modules which support nonstandard ioctls, for example. Use
with caution. If you don't understand what this option does then you almost certainly don't need it. Currently
known variants are;

» bproc: supportthesys_br oc system call on x86. Thisisfor running on BProc, which isaminor variant
of standard Linux which is sometimes used for building clusters.

e andr oi d- no- hwt | s: someversionsof the Android emulator for ARM do not provideahardware TLS
(thread-local state) register, and Valgrind crashes at startup. Use this variant to select software support for
TLS.

» andr oi d- gpu- sgx5xx: use this to support handling of proprietary ioctls for the PowerVR SGX 5XX
series of GPUs on Android devices. Failure to select this does not cause stability problems, but may cause
Memcheck to report false errors after the program performs GPU-specific ioctls.

e andr oi d- gpu- adr eno3xx: similarly, use this to support handling of proprietary ioctls for the
Qualcomm Adreno 3X X series of GPUs on Android devices.

--nerge-recursive-frames=<nunber> [defaul t: 0]
Some recursive algorithms, for example balanced binary tree implementations, create many different stack

traces, each containing cycles of calls. A cycleis defined as two identical program counter values separated

24

Using and understanding the Valgrind core

by zero or more other program counter values. Valgrind may then use alot of memory to store all these stack
traces. Thisisapoor use of memory considering that such stack traces contain repeated uninteresting recursive
callsinstead of more interesting information such as the function that hasinitiated the recursive call.

Theoption- - mer ge- r ecur si ve- f rames=<nunber > instructsValgrind to detect and mergerecursive
call cycles having a size of up to <numnber > frames. When such a cycle is detected, Valgrind records the
cyclein the stack trace as a unigque program counter.

The value O (the default) causes no recursive call merging. A value of 1 will cause stack traces of simple
recursive algorithms (for example, a factorial implementation) to be collapsed. A value of 2 will usually be
needed to collapse stack traces produced by recursive algorithms such as binary trees, quick sort, etc. Higher
values might be needed for more complex recursive algorithms.

Note: recursive calls are detected by analysis of program counter values. They are not detected by looking
at function names.

--numtranst ab- sect ors=<nunber> [default: 6 for Android platforns, 16 for
al | others]

Vagrind trandates and instruments your program's machine code in small fragments (basic blocks). The
trandations are stored in a trandation cache that is divided into a number of sections (sectors). If the
cache is full, the sector containing the oldest trandations is emptied and reused. If these old trandations
are needed again, Valgrind must re-translate and re-instrument the corresponding machine code, which is
expensive. If the "executed instructions' working set of a program is big, increasing the number of sectors
may improve performance by reducing the number of re-transl ations needed. Sectors are allocated on demand.
Once alocated, a sector can never be freed, and occupies considerable space, depending on the tool and the
value of - - avg-transt ab-entry-si ze (about 40 MB per sector for Memcheck). Use the option - -

st at s=yes toobtain preciseinformation about the memory used by asector and the allocation and recycling
of sectors.

--avg-transtab-entry-si ze=<nunber> [default: 0, neaning use tool provided
defaul t]

Average size of trandlated basic block. This average size is used to dimension the size of a sector. Each tool
providesadefault valueto be used. If thisdefault valueistoo small, the trand ation sectorswill becomefull too
quickly. If thisdefault valueistoo big, asignificant part of the trand ation sector memory will be unused. Note
that the average size of a basic block translation depends on the tool, and might depend on tool options. For
example, the memcheck option - - t r ack- or i gi ns=yes increasesthe size of the basic block trandlations.
Use--avg-transtab-entry-si ze to tune the size of the sectors, either to gain memory or to avoid
too many retranslations.

- -aspace- m naddr =<address> [defaul t: depends on the platforni

To avoid potentia conflicts with some system libraries, Valgrind does not use the address space below - -

aspace- m naddr value, keeping it reserved in case alibrary specifically requests memory in this region.
So, some "pessimistic” valueisguessed by Valgrind depending on the platform. On linux, by default, Vagrind
avoids using the first 64MB even if typicaly there is no conflict in this complete zone. You can use the
option - - aspace- m naddr to have your memory hungry application benefitting from more of this lower
memory. On the other hand, if you encounter a conflict, increasing aspace-minaddr value might solve it.
Conflicts will typically manifest themselves with mmap failures in the low range of the address space. The
provided addr ess must be page aligned and must be equal or bigger to 0x1000 (4KB). To find the default
value on your platform, do somethingsuchasval grind -d -d date 2>&1 | grep -i mi naddr.
Values lower than 0x10000 (64K B) are known to create problems on some distributions.

--val gri nd- st acksi ze=<nunber > [defaul t: 1MB]
For each thread, Valgrind needsitsown 'private' stack. The default sizefor these stacksislargely dimensioned,

and so should be sufficient in most cases. In case the size is too small, Valgrind will segfault. Before
segfaulting, awarning might be produced by Valgrind when approaching the limit.

25

Using and understanding the Valgrind core

Usetheoption- - val gri nd- st acksi ze if suchan (unlikely) warning isproduced, or Valgrind diesdueto
asegmentation violation. Such segmentation violations have been seen when demangling huge C++ symbols.

If your application uses many threads and needs a lot of memory, you can gain some memory by reducing
the size of these Valgrind stacks using the option - - val gr i nd- st acksi ze.

- - show emnar ns=<yes| no> [defaul t: no]

When enabled, Valgrind will emit warnings about its CPU emulation in certain cases. These are usually not
interesting.

--require-text-symbol =: sonanepatt: f nnamepatt

When a shared object whose soname matches sonanepat t isloaded into the process, examine all the text
symbols it exports. If none of those match f nnanmepat t , print an error message and abandon the run. This
makes it possible to ensure that the run does not continue unless a given shared object contains a particular
function name.

Both sonanmepatt and f nnanepatt can be written using the usual ? and * wildcards. For example:
":*libc.so*:foo?bar". You may use characters other than a colon to separate the two patterns. It
is only important that the first character and the separator character are the same. For example, the above
example could also bewritten" QI i bc. so* ¥ oo?bar " . Multiple - -requi re-text-synbol flags
are allowed, in which case shared objects that are loaded into the process will be checked against al of them.

The purpose of this is to support reliable usage of marked-up libraries. For example, suppose we have a
version of GCC's| i bgonp. so which has been marked up with annotations to support Helgrind. It is only
too easy and confusing to load thewrong, un-annotated | i bgonp. so into the application. Sotheideais: add
a text symbol in the marked-up library, for example annot at ed_f or _hel gri nd_3_6, and then give
theflag- - requi re-t ext - synbol =: *1 i bgonp*so*: annot at ed_f or _hel gri nd_3_6 sothat
when | i bgonp. so isloaded, Valgrind scans its symbol table, and if the symbol isn't present the run is
aborted, rather than continuing silently with the un-marked-up library. Note that you should put the entireflag
in quotes to stop shells expanding up the* and ? wildcards.

--soname- synonynms=synl=patternl, syn2=pattern2, ...

When ashared library isloaded, Valgrind checksfor functionsin thelibrary that must be replaced or wrapped.
For example, Memcheck replaces some string and memory functions (strchr, strlen, strcpy, memchr, memcpy,
memmove, etc.) with its own versions. Such replacements are normally done only in shared libraries whose
soname matches a predefined soname pattern (e.g. | i bc. so* onlinux). By default, no replacement is done
for astatically linked binary or for alternativelibraries, except for the allocation functions (malloc, free, calloc,
memalign, realloc, operator new, operator delete, etc.) Such allocation functions are intercepted by default in
any shared library or in the executableif they are exported as global symbols. Thismeansthat if areplacement
allocation library such as tcmalloc is found, its functions are also intercepted by default. In some cases, the
replacementsallow - - sonane- synonymns to specify one additional synonym pattern, giving flexibility in
the replacement. Or to prevent interception of al public allocation symbols.

Currently, this flexibility is only allowed for the malloc related functions, using the synonym somal | oc.
This synonym is usable for all tools doing standard replacement of malloc related functions (e.g. memcheck,
helgrind, drd, massif, dhat).

» Alternate malloc library: to replace the malloc related functions in a specific alternate library
with soname mymall oclib.so (and not in any others), give the option --sonane-
synonyns=somal | oc=mymal | ocl i b. so.A pattern can be used to match multiplelibraries sonames.
For example, - - sonane- synonynms=somal | oc=*t crmal | oc* will match the soname of al variants
of the tcmalloc library (native, debug, profiled, ... tcmalloc variants).

Note: the soname of a elf shared library can be retrieved using the readelf utility.

* Replacementsin a statically linked library are done by using the NONE pattern. For example, if you link
with | i bt cmal | oc. a, and only want to intercept the malloc related functions in the executable (and

26

Using and understanding the Valgrind core

standard libraries) themselves, but not any other shared libraries, you can give the option - - sonane-
synonyns=somnmal | oc=NONE. Notethat aNONE pattern will match the main executable and any shared

library having no soname.

» Toonly intercept allocation symbols in the default system libraries, but not in any other shared library or
the executable defining public malloc or operator new related functions use a non-existing library name
like - - soname- synonyns=somal | oc=nouseri nt er cept s (where nouseri ntercepts can

be any non-existing library name).

» Shared library of the dynamic (runtime) linker is excluded from searching for global public symbols, such

asthose for the malloc related functions (identified by soral | oc synonym).
--progress-interval =<nunber> [default: 0, meaning 'disabled]

Thisis an enhancement to Valgrind's debugging output. It is unlikely to be of interest to end users.

When nunber is set to a non-zero value, Valgrind will print a one-line progress summary every nunber
seconds. Valid settings for nunber are between 0 and 3600 inclusive. Here's some example output with

nunber setto 10:

PROGRESS: U 110s, W113s, 97.3% CPU, EvC 414.79M TIn 616. 7k, TCQut 0.5k, #thr
PROGRESS: U 120s, W124s, 96.8% CPU, EvC 505.27M TIn 636. 6k, TCQut 3.0k, #thr
PROGRESS: U 130s, W134s, 97.0% CPU, EvC 574.90M TIn 657.5k, TCQut 3.0k, #thr

Each line shows:
e U: total user time
» W tota wallclock time

» CPU: overal average cpu use

» EvC. number of event checks. An event check is a backwards branch in the simulated program, so thisis

ameasure of forward progress of the program
* Tl n: number of code blocks instrumented by the JI T
e TQut : number of instrumented code blocks that have been thrown away

 #t hr : number of threads in the program
From the progress of these, it is possible to observe:

» when the program is compute bound (TI n rises dowly, EvCrisesrapidly)
» when the programisin aspinloop (Tl n/TQut fixed, EvCrisesrapidly)
» when the program is JI T-bound (TI n rises rapidly)

» when the program is rapidly discarding code (TQut risesrapidly)

» when the program is about to achieve some expected state (Ev C arrives at some value you expect)

» when the program isidling (U rises more slowly than W

2.7.6. Debugging Options

There are also some options for debugging Valgrind itself. Y ou shouldn't need to use them in the normal run of

things. If you wish to seethellist, usethe - - hel p- debug option.

If you wish to debug your program rather than debugging Valgrind itself, then you should use the options - -

vgdb=yes or--vgdb=ful | .

27

67
64
63

Using and understanding the Valgrind core

2.7.7. Setting Default Options

Note that Valgrind also reads options from three places:
1. Thefile~/ . val grindrc

2. The environment variable $VALGRI ND_OPTS

3. Thefile./.val grindrc

These are processed in the given order, before the command-line options. Options processed later override
those processed earlier; for example, options in . /. val grindrc will take precedence over those in
~/ . val grindrc.

Please notethat the. / . val gri ndr c fileisignored if it isnot aregular file, or is marked as world writeable, or
is not owned by the current user. Thisis becausethe. /. val gri ndr ¢ can contain options that are potentially
harmful or can be used by alocal attacker to execute code under your user account.

Any tool-specific options put in $VALGRI ND_OPTS or the. val gri ndr c filesshould be prefixed with the tool
name and a colon. For example, if you want Memcheck to always do leak checking, you can put the following
entry in~/ . val gri ndrc:

--mentheck: | eak- check=yes

This will be ignored if any tool other than Memcheck is run. Without the mencheck: part, this will cause
problemsif you select other tools that don't understand - - | eak- check=yes.

2.7.8. Dynamically Changing Options

The value of some command line options can be changed dynamically while your program is running under
Vagrind.

The dynamically changeable options of the valgrind core and a given tool can be listed using option - - hel p-
dyn- opt i ons, for example:

$ valgrind --tool =mentheck --hel p-dyn-options
dynam cal | y changeabl e opti ons:
-v -q -d --stats --vgdb=no --vgdb=yes --vgdb=full --vgdb-poll --vgdb-error
--vgdb-stop-at --error-markers --showerror-list -s --show bel ow main
--tine-stanmp --trace-children --child-silent-after-fork --trace-sched

--trace-signals --trace-syntab --trace-cfi --debug-dunp=syms
- - debug- dunp=li ne --debug-dunp=frames --trace-redir --trace-syscalls
--symoffsets --progress-interval --merge-recursive-frames

--vex-iropt-verbosity --suppressions --trace-flags --trace-not bel ow
--trace-not above --profile-flags --gen-suppressi ons=no

- - gen-suppr essi ons=yes --gen-suppressions=all --errors-for-I|eak-Kkinds

- -show | eak- ki nds --1eak-check-heuristics --show reachabl e

--show possi bly-lost --freelist-vol --freelist-big-blocks --1eak-check=no
- -l eak- check=sunmary - -1 eak-check=yes --1|eak-check=full --ignore-ranges

--i gnore-range- bel owsp --show m smat ched-frees
val grind: Use --help for nore information.
$

The dynamic options can be changed the following ways:

1. From the shell, using vgdb and the monitor command v. cl o:

28

Using and understanding the Valgrind core

$ vgdb "v.clo --trace-children=yes --child-silent-after-fork=no"
sendi ng command v.clo --trace-children=yes --child-silent-after-fork=no to pid 4404
$

Note: you must use doubl e quotes around the monitor command to avoid vgdb interpreting the valgrind options
asits own options.

2. From gdb, using the monitor command v. cl o:

(gdb) nmonitor v.clo --trace-children=yes --child-silent-after-fork=no
(gdb)

3. From your program, using the client request VALGRI ND_CLO_CHANGE(opt i on) :

VALGRI ND_CLO CHANGE ("--trace-children=yes");
VALGRI ND_ CLO CHANGE ("--child-silent-after-fork=no");

Dynamically changeable options can be used in various circumstances, such as changing the valgrind behaviour
during execution, loading suppression files as part of shared library initialisation, change or set valgrind options
in child processes, ...

2.8. Support for Threads

Threaded programs are fully supported.

The main thing to point out with respect to threaded programs is that your program will use the native threading
library, but VVa grind serialises execution so that only one (kernel) thread isrunning at atime. Thisapproach avoids
the horrible implementation problems of implementing atruly multithreaded version of Valgrind, but it does mean
that threaded apps never use more than one CPU simultaneously, even if you have a multiprocessor or multicore
machine.

Valgrind doesn't schedule the threads itself. It merely ensures that only one thread runs at once, using a simple
locking scheme. Theactual thread scheduling remains under control of the OSkernel. What thisdoes mean, though,
isthat your program will see very different scheduling when run on Valgrind than it does when running normally.
Thisis both because Valgrind is serialising the threads, and because the code runs so much slower than normal.

Thisdifferencein scheduling may causeyour program to behavedifferently, if you have somekind of concurrency,
critical race, locking, or similar, bugs. In that case you might consider using the tools Helgrind and/or DRD to
track them down.

On Linux, Valgrind also supports direct use of the cl one system call, f ut ex and so on. cl one is supported
where either everything is shared (athread) or nothing is shared (fork-like); partial sharing will fail.

2.8.1. Scheduling and Multi-Thread Performance

A thread executes code only when it holds the abovementioned lock. After executing some number of instructions,
the running thread will release the lock. All threads ready to run will then compete to acquire the lock.

The- - f ai r - sched option controls the locking mechanism used to serialise thread execution.

The default pipe based locking mechanism (- - f ai r - sched=no) is available on al platforms. Pipe based
locking does not guarantee fairness between threads: it is quite likely that a thread that has just released the lock
reacquires it immediately, even though other threads are ready to run. When using pipe based locking, different
runs of the same multithreaded application might give very different thread scheduling.

An dternative locking mechanism, based on futexes, is available on some platforms. If available, it is
activated by - - f ai r- sched=yes or - -f ai r- sched=t ry. Futex based locking ensures fairness (round-
robin scheduling) between threads: if multiple threads are ready to run, the lock will be given to the thread which

29

Using and understanding the Valgrind core

first requested the lock. Note that a thread which is blocked in a system call (e.g. in ablocking read system call)
has not (yet) requested the lock: such athread requests the lock only after the system call is finished.

Thefairnessof the futex based locking produces better reproducibility of thread scheduling for different executions
of amultithreaded application. This better reproducibility is particularly helpful when using Helgrind or DRD.

Vagrind's use of thread serialisation impliesthat only one thread at atime may run. On amulti processor/multicore
system, the running thread is assigned to one of the CPUs by the OS kernel scheduler. When athread acquiresthe
lock, sometimes the thread will be assigned to the same CPU as the thread that just released the lock. Sometimes,
the thread will be assigned to another CPU. When using pipe based locking, the thread that just acquired the
lock will usually be scheduled on the same CPU as the thread that just released the lock. With the futex based
mechanism, the thread that just acquired the lock will more often be scheduled on another CPU.

Valgrind's thread serialisation and CPU assignment by the OS kernel scheduler can interact badly with the CPU
frequency scaling available on many modern CPUs. To decrease power consumption, the frequency of a CPU
or coreis automatically decreased if the CPU/core has not been used recently. If the OS kernel often assigns the
thread which just acquired the lock to another CPU/core, it is quite likely that this CPU/coreis currently at alow
frequency. The frequency of this CPU will be increased after some time. However, during this time, the (only)
running thread will have run at the low frequency. Once this thread has run for some time, it will release the lock.
Another thread will acquire this lock, and might be scheduled again on another CPU whose clock frequency was
decreased in the meantime.

The futex based locking causes threads to change CPUs/cores more often. So, if CPU frequency scaling is
activated, the futex based locking might decrease significantly the performance of a multithreaded app running
under Valgrind. Performance losses of up to 50% degradation have been observed, as compared to running on a
machine for which CPU frequency scaling has been disabled. The pipe based | ocking locking scheme a so interacts
badly with CPU frequency scaling, with performance losses in the range 10..20% having been observed.

To avoid such performance degradation, you should indicate to the kernel that all CPUs/cores should always run
at maximum clock speed. Depending on your Linux distribution, CPU frequency scaling may be controlled using
agraphical interface or using command line such ascpuf r eq- sel ect or or cpufreq-set.

An aternative way to avoid these problemsisto tell the OS scheduler to tieaValgrind processto a specific (fixed)
CPU using thet askset command. This should ensure that the selected CPU does not fall below its maximum
frequency setting so long as any thread of the program has work to do.

2.9. Handling of Signals

Valgrind has a fairly complete signal implementation. It should be able to cope with any POSIX-compliant use
of signals.

If youre using signals in clever ways (for example, catching SIGSEGV, modifying page state and
restarting the instruction), you're probably relying on precise exceptions. In this case, you will
need to use --vex-iropt-register-updates=allregs-at-nmemaccess or --vex-iropt-
regi st er-updat es=al | regs- at - each-i nsn.

If your program dies as a result of a fatal core-dumping signal, Valgrind will generate its own core file
(vgcor e. NNNNN) containing your program's state. Y ou may use this core file for post-mortem debugging with
GDB or similar. (Note: it will not generate acoreif your core dump sizelimit is0.) At the time of writing the core
dumps do not include al the floating point register information.

In the unlikely event that VValgrind itself crashes, the operating system will create a core dump in the usual way.

2.10. Execution Trees

An execution tree (xtree) is made of a set of stack traces, each stack trace is associated with some resource
consumptions or event counts. Depending on the xtree, different event counts/resource consumptions can be
recorded in the xtree. Multiple tools can produce memory use xtree. Memcheck can output the leak search results
in an xtree.

30

Using and understanding the Valgrind core

A typical usage for an xtree is to show a graphical or textual representation of the heap usage of a program. The
below figure is a heap usage xtree graphical representation produced by kcachegrind. In the kcachegrind output,
you can see that main current heap usage (allocated indirectly) is 528 bytes : 388 bytes allocated indirectly viaa
call tofunctionfland 140 bytesindirectly allocated viaacall to functionf2. f2 hasallocated memory by calling g2,
while f1 has allocated memory by calling g11 and g12. g11, g12 and g2 have directly called amemory alocation
function (malloc), and so have a non zero 'Self' value. Note that when kcachegrind shows an xtree, the 'Called'
column and call nr indicationsin the Call Graph are not significant (always set to 0 or 1, independently of thereal
nr of calls. The kcachegrind versions >= 0.8.0 do not show anymore such irrelevant xtree call number information.

An xtree heap memory report is produced at the end of the execution when required using the option - - xt r ee-
menory. It can also be produced on demand using the xt menor y monitor command (see Valgrind monitor
commands). Currently, an xtree heap memory report can be produced by the mentheck, hel gri nd and
massi f tools.

Thextrees produced by the option --xtree-memory or thext menor y monitor command are showing thefollowing
events/resource consumption describing heap usage:

 cur B current number of Bytes allocated. The number of allocated bytes is added to the cur B value of a stack
trace for each alocation. It is decreased when a block alocated by this stack trace is released (by another
"freeing" stack trace)

e cur Bk current number of Blocks allocated, maintained similary to curB : +1 for each allocation, -1 when the
block is freed.

* t ot Btotal allocated Bytes. Thisisincreased for each allocation with the number of allocated bytes.
 t ot Bk total allocated Blocks, maintained similary to totB : +1 for each allocation.

» t ot FdB total Freed Bytes, increased each time a block is released by this ("freeing") stack trace : + nr freed
bytes for each free operation.

t ot FdBk total Freed Blocks, maintained similarly to totFdB : +1 for each free operation.

Note that the last 4 counts are produced only when the - - xt r ee- menor y=f ul | was given at startup.
Xtrees can be saved in 2 file formats, the "Callgrind Format" and the "Massif Format”.

 Cdlgrind Format

An xtree file in the Callgrind Format contains a single callgraph, associating each stack trace with the values
recorded in the xtree.

Different Callgrind Format file visualizers are available:

Valgrind distribution includesthe cal | gri nd_annot at e command line utility that reads in the xtree data,
and prints a sorted lists of functions, optionally with source annotation. Note that due to xtree specificities, you
must givethe option - - i ncl usi ve=yes to callgrind_annotate.

For graphical visualization of the data, you can use KCachegrind, which is a KDE/Qt based GUI that makes it
easy to navigate the large amount of data that an xtree can contain.

Note that xtree Callgrind Format does not make use of the inline information even when specifying - - r ead-
i nline-info=yes.

» Massif Format
An xtree file in the Massif Format contains one detailed tree callgraph data for each type of event recorded

in the xtree. So, for - - xt r ee- menor y=al | oc, the output file will contain 2 detailed trees (for the counts
cur Band cur Bk), while- - xt r ee- nenor y=f ul | will giveafilewith 6 detailed trees.

31

https://kcachegrind.github.io/html/Home.html

Using and understanding the Valgrind core

Different Massif Format file visualizers are available. Valgrind distribution includesthens_pr i nt command
line utility that produces an easy to read reprentation of a massif output file. See Using Massif and ms_print
and Using massif-visualizer for more details about visualising Massif Format output files.

Note that xtree Massif Format makes use of the inline information when specifying - - r ead-i nl i ne-
i nf o=yes.

Notethat for equivalent information, the Callgrind Format is more compact than the Massif Format. However, the
Callgrind Format always contains the full data: there is no filtering done during file production, filtering is done
by visualizers such as kcachegrind. kcachegrind is particularly easy to use to analyse big xtree data containing
multiple events counts or resources consumption. The Massif Format (optionally) only contains a part of the data.
For example, the Massif tool might filter some of the data, according to the- - t hr eshol d option.

To clarify the xtree concept, the below gives several extracts of the output produced by the following commands:
val grind --xtree-nmenory=full --xtree-nenory-file=xtnmenory.kcg nfg
call grind_annotate --auto=yes --inclusive=yes --sort=curB: 100, cur Bk: 100, t ot B: 100, t ot BK: .

The below extract shows that the program mfg has allocated in total 770 bytesin 60 different blocks. Of these 60
blocks, 19 were freed, releasing atotal of 242 bytes. The heap currently contains 528 bytesin 41 blocks.

528 41 770 60 242 19 PROGRAM TOTALS
The below gives more details about which functions have allocated or released memory. As an example, we see
that main has (directly or indirectly) allocated 770 bytes of memory and freed (directly or indirectly) 242 bytes

of memory. The function f1 has (directly or indirectly) allocated 570 bytes of memory, and has not (directly or
indirectly) freed memory. Of the 570 bytes allocated by function f1, 388 bytes (34 blocks) have not been rel eased.

528 41 770 60 242 19 nfg.c:main
388 34 570 50 0 0 nfg.c:f1l
220 20 330 30 0 0 nfg.c:gl1
168 14 240 20 0 0 nfg.c:gl2
140 7 200 10 0 0 nfg.c:g2
140 7 200 10 0 0 nfg.c:f2

0 0 0 0 131 10 nfg.c:freeY

0 0 0 0 111 9 nfg.c:freeX

The below gives a more detailed information about the callgraph and which source lines/calls have (directly
or indirectly) alocated or released memory. The below shows that the 770 bytes alocated by main have been
indirectly allocated by callsto f1 and f2. Similarly, we see that the 570 bytes allocated by f1 have been indirectly
allocated by callsto g11 and g12. Of the 330 bytes alocated by the 30 callsto g11, 168 bytes have not been freed.
The function freeY (called once by main) has released in total 10 blocks and 131 bytes.

-- Aut o-annot at ed source: /hone/philippe/valgrind/littleprogs/ + nfg.c

curB curBk totB totBk totFdB tot FdBk

32

Using and understanding the Valgrind core

static void freeY(void)

{ . .
int i;
for (i = 0; I < next_ptr; i++)
. if(i %5 == 0 & ptrs[i] !'= NULL)
0 0 0 0 131 10 free(ptrs[i]);
: }
static void f1(void)
{ . .
int i;
. for (i =0; i < 30; i++)
220 20 330 30 0 0 g11();
. for (i =0; i < 20; i++)
168 14 240 20 0 0 012();
}
int main()
. o
388 34 570 50 0 0 f1();
140 7 200 10 0 0 f2();
0 0 0 0 111 9 freeX();
0 0 0 0 131 10 freeY();
return O;
}

Heap memory xtrees are helping to understand how your (big) program is using the heap. A full heap memory
xtree helps to pin point some code that allocates a lot of small objects : allocating such small objects might be
replaced by more efficient technique, such as allocating a big block using malloc, and then diviving thisblock into
smaller blocks in order to decrease the cpu and/or memory overhead of alocating alot of small blocks. Such full
xtree information complements e.g. what callgrind can show: callgrind can show the number of callsto afunction
(such as malloc) but does not indicate the volume of memory allocated (or freed).

A full heap memory xtree also can identify the code that allocates and freesalot of blocks : the total foot print of
the program might not reflect the fact that the same memory was over and over allocated then released.

Finally, Xtree visualizers such as kcachegrind are hel ping to identify big memory consumers, in order to possibly
optimise the amount of memory needed by your program.

2.11. Building and Installing Valgrind

Weusethestandard Unix . / conf i gur e, make, make i nst al | mechanism. Onceyou have completed nake
i nstal | youmay then want to run the regression testswith make regt est.

In addition to the usua - - prefi x=/path/to/install/tree, there are three options which affect how
Valgrind is built:

e --enabl e-i nner

This builds Valgrind with some special magic hacks which make it possible to run it on a standard build of
Valgrind (what the developers call "self-hosting"). Ordinarily you should not use this option as various kinds
of safety checks are disabled.

e --enabl e-onl y64bi t
--enabl e-onl y32bi t

On 64-bit platforms (amd64-linux, ppc64-linux, amd64-darwin), Vagrind is by default built in such away that
both 32-bit and 64-bit executables can be run. Sometimes this cleverness is a problem for a variety of reasons.
These two options alow for single-target builds in this situation. If you issue both, the configure script will
complain. Note they are ignored on 32-bit-only platforms (x86-linux, ppc32-linux, arm-linux, x86-darwin).

33

Using and understanding the Valgrind core

Theconf i gur e script tests the version of the X server currently indicated by the current $DI SPLAY. Thisisa
known bug. The intention was to detect the version of the current X client libraries, so that correct suppressions
could be selected for them, but instead the test checks the server version. Thisisjust plain wrong.

If you are building a binary package of Valgrind for distribution, please read READNVE PACKAGERS Readme
Packagers. It contains some important information.

Apart from that, there's not much excitement here. Let us know if you have build problems.

2.12. If You Have Problems

Contact us at http://www.valgrind.org/.

SeeLimitationsfor the known limitations of Valgrind, and for alist of programswhich areknown not to work oniit.

All parts of the system make heavy use of assertions and internal self-checks. They are permanently enabled, and
we have no plans to disable them. If one of them breaks, please mail us!

If you get an assertion failureinm _mal | ocf r ee. ¢, thismay have happened because your program wrote off the
end of aheap block, or before its beginning, thus corrupting heap metadata. Vagrind hopefully will have emitted
amessage to that effect before dying in thisway.

Read the Valgrind FAQ for more advice about common problems, crashes, etc.

2.13. Limitations

Thefollowing list of limitations seems long. However, most programs actually work fine.

Vagrind will run programs on the supported platforms subject to the following constraints:

On Linux, Valgrind determines at startup the size of the 'brk segment’ using the RLIMIT_DATA rlim_cur,
with aminimum of 1 MB and a maximum of 8 MB. Valgrind outputs a message each time a program tries to
extend the brk segment beyond the size determined at startup. Most programswill work properly with thislimit,
typically by switching to the use of mmap to get more memory. If your program really needs a big brk segment,
you must change the 8 MB hardcoded limit and recompile Valgrind.

On x86 and amd64, there is no support for 3DNow! instructions. If the translator encounters these, Valgrind
will generate a SIGILL when the instruction is executed. Apart from that, on x86 and amd64, essentially all
instructions are supported, up to and including AV X and AES in 64-bit mode and SSSE3 in 32-bit mode. 32-
bit mode does in fact support the bare minimum SSE4 instructions needed to run programs on MacOSX 10.6
on 32-bit targets.

On ppc32 and ppc64, almost all integer, floating point and Altivec instructions are supported. Specifically:
integer and FP insns that are mandatory for PowerPC, the "General-purpose optiona" group (fsgrt, fsgrts,
stfiwx), the "Graphics optional” group (fre, fres, frsgrte, frsgrtes), and the Altivec (also known asVMX) SIMD
instruction set, are supported. Also, instructions from the Power | SA 2.05 specification, as present in POWERG
CPUs, are supported.

On ARM, essentially the entire ARMV7-A instruction set is supported, in both ARM and Thumb mode.
ThumbEE and Jazelle are not supported. NEON, VFPv3 and ARMv6 media support is fairly complete.

If your program does its own memory management, rather than using malloc/new/free/delete, it should
still work, but Memcheck's error checking won't be so effective. If you describe your program's memory
management scheme using "client requests' (see The Client Request mechanism), Memcheck can do better.
Nevertheless, using malloc/new and free/delete is still the best approach.

Valgrind's signal simulation is not as robust asit could be. Basic POSIX-compliant sigaction and sigprocmask
functionality issupplied, but it's conceivable that things could go badly awry if you do weird thingswith signals.

34

http://www.valgrind.org/

Using and understanding the Valgrind core

Workaround: don't. Programs that do non-POSIX signal tricks arein any case inherently unportable, so should
be avoided if possible.

Machineinstructions, and system calls, have been implemented on demand. So it's possible, although unlikely,
that a program will fall over with a message to that effect. If this happens, please report al the details printed
out, so we can try and implement the missing feature.

Memory consumption of your program is majorly increased whilst running under Valgrind's Memcheck tool.
This is due to the large amount of administrative information maintained behind the scenes. Another causeis
that Valgrind dynamically translatesthe original executable. Translated, instrumented codeis12-18 timeslarger
than the original so you can easily end up with 150+ MB of trandations when running (eg) aweb browser.

Valgrind can handle dynamically-generated code just fine. If you regenerate code over the top of old code (ie.
at the same memory addresses), if the code is on the stack Valgrind will realise the code has changed, and
work correctly. Thisis necessary to handle the trampolines GCC uses to implemented nested functions. If you
regenerate code somewhere other than the stack, and you are running on an 32- or 64-bit x86 CPU, you will
need to usethe - - snt- check=al | option, and Valgrind will run more slowly than normal. Or you can add
client requests that tell Valgrind when your program has overwritten code.

On other platforms (ARM, PowerPC) Valgrind observes and honoursthe cacheinvalidation hintsthat programs
are obliged to emit to notify new code, and so self-modifying-code support should work automatically, without
the need for - - snt- check=al | .

Valgrind hasthe following limitationsin itsimplementation of x86/AM D64 floating point relative to |IEEE754.

Precision: There is no support for 80 bit arithmetic. Internally, Valgrind represents all such "long double"
numbers in 64 bits, and so there may be some differences in results. Whether or not thisis critical remains to
be seen. Note, the x86/amd64 fldt/fstpt instructions (read/write 80-bit numbers) are correctly simulated, using
conversions to/from 64 bits, so that in-memory images of 80-bit numberslook correct if anyone wants to see.

The impression observed from many FP regression tests is that the accuracy differences aren't significant.
Generally speaking, if aprogram relieson 80-bit precision, there may be difficulties porting it to non x86/amd64
platforms which only support 64-bit FP precision. Even on x86/amd64, the program may get different results
depending on whether it is compiled to use SSE2 instructions (64-hits only), or x87 instructions (80-hit). The
net effect is to make FP programs behave as if they had been run on a machine with 64-bit IEEE floats, for
example PowerPC. On amd64 FP arithmetic is done by default on SSE2, so amd64 |ooks more like PowerPC
than x86 from an FP perspective, and there are far fewer noticeable accuracy differences than with x86.

Rounding: Valgrind does observe the 4 IEEE-mandated rounding modes (to nearest, to +infinity, to -infinity,
to zero) for the following conversions:. float to integer, integer to float where there is a possibility of loss of
precision, and float-to-float rounding. For all other FP operations, only the |EEE default mode (round to nearest)
is supported.

Numeric exceptions in FP code: IEEE754 defines five types of numeric exception that can happen: invalid
operation (sgrt of negative number, etc), division by zero, overflow, underflow, inexact (loss of precision).

For each exception, two courses of action are defined by |IEEE754: either (1) a user-defined exception handler
may be called, or (2) adefault action is defined, which "fixes things up" and allows the computation to proceed
without throwing an exception.

Currently Valgrind only supports the default fixup actions. Again, feedback on the importance of exception
support would be appreciated.

When Valgrind detects that the program istrying to exceed any of these limitations (setting exception handlers,
rounding mode, or precision control), it can print amessage giving atraceback of where this has happened, and
continue execution. This behaviour used to be the default, but the messages are annoying and so showing them
isnow disabled by default. Use - - show emwar ns=yes to see them.

The above limitations define precisely the IEEE754 'default’ behaviour: default fixup on all exceptions, round-
to-nearest operations, and 64-bit precision.

35

Using and understanding the Valgrind core

 Valgrind has the following limitations in its implementation of x86/AMD64 SSE2 FP arithmetic, relative to
|IEEE754.

Essentialy the same: no exceptions, and limited observance of rounding mode. Also, SSE2 has control bits
which make it treat denormalised numbers as zero (DAZ) and arelated action, flush denormals to zero (FTZ).
Both of these cause SSE2 arithmetic to be less accurate than | EEE requires. Valgrind detects, ignores, and can
warn about, attempts to enable either mode.

 Valgrind has the following limitations in itsimplementation of ARM VFPv3 arithmetic, relative to IEEE754.

Essentialy the same: no exceptions, and limited observance of rounding mode. Also, switching the VFP unit
into vector mode will cause Valgrind to abort the program -- it has no way to emulate vector uses of VFP at
a reasonable performance level. Thisis no big deal given that non-scalar uses of VFP instructions are in any
case deprecated.

» Valgrind has the following limitations in its implementation of PPC32 and PPC64 floating point arithmetic,
relativeto IEEE754.

Scalar (non-Altivec): Valgrind provides a bit-exact emulation of all floating point instructions, except for "fre"
and "fres', which are done more precisely than required by the PowerPC architecture specification. All floating
point operations observe the current rounding mode.

However, fpscr[FPRF] is not set after each operation. That could be done but would give measurable
performance overheads, and so far no need for it has been found.

Ason x86/AMD64, |EEE754 exceptions are not supported: all floating point exceptions are handled using the
default |EEE fixup actions. Valgrind detects, ignores, and can warn about, attempts to unmask the 5 IEEE FP
exception kinds by writing to the floating-point status and control register (fpscr).

Vector (Altivec, VMX): essentially as with x86/AMD64 SSE/SSE2: no exceptions, and limited observance of
rounding mode. For Altivec, FP arithmetic is done in | EEE/Java mode, which is more accurate than the Linux
default setting. "More accurate” means that denormals are handled properly, rather than simply being flushed
to zero.

Programs which are known not to work are:

» emacs starts up but immediately concludes it is out of memory and aborts. It may be that Memcheck does
not provide a good enough emulation of the mal | i nf o function. Emacs works fine if you build it to use the
standard malloc/free routines.

2.14. An Example Run

Thisisthelog for arun of asmall program using Memcheck. The programisin fact correct, and the reported error
isastheresult of a potentially serious code generation bug in GNU g++ (snapshot 20010527).

sewar dj @hoeni x: ~/ newrat 10$ ~/ Val gri nd-6/val grind -v ./bogon
==25832== Val grind 0.10, a nenory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000-2001, and GNU GPL'd, by Julian Seward.
==25832== Startup, with flags:

==25832== - - suppr essi ons=/ hone/ sewar dj / Val gri nd/ redhat 71. supp
==25832== reading syms from/lib/ld-Iinux.so.2

==25832== reading syns from/lib/libc.so.6

==25832== readi ng syns from/mt/pima/jrs/Inst/lib/libgcc_s.so0.0
==25832== reading syns from/lib/libmso.6

==25832== reading syms from/mt/pinma/jrs/Inst/lib/libstdc++.so.3
==25832== readi ng synms from/hone/sewardj/Val grind/val grind. so
==25832== readi ng syns from/proc/sel f/exe

==25832==

36

Using and understanding the Valgrind core

==25832== I nvalid read of size 4

==25832== at 0x8048724: BandMatri x::ReSize(int,int,int) (bogon.cpp:45)
==25832== by 0x80487AF: mai n (bogon. cpp: 66)

==25832==Address OxBFFFF74C is not stack'd, nmalloc'd or free'd
==25832==

==25832== ERROR SUMVARY: 1 errors from1l contexts (suppressed: 0 from 0)
==25832== mal |l oc/free: in use at exit: O bytes in O bl ocks.

==25832== mal l oc/free: 0 allocs, O frees, 0O bytes all ocated.

==25832== For a detailed |eak analysis, rerun with: --I|eak-check=yes

The GCC folks fixed this about a week before GCC 3.0 shipped.

2.15. Warning Messages You Might See

Some of these only appear if you run in verbose mode (enabled by - v):

More than 100 errors detected. Subsequent errors will still be recorded,
but in less detail than before.

After 100 different errors have been shown, Valgrind becomes more conservative about collecting them. It then
requires only the program counters in the top two stack frames to match when deciding whether or not two
errors are really the same one. Prior to this point, the PCs in the top four frames are required to match. This
hack has the effect of slowing down the appearance of new errors after the first 100. The 100 constant can be
changed by recompiling Valgrind.

More than 1000 errors detected. |'m not reporting any nore. Final error
counts may be inaccurate. Go fix your program

After 1000 different errors have been detected, Valgrind ignores any more. It seems unlikely that collecting
even more different ones would be of practical help to anybody, and it avoids the danger that Valgrind spends
more and more of itstime comparing new errors against an ever-growing collection. Asabove, the 1000 number
is a compile-time constant.

Warni ng: client swtching stacks?

Valgrind spotted such a large change in the stack pointer that it guesses the client is switching to a different
stack. At this point it makes a kludgey guess where the base of the new stack is, and sets memory permissions
accordingly. At the moment "large change" is defined as a change of more that 2000000 in the value of the
stack pointer register. If Valgrind guesses wrong, you may get many bogus error messages following this and/
or have crashesin the stack trace recording code. Y ou might avoid these problems by informing Valgrind about
the stack bounds using VALGRIND_STACK_REGISTER client request.

Warning: client attenpted to close Valgrind's logfile fd <nunber>

Valgrind doesn't allow the client to close the logfile, because you'd never see any diagnostic information after
that point. If you see this message, you may want to use the - - | og- f d=<nunber > option to specify a
different logfile file-descriptor number.

War ni ng: noted but unhandl ed ioctl <nunber>

Valgrind observed acall to one of thevast family of i oct | system calls, but did not modify its memory status
info (because nobody has yet written a suitable wrapper). The call will still have gone through, but you may get
spurious errors after this as aresult of the non-update of the memory info.

Warni ng: set address range perns: |arge range <numnber>

Diagnostic message, mostly for benefit of the Valgrind devel opers, to do with memory permissions.

37

3. Using and understanding the
Valgrind core: Advanced Topics

This chapter describes advanced aspects of the Valgrind core services, which are mostly of interest to power users
who wish to customise and modify Valgrind's default behavioursin certain useful ways. The subjects covered are:

e The"Client Request" mechanism
» Debugging your program using Valgrind's gdbserver and GDB

» Function Wrapping

3.1. The Client Request mechanism

Vagrind has a trapdoor mechanism via which the client program can pass all manner of requests and queries to
Vagrind and the current tool. Internally, thisis used extensively to make various things work, although that's not
visible from the outside.

For your convenience, a subset of these so-called client requests is provided to allow you to tell Valgrind facts
about the behaviour of your program, and also to make queries. In particular, your program can tell Valgrind about
things that it otherwise would not know, leading to better results.

Clients need to include a header file to make this work. Which header file depends on which client requests you
use. Some client requests are handled by the core, and are defined in the header fileval gri nd/ val gri nd. h.
Tool-specific header files are named after thetool, e.g. val gri nd/ mencheck. h. Each tool-specific header file
includesval gri nd/ val gri nd. h so you don't need to include it in your client if you include a tool-specific
header. All header files can befoundinthei ncl ude/ val gri nd directory of wherever Vagrind wasinstalled.

The macros in these header files have the magical property that they generate code in-line which Valgrind can
spot. However, the code does nothing when not run on Valgrind, so you are not forced to run your program under
Valgrind just because you use the macros in this file. Also, you are not required to link your program with any
extra supporting libraries.

The code added to your binary has negligible performance impact: on x86, amd64, ppc32, ppc64 and ARM, the
overhead is 6 simpleinteger instructions and is probably undetectable except in tight loops. However, if you really
wish to compile out the client requests, you can compile with - DNVALGRI ND (anal ogous to - DNDEBUGS effect
onassert).

Y ou are encouraged to copy theval gri nd/ *. h headersinto your project's include directory, so your program
doesn't have acompile-time dependency on Valgrind being installed. The Valgrind headers, unlike most of the rest
of thecode, areunder aBSD-stylelicense so you may include them without worrying about licenseincompatibility.

Hereisabrief description of the macrosavailableinval gri nd. h, which work with more than onetool (seethe
tool-specific documentation for explanations of the tool-specific macros).

RUNNI NG_ON_VALGRI ND:

Returns 1 if running on Valgrind, O if running on the real CPU. If you are running Valgrind on itself, returns
the number of layers of Valgrind emulation you're running on.

VALGRI ND_DI SCARD_TRANSLATI ONS:

Discards trandations of code in the specified address range. Useful if you are debugging a JIT compiler
or some other dynamic code generation system. After this call, attempts to execute code in the invalidated
address range will cause Valgrind to make new translations of that code, which is probably the semanticsyou
want. Note that code invalidations are expensive because finding al the relevant translations quickly is very

38

Using and understanding the Valgrind core: Advanced Topics

difficult, so try not to call it often. Note that you can be clever about this: you only need to call it when an
areawhich previously contained code is overwritten with new code. Y ou can choose to write code into fresh
memory, and just call this occasionally to discard large chunks of old code all at once.

Alternatively, for transparent self-modifying-code support, use- - snt- check=al | , or runon ppc32/Linux,
ppc64/Linux or ARM/Linux.

VALGRI ND_COUNT_ERRCRS:

Returns the number of errors found so far by Valgrind. Can be useful in test harness code when combined
with the - - | og- f d=- 1 option; this runs Valgrind silently, but the client program can detect when errors
occur. Only useful for toolsthat report errors, e.g. it'suseful for Memcheck, but for Cachegrind it will always
return zero because Cachegrind doesn't report errors.

VALGRI ND_MALLOCLI KE_BLOCK:

If your program manages its own memory instead of using the standard mal | oc / new/ new], tools that
track information about heap blocks will not do nearly as good a job. For example, Memcheck won't detect
nearly as many errors, and the error messages won't be as informative. To improve this situation, use this
macro just after your custom allocator allocates some new memory. See the commentsinval gri nd. h for
information on how to useit.

VALGRI ND_FREELI| KE_BLOCK:

This should be used in conjunction with VALGRI ND_MALLOCLI KE_BLOCK. Again, seeval gri nd. h for
information on how to useit.

VALGRI ND_RESI ZEI NPLACE_BLOCK:

Informs a Valgrind tool that the size of an alocated block has been modified but not its address. See
val gri nd. h for moreinformation on how to useit.

VALGRI ND_CREATE_MEMPOOL, VALGRI ND_DESTROY_MEMPOOL, VALGRI ND_MEMPOOL_ALLCC,
VALGRI ND_MEMPOOL _FREE, VALGRI ND_MOVE_MEMPOQL, VALGRI ND_MEMPOOL _ CHANGE,
VALGRI ND_MEMPOOL_EXI STS:

These are similar to VALGRI ND_MALLCCLI KE_BLOCK and VALGRI ND_FREEL| KE_BLOCK but are
tailored towards code that uses memory pools. See Memory Pools for a detailed description.

VALGRI ND_NON_SI MD_CALL[0123]:

Executes a function in the client program on the real CPU, not the virtual CPU that VValgrind normally runs
code on. The function must take an integer (holding athread ID) as the first argument and then O, 1, 2 or 3
more arguments (depending on which client request is used). These are used in various ways internally to
Valgrind. They might be useful to client programs.

Warning: Only usethese if you really know what you are doing. They aren't entirely reliable, and can cause
Vagrind to crash. Seeval gri nd. h for more details.

VALGRI ND_PRI NTF(format, ...):

Print a printf-style message to the Valgrind log file. The message is prefixed with the PID between a pair of
** markers. (Like all client requests, nothing is output if the client program is not running under Valgrind.)
Output is not produced until a newline is encountered, or subsequent Valgrind output is printed; this allows
you to build up asingle line of output over multiple calls. Returns the number of characters output, excluding
the PID prefix.

VALGRI ND_PRI NTF_BACKTRACE(f or mat, ...):

Like VALGRI ND_PRI NTF (in particular, the return value is identical), but prints a stack backtrace
immediately afterwards.

39

Using and understanding the Valgrind core: Advanced Topics

VALGRI ND_MONI TOR_COMMAND(conmand) :

Execute the given monitor command (a string). Returns 0 if command is recognised. Returns 1 if command
is not recognised. Note that some monitor commands provide access to a functionality also accessible viaa
specific client request. For example, memcheck leak search can be requested from the client program using
VALGRIND DO _LEAK_CHECK or viathe monitor command "leak_search”. Note that the syntax of the
command string is only verified at run-time. So, if it exists, it is preferable to use a specific client request to
have better compile time verifications of the arguments.

VALGRI ND_CLO_CHANGE(opti on):
Changes the value of a dynamically changeable option (astring). See Dynamically Change Options.
VALGRI ND_STACK_REQ STER(start, end):

Registers a new stack. Informs Valgrind that the memory range between start and end is a unique stack.
Returns a stack identifier that can be used with other VALGRI ND_STACK_* calls.

Valgrind will use this information to determine if a change to the stack pointer is an item pushed onto the
stack or a change over to a new stack. Use this if you're using a user-level thread package and are noticing
crashes in stack trace recording or spurious errors from Valgrind about uninitialized memory reads.

Warning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_DEREQ STER(i d) :

Deregisters a previously registered stack. Informs Valgrind that previously registered memory range with
stack idi d isno longer a stack.

War ning: Unfortunately, this client request is unreliable and best avoided.
VALGRI ND_STACK_CHANGE(i d, start, end):

Changes apreviously registered stack. Informs Valgrind that the previously registered stack with stack id i d
has changed its start and end values. Use this if your user-level thread package implements stack growth.

War ning: Unfortunately, this client request is unreliable and best avoided.

3.2. Debugging your program using Valgrind
gdbserver and GDB

A program running under Valgrind is not executed directly by the CPU. Instead it runs on asynthetic CPU provided
by Valgrind. Thisiswhy adebugger cannot natively debug your program when it runs on Valgrind.

This section describes how GDB can interact with the Valgrind gdbserver to provide afully debuggable program
under Valgrind. Used in thisway, GDB a so provides an interactive usage of VValgrind core or tool functionalities,
including incremental leak search under Memcheck and on-demand Massif snapshot production.

3.2.1. Quick Start: debugging in 3 steps

The simplest way to get started isto run Valgrind with the flag - - vgdb- er r or =0. Then follow the on-screen
directions, which give you the precise commands needed to start GDB and connect it to your program.

Otherwise, here's a dlightly more verbose overview.

If you want to debug a program with GDB when using the Memcheck tool, start Vagrind like this:

val grind --vgdb=yes --vgdb-error=0 prog

In another shell, start GDB:

Using and understanding the Valgrind core: Advanced Topics

gdb prog

Then give the following command to GDB:

(gdb) target renote | vgdb
Y ou can now debug your program e.g. by inserting a breakpoint and then using the GDB cont i nue command.

This quick start information is enough for basic usage of the Valgrind gdbserver. The sections below describe
more advanced functionality provided by the combination of Vagrind and GDB. Note that the command line flag
- - vgdb=yes can be omitted, as thisis the default value.

3.2.2. Valgrind gdbserver overall organisation

The GNU GDB debugger is typically used to debug a process running on the same machine. In this mode, GDB
uses system calls to control and query the program being debugged. This works well, but only alows GDB to
debug a program running on the same computer.

GDB can also debug processes running on a different computer. To achieve this, GDB defines a protocol (that
is, aset of query and reply packets) that facilitates fetching the value of memory or registers, setting breakpoints,
etc. A gdbserver is an implementation of this"GDB remote debugging" protocol. To debug a process running on
aremote computer, a gdbserver (sometimes called a GDB stub) must run at the remote computer side.

The Valgrind core provides a built-in gdbserver implementation, which is activated using - - vgdb=yes or - -

vgdb=f ul | . This gdbserver allows the process running on Valgrind's synthetic CPU to be debugged remotely.
GDB sends protocol query packets (such as "get register contents") to the Valgrind embedded gdbserver. The
gdbserver executes the queries (for example, it will get the register values of the synthetic CPU) and gives the
results back to GDB.

GDB can use various kinds of channels (TCP/IP, seria line, etc) to communicate with the gdbserver. In the case
of Valgrind's gdbserver, communication is done via a pipe and a small helper program called vgdb, which acts as
anintermediary. If no GDB isin use, vgdb can also be used to send monitor commands to the Valgrind gdbserver
from ashell command line.

3.2.3. Connecting GDB to a Valgrind gdbserver

To debug a program "prog" running under Valgrind, you must ensure that the Valgrind gdbserver is
activated by specifying either - - vgdb=yes or - - vgdb=f ul | . A secondary command line option, - - vgdb-
err or =number , can be used to tell the gdbserver only to become active once the specified number of errors
have been shown. A value of zero will therefore cause the gdbserver to become active at startup, which allows
you to insert breakpoints before starting the run. For example:

val grind --tool =nentheck --vgdb=yes --vgdb-error=0 ./prog

The Valgrind gdbserver isinvoked at startup and indicatesit is waiting for a connection from a GDB:

==2418== Mentheck, a nmenory error detector

==2418== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2418== Using Valgrind-3.14.0.A T and Li bVEX; rerun with -h for copyright info
==2418== Command: ./prog

==2418==

==2418== (action at startup) vgdb nme ...

GDB (in another shell) can then be connected to the Valgrind gdbserver. For this, GDB must be started on the
program pr og:

41

Using and understanding the Valgrind core: Advanced Topics

gdb ./ prog

Y ou then indicate to GDB that you want to debug a remote target:

(gdb) target renote | vgdb

GDB then starts a vgdb relay application to communicate with the Valgrind embedded gdbserver:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

rel ayi ng data between gdb and process 2418

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so.debug...done.
Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2418]

0x001f 2850 in _start () from/lib/ld-1inux.so.2

(gdb)
Note that vgdb is provided as part of the Valgrind distribution. Y ou do not need to install it separately.

If vgdb detects that there are multiple Valgrind gdbservers that can be connected to, it will list al such servers
and their PIDs, and then exit. You can then reissue the GDB "target" command, but specifying the PID of the
process you want to debug:

(gdb) target renote | vgdb

Renot e debuggi ng using | vgdb

no --pid= arg given and nultiple valgrind pids found:

use --pid=2479 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2481 for valgrind --tool =nencheck --vgdb=yes --vgdb-error=0 ./prog
use --pid=2483 for valgrind --vgdb=yes --vgdb-error=0 ./another_prog

Renot e communi cati on error: Resource tenporarily unavail abl e.

(gdb) target renmpote | vgdb --pid=2479

Renot e debuggi ng using | vgdb --pid=2479

rel ayi ng data between gdb and process 2479

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Readi ng synbols from/usr/Ilib/debug/lib/ld-2.11.2.so0.debug...done.

Loaded synmbols for /lib/ld-1inux.so.2

[Switching to Thread 2479]

0x001f2850 in _start () from/lib/ld-1inux.so.2

(gdb)

If you want to use the - - mul t i mode which makes vgdb start in extended-remote mode, set the following in
GDB:

gdb prog

(gdb) set renote exec-file prog

(gdb) set sysroot /

(gdb) target extended-renmpte | vgdb --multi --vargs -¢
(gdb) start

Tenporary breakpoint 1 at 0x24e0

Starting program prog

rel ayi ng data between gdb and process 2999348

Tenporary breakpoint 1, 0x000000000010a4a0 in main ()
(gdb)

42

Using and understanding the Valgrind core: Advanced Topics

Note that in - - mul ti mode you don't have to start valgrind separately. vgdb will start valgrind for you. vgdb
--mul ti modeisexperimental and currently has some limitations like not being able to see program stdin and
stdout. Also you have to explicitly set the remote exec-file and sysroot to tell GDB the "remote” and local files
are the same.

Once GDB is connected to the Vagrind gdbserver, it can be used in the same way asif you were debugging the
program natively:

» Breakpoints can be inserted or deleted.

» Variables and register values can be examined or modified.
 Signal handling can be configured (printing, ignoring).

» Execution can be controlled (continue, step, next, stepi, etc).
* Program execution can be interrupted using Control-C.

And so on. Refer to the GDB user manual for a complete description of GDB's functionality.

3.2.4. Connecting to an Android gdbserver

When devel opping applications for Android, you will typically use a development system (on which the Android
NDK isinstaled) to compile your application. An Android target system or emulator will be used to run the
application. In this setup, Valgrind and vgdb will run on the Android system, while GDB will run on the
development system. GDB will connect to the vgdb running on the Android system using the Android NDK 'adb
forward' application.

Example: on the Android system, execute the following:

val grind --vgdb-error=0 --vgdb=yes prog
and then in another shell, run:
vgdb --port=1234

On the devel opment system, execute the following commands:

adb forward tcp: 1234 tcp: 1234
gdb prog
(gdb) target renote :1234

GDB will use a local tcpl/ip connection to connect to the Android adb forwarder. Adb will establish a relay
connection between the host system and the Android target system. Be sure to use the GDB delivered in the
Android NDK system (typically, arm-linux-androideabi-gdb), as the host GDB is probably not able to debug
Android arm applications. Note that the local port nr (used by GDB) must not necessarily be equal to the port
number used by vgdb: adb can forward tcp/ip between different port numbers.

In the current release, the GDB server is not enabled by default for Android, due to problems in establishing a
suitable directory in which Valgrind can create the necessary FIFOs (named pipes) for communication purposes.
You can stil try to use the GDB server, but you will need to explicitly enable it using the flag - - vgdb=yes or
--vgdb=fulI.

Additionally, you will need to select a temporary directory which is (a) writable by Valgrind, and (b) supports
FIFOs. Thisis the main difficult point. Often, / sdcar d satisfies requirement (a), but fails for (b) because it is
aVFAT file system and VFAT does not support pipes. Possibilities you could try are/ dat a/ | ocal ,/ dat a/

I ocal /I nst (if you installed Valgrind there), or / dat a/ dat a/ nane. of . my. app, if you are running a
specific application and it hasits own directory of that form. Thislast possibility may have the highest probability
of success.

You can specify the temporary directory to use either via the - - wi t h- t npdi r = configure time flag, or by
setting environment variable TMPDIR when running Valgrind (on the Android device, not on the Android NDK

43

Using and understanding the Valgrind core: Advanced Topics

development host). Another aternative is to specify the directory for the FIFOs using the - - vgdb- pr ef i x=
Vagrind command line option.

We hope to have a better story for temporary directory handling on Android in the future. The difficulty is that,
unlike in standard Unixes, there is no single temporary file directory that reliably works across al devices and
scenarios.

3.2.5. Monitor command handling by the Valgrind
gdbserver

The Valgrind gdbserver provides additional Valgrind-specific functionality via "monitor commands'. Such
monitor commands can be sent from the GDB command line or from the shell command line or requested by the
client program using the VALGRIND_MONITOR_COMMAND client request. See VValgrind monitor commands
for the list of the Valgrind core monitor commands available regardless of the Valgrind tool selected.

The following tools provide tool-specific monitor commands:
* Memcheck Monitor Commands

 Callgrind Monitor Commands

* Massif Monitor Commands

» Helgrind Monitor Commands

An example of atool specific monitor command is the Memcheck monitor command | eak_check full
reachabl e any. This requests a full reporting of the alocated memory blocks. To have this leak check
executed, use the GDB command:

(gdb) nonitor |eak _check full reachabl e any

GDB sends asasingle string al what follows 'monitor’ to the Valgrind gdbserver. The Valgrind gdbserver parses
the string and will execute the monitor command itself, if it recognisesit to be aValgrind core monitor command.
If it isnot recognised as such, it isassumed to be tool-specific and is handed to the tool for execution. For example:

(gdb) nonitor |eak check full reachabl e any

==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1
==2418== at Ox4006E9E: mal |l oc (vg _replace nall oc. c: 236)
==2418== by 0x804884F. main (prog.c: 88)

==2418==

==2418== LEAK SUMVARY

==2418== definitely lost: 0O bytes in O bl ocks

==2418== indirectly lost: 0 bytes in O bl ocks

==2418== possibly lost: 0 bytes in O bl ocks

==2418== still reachable: 100 bytes in 1 bl ocks
==2418== suppressed: 0 bytes in 0 bl ocks

==2418==

(gdb)

Similarly to GDB, the Valgrind gdbserver will accept abbreviated monitor command names and arguments, aslong
asthe given abbreviation is unambiguous. For example, the abovel eak _check command can also be typed as:

(gdb) mo | f r a

The letters no are recognised by GDB as being an abbreviation for noni t or . So GDB sends the string | f

r a tothe Vagrind gdbserver. The letters provided in this string are unambiguous for the Valgrind gdbserver.
This therefore gives the same output as the unabbreviated command and arguments. If the provided abbreviation
isambiguous, the Valgrind gdbserver will report the list of commands (or argument values) that can match:

Using and understanding the Valgrind core: Advanced Topics

(gdb) mo v. n

v. can match v.set v.info v.wait v.kill v.translate v.do
(gdb) mo v.i n

n_errs _found 0 n_errs_shown O (vgdb-error 0)

(gdb)

Instead of sending a monitor command from GDB, you can aso send these from a shell command line. For
example, the following command lines, when given in a shell, will cause the same leak search to be executed by
the process 3145:

vgdb --pi d=3145 | eak_check full reachabl e any
vgdb --pid=31451 f r a

Note that the Valgrind gdbserver automatically continues the execution of the program after a standalone
invocation of vgdb. Monitor commands sent from GDB do not cause the program to continue: the program
execution is controlled explicitly using GDB commands such as "continue" or "next".

Many monitor commands (e.g. v.info location, memcheck who_points at, ...) require an address argument and
an optional length: <addr > [<l en>] . The arguments can also be provided by using a'C array like syntax' by
providing the address followed by the length between square brackets.

For example, the following two monitor commands provide the same information:

(gdb) nmo xb 0x804a2f0 10

(gdb) o xb 0x804a2f 0[10]

3.2.6. GDB front end commands for Valgrind
gdbserver monitor commands

As explained in Monitor command handling by the Valgrind gdbserver, valgrind monitor commands consist in
strings that are not interpreted by GDB. GDB has no knowledge of these valgrind monitor commands. The GDB
‘command lineinterface' infrastructure however providesinteresting functionalitiesto help typing commands such
as auto-completion, command specific help, searching for acommand or command help matching a regexp, ...

To have a better integration of the valgrind monitor commands in the GDB command line interface, Valgrind
provides python code defining a GDB front end command for each valgrind monitor command. Similarly, for
each tool specific monitor command, the python code provides a matching GDB front end command.

Like other GDB commands, the GDB front end Valgrind monitor commands are hierarchically structured starting
from 5 "top" GDB commands. Subcommands are defined below these "top" commands. To ease typing, shorter
aliases are also provided.

» val gri nd (aliased by vg and v) is the top GDB command providing front end commands to the Valgrind
general monitor commands.

» nentheck (aliased by nt) isthe top GDB command providing the front end commands corresponding to the
memcheck specific monitor commands.

e cal I gri nd (aliased by cq) is the top GDB command providing the front end commands corresponding to
the callgrind specific monitor commands.

» massif (aliased by ns) is the top GDB command providing the front end commands corresponding to the
massif specific monitor commands.

« hel gri nd (aliased by hg) isthe top GDB command providing the front end commands corresponding to the
helgrind specific monitor commands.

Using and understanding the Valgrind core: Advanced Topics

The usage of aGDB front end command is compatible with adirect usage of the Valgrind monitor command. The
below example shows a direct usage of the Memcheck monitor command xb to examine the definedness status
of the some_mem array and equivalent usages based on the GDB front end commands.

(gdb) list
1 int main()
2 {

3 char sone_neni 5] ;
4 return O;
5}
(gdb) p &some_nmem
$2 = (char (*)[5]) Oxlffefffebb
(gdb) p sizeof (some_nem
$3 =5
(gdb) monitor xb Ox1ffefffebb 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) menctheck xb Ox1ffefffeb5b 5
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00
(gdb) nt xb &sone_nem si zeof (sone_nen)
ff ff ff ff ff
Ox1FFEFFFE5B: 0x00 0x00 0x00 0x00 0x00

(gdb)

Itisworth noting down that the third command usesthe aliasnt. Thiscommand also showsasignificant advantage
of using the GDB front end commands: as GDB "understands" the structure of these front end commands, where
relevant, these front end commands will evaluate their arguments. In the case of the xb command, the GDB xb
command evaluates its second argument (which must be an address expression) and its optional second argument
(which must be an integer expression).

GDB will auto-load the python code defining the Valgrind front end commands as soon as GDB detects that
the executable being debugged is running under valgrind. This detection is based on observing that the Valgrind
process has loaded a specific Valgrind shared library. The loading of this library is done by the dynamic loader
very early oninthe execution of the process. If GDB isused to connect to aValgrind processthat hasnot yet started
its execution (such as when Valgrind was started with the option - - vgdb- st op- at =st art up or - - vgdb-
er r or =0), then the GDB front end commandswill not yet be auto-loaded. To havethe GDB front end commands
auto-loaded, you can put a breakpoint e.g. in main and use the GDB command cont i nue. Alternatively, you
can add in your .gdbinit aline that loads the python code at GDB startup such as:

source /path/to/val grind/pyt hon/ code/ val gri nd-noni tor. py

The exact path to use in the source command depends on your Valgrind installation. The output of the shell
command vgdb - - hel p contains the absolute path name for the python file you can source in your .gdbinit to
define the GDB valgrind front end monitor commands.

3.2.7. Valgrind gdbserver thread information

Vagrind's gdbserver enriches the output of the GDB i nfo threads command with Valgrind-specific
information. The operating system's thread number is followed by Vagrind'sinternal index for that thread ("tid")
and by the Valgrind scheduler thread state:

(gdb) info threads
4 Thread 6239 (tid 4 VgTs_Yielding) 0x001f2832 in _dl _sysinfo int80 () from/lib/ld-
* 3 Thread 6238 (tid 3 VgTs_Runnable) make error (s=0x8048b76 "called from London") at
2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001f2832 in _dl_sysinfo int80 () from/lib/ld-I]i

46

Using and understanding the Valgrind core: Advanced Topics

1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1, argv=0xbedcc274) at prog.c: 105
(gdb)

3.2.8. Examining and modifying Valgrind shadow
registers

When the option - - vgdb- shadow- r egi st er s=yes isgiven, the Valgrind gdbserver will let GDB examine
and/or modify Valgrind's shadow registers. GDB version 7.1 or later isneeded for thisto work. For x86 and amd64,
GDB version 7.2 or later is needed.

For each CPU register, the Valgrind core maintains two shadow register sets. These shadow registers can be
accessed from GDB by giving apostfix s 1 or s 2 for respectively thefirst and second shadow register. For example,
the x86 register eax and its two shadows can be examined using the following commands:

(gdb) p $eax
$1 =0

(gdb) p $eaxsl
$2 =0

(gdb) p $eaxs2
$3 =0

(gdb)

Float shadow registers are shown by GDB as unsigned integer values instead of float values, asit is expected that
these shadow values are mostly used for memcheck validity bits.

Intel/amd64 AV X registersy nm0 to y nriL5 have also their shadow registers. However, GDB presentsthe shadow
values using two "half" registers. For example, the half shadow registers for ynm® are xnmBs1 (lower half for
set 1), yymBhs 1 (upper half for set 1), xnmBs2 (lower half for set 2), ymmBhs2 (upper half for set 2). Note the
inconsistent notation for the names of the half registers: the lower part starts with an x, the upper part starts with
any and has an h before the shadow postfix.

The specia presentation of the AV X shadow registers is due to the fact that GDB independently retrieves the
lower and upper half of the ymmregisters. GDB does not however know that the shadow half registers have to
be shown combined.

3.2.9. Limitations of the Valgrind gdbserver

Debugging with the Valgrind gdbserver isvery similar to native debugging. Va grind's gdbserver implementation
is quite complete, and so provides most of the GDB debugging functionality. There are however some limitations
and peculiarities:

 Precision of "stop-at" commands.

GDB commands such as "step”, "next", "stepi, breakpoints and watchpoints, will stop the execution of the
process. With the option - - vgdb=yes, the process might not stop at the exact requested instruction. Instead, it
might continue execution of the current basic block and stop at one of the following basic blocks. Thisislinked
to thefact that VValgrind gdbserver hasto instrument a block to allow stopping at the exact instruction requested.
Currently, re-instrumentation of the block currently being executed is not supported. So, if the action requested
by GDB (e.g. single stepping or inserting abreakpoint) impliesre-instrumentation of the current block, the GDB
action may not be executed precisely.

This limitation applies when the basic block currently being executed has not yet been instrumented for
debugging. This typically happens when the gdbserver is activated due to the tool reporting an error or to a
watchpoint. If the gdbserver block has been activated following abreakpoint, or if abreakpoint has been inserted
in the block before its execution, then the block has already been instrumented for debugging.

If you use the option - - vgdb=f ul | , then GDB "stop-at" commands will be obeyed precisely. The downside
is that this requires each instruction to be instrumented with an additional call to a gdbserver helper function,

47

Using and understanding the Valgrind core: Advanced Topics

which gives considerable overhead (+500% for memcheck) compared to - - vgdb=no. Option - - vgdb=yes
has neglectible overhead compared to - - vgdb=no.

Processor registers and flags values.

When Valgrind gdbserver stops on an error, on a breakpoint or when single stepping, registers and flags values
might not be always up to date due to the optimisations done by the Valgrind core. The default value - -
vex-iropt-register-updat es=unwi ndregs-at - mem access ensures that the registers needed
to make a stack trace (typically PC/SP/FP) are up to date at each memory access (i.e. memory exception points).
Disabling some optimisations using the following valueswill increase the precision of registers and flags values
(atypical performance impact for memcheck is given for each option).

e --vex-iropt-regi ster-updates=allregs-at-nmemaccess (+10%) ensuresthat all registers
and flags are up to date at each memory access.

e --vex-iropt-regi ster-updates=allregs-at-each-insn (+25%) ensures that all registers
and flags are up to date at each instruction.

Note that - - vgdb=f ul | (+500%, see above Precision of "stop-at" commands) automatically activates - -

vex-iropt-regi ster-updates=allregs-at-each-insn.

Hardware watchpoint support by the Valgrind gdbserver.

The Valgrind gdbserver can smulate hardware watchpoints if the selected tool provides support for it.
Currently, only Memcheck provides hardware watchpoint simulation. The hardware watchpoint simulation
provided by Memcheck is much faster that GDB software watchpoints, which are implemented by GDB
checking the value of the watched zone(s) after each instruction. Hardware watchpoint simulation also provides
read watchpoints. The hardware watchpoint simulation by Memcheck has some limitations compared to real
hardware watchpoints. However, the number and length of simulated watchpoints are not limited.

Typically, the number of (real) hardware watchpointsis limited. For example, the x86 architecture supports a
maximum of 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 bytes. The Vagrind gdbserver
does not have any limitation on the number of simulated hardware watchpoints. It also has no limitation on the
length of the memory zone being watched. Using GDB version 7.4 or later allow full use of the flexibility of the
Valgrind gdbserver's simulated hardware watchpoints. Previous GDB versions do not understand that VValgrind
gdbserver watchpoints have no length limit.

Memcheck implements hardware watchpoint simulation by marking the watched address ranges as being
unaddressable. When a hardware watchpoint is removed, the range is marked as addressable and defined.
Hardware watchpoint simulation of addressable-but-undefined memory zones works properly, but has the
undesirable side effect of marking the zone as defined when the watchpoint is removed.

Write watchpoints might not be reported at the exact instruction that writes the monitored area, unless option
- -vgdb=f ul | isgiven. Read watchpointswill always be reported at the exact instruction reading the watched
memory.

It is better to avoid using hardware watchpoint of not addressable (yet) memory: in such a case, GDB will fall
back to extremely slow software watchpoints. Also, if you do not quit GDB between two debugging sessions,
the hardware watchpoints of the previous sessions will be re-inserted as software watchpoints if the watched
memory zone is not addressable at program startup.

Stepping inside shared libraries on ARM.

For unknown reasons, stepping inside shared libraries on ARM may fail. A workaround is to use the | dd
command to find the list of shared libraries and their loading address and inform GDB of the loading address
using the GDB command "add-symbol-file". Example:

(gdb) shell |dd ./prog
libc.so.6 => /lib/libc.so.6 (0x4002c000)
/1ib/ld-1inux.so.3 (0x40000000)

Using and understanding the Valgrind core: Advanced Topics

(gdb) add-synbol-file /lib/libc.so.6 0x4002c000
add synbol table fromfile "/lib/libc.so.6" at
.text _addr = 0x4002c000

(y or n) y
Readi ng synbols from/lib/libc.so.6...(no debuggi ng synbols found)...done.

(gdb)
GDB version needed for ARM and PPC32/64.

You must use a GDB version which is able to read XML target description sent by a gdbserver. This is the
standard setup if GDB was configured and built with the "expat" library. If your GDB was not configured with
XML support, it will report an error message when using the "target” command. Debugging will not work
because GDB will then not be ableto fetch the registers from the VValgrind gdbserver. For ARM programs using
the Thumb instruction set, you must use a GDB version of 7.1 or later, as earlier versions have problems with
next/step/breakpoints in Thumb code.

Stack unwinding on PPC32/PPC64.

On PPC32/PPC64, stack unwinding for leaf functions (functions that do not call any other functions) works
properly only when you give the option - - vex-i ropt -regi st er - updat es=al | r egs- at - nem
accessor--vex-iropt-register-updates=al |l regs-at-each-insn.Youmustaso passthis
option in order to get a precise stack when a signal is trapped by GDB.

Breakpoints encountered multiple times.

Some instructions (e.g. x86 "rep movsh") are trandated by Vagrind using a loop. If a breakpoint is placed on
such an instruction, the breakpoint will be encountered multiple times -- once for each step of the "implicit"
loop implementing the instruction.

Execution of Inferior function calls by the Valgrind gdbserver.

GDB alowsthe user to "call" functionsinside the process being debugged. Such callsare named "inferior calls"
in the GDB terminology. A typical use of an inferior call is to execute afunction that prints a human-readable
version of a complex data structure. To make an inferior cal, use the GDB "print" command followed by the
function to call and its arguments. As an example, the following GDB command causes an inferior call to the
libc "printf" function to be executed by the process being debugged:

(gdb) p printf("process being debugged has pid %\ n", getpid())
$5 = 36
(gdb)

The Valgrind gdbserver supports inferior function calls. Whilst an inferior call is running, the Valgrind tool
will report errors as usual. If you do not want to have such errors stop the execution of the inferior call, you
canusev. set vgdb-error toset ahig vaue before the cal, then manually reset it to its original value
when the call is complete.

To executeinferior calls, GDB changes registers such as the program counter, and then continues the execution
of the program. In a multithreaded program, all threads are continued, not just the thread instructed to make
theinferior call. If another thread reports an error or encounters a breakpoint, the evaluation of the inferior call
is abandoned.

Note that inferior function calls are a powerful GDB feature, but should be used with caution. For example,
if the program being debugged is stopped inside the function "printf”, forcing a recursive call to printf viaan
inferior call will very probably create problems. The Valgrind tool might also add another level of complexity
toinferior cals, e.g. by reporting tool errors during the Inferior call or due to the instrumentation done.

Connecting to or interrupting a Valgrind process blocked in a system call.

Connecting to or interrupting a Valgrind process blocked in a system call requires the "ptrace” system call to
be usable. This may be disabled in your kernel for security reasons.

49

Using and understanding the Valgrind core: Advanced Topics

When running your program, Valgrind's scheduler periodically checks whether thereis any work to be handled
by the gdbserver. Unfortunately this check isonly doneif at least one thread of the processisrunnable. If al the
threads of the process are blocked in a system call, then the checks do not happen, and the Valgrind scheduler
will not invoke the gdbserver. In such acase, thevgdb relay application will "force" the gdbserver to beinvoked,
without the intervention of the Valgrind scheduler.

Such forced invocation of the Valgrind gdbserver is implemented by vgdb using ptrace system calls. On a
properly implemented kernel, the ptrace calls done by vgdb will not influence the behaviour of the program
running under Valgrind. If however they do, giving the option - - max-i nvoke- ns=0 to the vgdb relay
application will disable the usage of ptrace calls. The consequence of disabling ptrace usage in vgdb is that a
Valgrind process blocked in asystem call cannot be woken up or interrupted from GDB until it executes enough
basic blocksto let the Valgrind scheduler's normal checking take effect.

When ptrace is disabled in vgdb, you can increase the responsiveness of the Valgrind gdbserver to commands
or interrupts by giving a lower value to the option - - vgdb- pol | . If your application is blocked in system
calls most of the time, using a very low value for - - vgdb- pol | will cause a the gdbserver to be invoked
sooner. The gdbserver polling done by Vagrind's scheduler is very efficient, so the increased polling frequency
should not cause significant performance degradation.

When ptrace is disabled in vgdb, a query packet sent by GDB may take significant time to be handled by the
Valgrind gdbserver. In such cases, GDB might encounter a protocol timeout. To avoid this, you can increase
the value of the timeout by using the GDB command "set remotetimeout”.

Ubuntu versions 10.10 and later may restrict the scope of ptrace to the children of the process calling ptrace. As
the Valgrind processis not achild of vgdb, such restricted scoping causes the ptrace callsto fail. To avoid that,
Valgrind will automatically allow al processes belonging to the same userid to "ptrace” a Valgrind process,
by using PR_SET_PTRACER.

Unblocking processes blocked in system callsis not currently implemented on Mac OS X and Android. So you
cannot connect to or interrupt a process blocked in a system call on Mac OS X or Android.

Unblocking processesblocked in system callsisimplemented viaagent thread on Solaris. Thisisquiteadifferent
approach than using ptrace on Linux, but leads to equivalent result - Valgrind gdbserver is invoked. Note that
agent thread is a Solaris OS feature and cannot be disabl ed.

» Changing register values.

TheValgrind gdbserver will only modify thevalues of thethread'sregisterswhen thethread isin status Runnable
or Yielding. In other states (typically, WaitSys), attempts to change register values will fail. Amongst other
things, this means that inferior calls are not executed for a thread which isin a system call, since the Valgrind
gdbserver does not implement system call restart.

» Unsupported GDB functionality.

GDB providesalot of debugging functionality and not all of it is supported. Specifically, the following are not
supported: reversible debugging and tracepoints.

» Unknown limitations or problems.

The combination of GDB, Valgrind and the Valgrind gdbserver probably has unknown other limitations and
problems. If you encounter strange or unexpected behaviour, feel free to report a bug. But first please verify
that the limitation or problem is not inherent to GDB or the GDB remote protocol. You may be able to do so
by checking the behaviour when using standard gdbserver part of the GDB package.

3.2.10. vgdb command line options
Usage:vgdb [OPTION] ... [[-c] COWAND] ...

vgdb ("Valgrind to GDB") is a small program that is used as an intermediary between Valgrind and GDB or a
shell. It has three usage modes:

50

Using and understanding the Valgrind core: Advanced Topics

1. Asastandalone utility, it is used from a shell command line to send monitor commands to a process running
under Valgrind. For this usage, the vgdb OPTION(s) must be followed by the monitor command to send. To
send more than one command, separate them with the - ¢ option.

2. In combination with GDB "target remote [command, it is used as the relay application between GDB and the
Valgrind gdbserver. For this usage, only OPTION(s) can be given, but no COMMAND can be given.

3. Inthe- - mul ti mode, vgdb uses the extended remote protocol to communicate with GDB. Thisallowsyouto
view output from both valgrind and GDB in the GDB session. This is accomplished via the "target extended-
remote | vgdb --multi”. In this mode you no longer need to start valgrind yourself. vgdb will start up valgrind
when gdb tellsit to run a new program. For this usage, the vgdb OPTIONS(s) can alsoinclude - - val gri nd
and - - var gs to describe how valgrind should be started.

vgdb accepts the following options:
- - pi d=<nunber >

Specifies the PID of the process to which vgdb must connect to. This option is useful in case more than one
Vagrind gdbserver can be connected to. If the- - pi d argument is not given and multiple Va grind gdbserver
processes are running, vgdb will report the list of such processes and then exit.

--vgdb- prefix

Must be given to both VValgrind and vgdb if you want to change the default prefix for the FIFOs (named pipes)
used for communication between the VValgrind gdbserver and vgdb.

--wai t =<nunber >

Instructs vgdb to search for available Valgrind gdbservers for the specified number of seconds. This makes
it possible start a vgdb process before starting the Valgrind gdbserver with which you intend the vgdb to
communicate. This option is useful when used in conjunction with a- - vgdb- pr ef i x that isunique to the
process you want to wait for. Also, if you usethe - - wai t argument in the GDB "target remote" command,
you must set the GDB remotetimeout to a value bigger than the --wait argument value. See option - - max-

i nvoke- ns (just below) for an example of setting the remotetimeout value.

- - max- i nvoke- ne=<nunber >

Gives the number of milliseconds after which vgdb will force the invocation of gdbserver embedded in
Vagrind. Thedefault valueis 100 milliseconds. A valueof 0 disablesforced invocation. Theforced invocation
is used when vgdb is connected to a Valgrind gdbserver, and the Vagrind process has al its threads blocked
inasystem call.

If you specify alarge value, you might need to increase the GDB "remotetimeout” value from its default value
of 2 seconds. Y ou should ensure that the timeout (in seconds) is bigger than the - - max- i nvoke- s value.
For example, for - - max- i nvoke- ns=5000, the following GDB command is suitable:

(gdb) set renotetineout 6

--cmd-ti me- out =<nunber >

Instructs a standalone vgdb to exit if the Valgrind gdbserver it is connected to does not process a command
in the specified number of seconds. The default value isto never time out.

- - port=<portnr>

Instructsvgdb to usetcp/ip and listen for GDB on the specified port nr rather than to use a pipeto communicate
with GDB. Using tcp/ip allows to have GDB running on one computer and debugging a Valgrind process
running on another target computer. Example:

51

Using and understanding the Valgrind core: Advanced Topics

On the target conputer, start your program under val grind using

val grind --vgdb-error=0 prog

and then in another shell, run:

vgdb --port=1234

On the computer which hosts GDB, execute the command:

gdb prog

(gdb) target renote targetip: 1234

where targetip is the ip address or hostname of the target computer.
--vgdb-nul ti

Makes vgdb start in extended-remote mode and to wait for gdb to tell us what to run.
--valgrind

The path to valgrind to use, in extended-remote mode. If not specified, the system valgrind will be launched.

--vargs

Options to run valgrind with, in extended-remote mode. For example - q. Everything following - - var gs
will be provided as argumentsto valgrind asis.

To give more than one command to a standal one vgdb, separate the commands by an option - ¢c. Example:

vgdb v.set log output -c |eak _check any
Instructs a standal one vgdb to report the list of the Valgrind gdbserver processes running and then exit.
Instructs vgdb to add timestamps to vgdb information messages.

Instructs a standal one vgdb to show the state of the shared memory used by the VValgrind gdbserver. vgdb will
exit after having shown the Valgrind gdbserver shared memory state.

Instructs vgdb to produce debugging output. Give multiple - d args to increase the verbosity. When giving -
d to arelay vgdb, you better redirect the standard error (stderr) of vgdb to afile to avoid interaction between
GDB and vgdb debugging output.

3.2.11. Valgrind monitor commands

This section describes the Valgrind monitor commands, available regardless of the Valgrind tool selected. For
the tool specific commands, refer to Memcheck Monitor Commands, Helgrind Monitor Commands, Callgrind
Monitor Commands and Massif Monitor Commands.

The monitor commands can be sent either from a shell command line, by using a standalone vgdb, or from GDB,
by using GDB's "monitor" command (see Monitor command handling by the Valgrind gdbserver) or by GDB's
"valgrind" front end commands (see GDB front end commands for Valgrind gdbserver monitor commands). They
can also be launched by the client program, using the VALGRIND_MONITOR_COMMAND client request.

52

Using and understanding the Valgrind core: Advanced Topics

Whatever the way the monitor command is launched, it will behave the same way. However, using the GDB's
valgrind front end commands allows to benefit from the GDB infrastructure, such as expression evaluation. When

relevant, the description of a monitor command below describes the additional flexibility provided by the GDB

valgrind front end command. To launch a valgrind monitor command via its GDB front end command, instead

of prefixing the command with "monitor", you must use the GDB val gri nd command (or the shorter aliases

vg orv). In GDB, you can use hel p val gri nd to get help about the valgrind front end monitor commands

and you can use apr opos val gri nd to get al the commands mentionning the word "valgrind” in their name
or on-line help.

e hel p [debug] instructs Vagrind's gdbserver to give the list of all monitor commands of the Valgrind core
and of the tool. The optiona "debug" argument tells to also give help for the monitor commands aimed at
Valgrind internals debugging.

Note that this monitor command produces the help information as provided by valgrind gdbserver. The GDB
help givene.g. by hel p val gri nd orhel p val grind v. i nf o providesthe help of the GDB front end
command for the equivalent valgrind gdbserver monitor command. This"GDB help" describes the additional
flexibility provided by the GDB front end command.

v.info all _errors [al so_suppressed] showsall errorsfound so far.
The optional "also_suppressed” argument indicates to also output the suppressed errors.
v.info |last_error showsthelast error found.

v.info location <addr> outputsinformation about the location <addr>. Possibly, the following are
described: global variables, local (stack) variables, allocated or freed blocks, ... The information produced
depends on the tool and on the options given to valgrind. Some tools (e.g. memcheck and helgrind) produce
more detailed information for client heap blocks. For example, these tools show the stacktrace where the heap
block was allocated. If atool does not replace the malloc/fredl... functions, then client heap blocks will not
be described. Use the option - - r ead- var - i nf o=yes to obtain more detailed information about global or
local (stack) variables.

(gdb) nonitor v.info | ocation 0x1130a0
Location 0x1130a0 is O bytes inside global var
decl ared at tcl19 shadowrem c: 19

(gdb) nmo v.in loc Ox1ffefffelO
Location Ox1lffefffelO is O bytes inside info.child,
decl ared at tcl1l9 shadowremc: 139, in frane #1 of thread 1

(gdb)

The GDB valgrind front end command val grind v.info |ocation ADDR accepts any address
expression for its ADDR argument. In the below examples, mx is a global struct and info is a pointer to a
structure. Instead of having to print the addresses of the structure and printing the pointer variable, you can
directly use the expressions in the GDB valgrind front end command argument.

nx

(gdb) valgrind v.info | ocation &rx

Location 0x1130a0 is O bytes inside global var "nx"
declared at tcl1l9 shadowrem c: 19
(gdb) v v.i lo info

Location Ox1ffefffelO is O bytes inside info.child,
declared at tcl9 shadowmremc: 139, in frame #1 of thread 1

(gdb)

v.info n_errs_found [nsg] showsthe number of errors found so far, the nr of errors shown so far
and the current value of the - - vgdb- er r or argument. The optional nsg (one or more words) is appended.
Typically, this can be used to insert markersin a process output file between several tests executed in sequence
by a process started only once. This allows to associate the errors reported by Valgrind with the specific test
that produced these errors.

53

Using and understanding the Valgrind core: Advanced Topics

e v.info open_fds shows the list of open file descriptors and details related to the file descriptor. This
only worksif - -t rack-fds=yesor--track-fds=al |l (toincludest di n,st dout andst derr)was
given at Valgrind startup.

e v.clo <cl o_option>. .. changesoneor moredynamic command line options. If no clo_optionisgiven,
lists the dynamically changeable options. See Dynamically Change Options. The below shows example of
changing the value of - - vgdb- er r or using directly the valgrind monitor command, using the equivalent
GDB valgrind front end command. It also shows how a more flexible setting can be done using the GDB eval
command.

(gdb) nmo v.clo --vgdb-error=10

==2808839== Handl i ng new val ue --vgdb-error=10 for option --vgdb-error
(gdb) v v.clo --vgdb-error=11

==2808839== Handl i ng new val ue --vgdb-error=11 for option --vgdb-error
(gdb) set var $nnn = 15

(gdb) eval "v v.clo --vgdb-error=%", $nnn + 1

==2808839== Handl i ng new val ue --vgdb-error=16 for option --vgdb-error

(gdb)

 v.set {gdb_output | |og_output | mn xed_output} alowsredirection of the Valgrind output
(e.0. the errors detected by the tool). The default settingismi xed_out put .

With m xed_out put , the Valgrind output goes to the Valgrind log (typically stderr) while the output of the
interactive GDB monitor commands (e.g.v. i nfo | ast _error) isdisplayed by GDB.

Withgdb_out put , both theVValgrind output and theinteractive GDB monitor commands output are displayed
by GDB.

With | og_out put, both the Valgrind output and the interactive GDB monitor commands output go to the
Valgrind log.

e v.wait [ns (default 0)] instructsValgrind gdbserver to sleep "ms"' milli-seconds and then continue.
When sent from a standalone vgdb, if thisisthelast command, the Valgrind processwill continue the execution
of the guest process. Thetypical usage of thisisto use vgdb to send a"no-op" command to aValgrind gdbserver
S0 asto continue the execution of the guest process.

The GDB valgrind front end command val gri nd v.wait MS acceptsany integer expression for its MS
argument, while the monitor command accepts only integer numbers.

* v. ki || requeststhe gdbserver to kill the process. This can be used from a standalone vgdb to properly kill a
Valgrind process which is currently expecting a vgdb connection.

 v.set vgdb-error <errornr> dynamicaly changes the value of the - - vgdb- err or valgrind
command line argument. A typical usage of thisisto start with - - vgdb- er r or =0 on the command line, then
set afew breakpoints, set the vgdb-error value to a huge value and continue execution. Note that you can also
changethisvalueusingeg.v. cl o --vgdb-error=12

The GDB valgrind front end command val grind v.set vgdb-error NUM accepts any integer
expression for its ERRORNR argument, while the monitor command accepts only integer numbers.

* v.set nerge-recursive-frames <nune dynamicaly changes the value of the - - ner ge-
recur si ve-frames valgrind command line argument. Note that you can also change this value using e.g.
v.clo --merge-recursive-franmes=5

The GDB valgrind front end command val gri nd v.set nerge-recursive-franes NUMaccepts
any integer expression for its NUM argument, while the monitor command accepts only integer numbers.

o xtmenory [<filenane> default xtmenory.kcg. %. %] requeststhetool (Memcheck, Massif,
Helgrind) to produce an xtree heap memory report. See Execution Trees for a detailed explanation about
execution trees.

Using and understanding the Valgrind core: Advanced Topics

Thefollowing Valgrind monitor commands are useful for investigating the behaviour of Valgrind or its gdbserver
in case of problems or bugs.

e v.do expensive_sanity check _general executes various sanity checks. In particular, the sanity
of the Valgrind heap is verified. This can be useful if you suspect that your program and/or Valgrind has a
bug corrupting Valgrind data structure. It can also be used when a Valgrind tool reports a client error to the
connected GDB, in order to verify the sanity of Valgrind before continuing the execution.

e v.info gdbserver_stat us showsthe gdbserver status. In case of problems (e.g. of communications),
this shows the values of some relevant Valgrind gdbserver internal variables. Note that the variables related to
breakpoints and watchpoints (e.g. the number of breakpoint addresses and the number of watchpoints) will be
zero, as GDB by default removes all watchpoints and breakpoints when execution stops, and re-inserts them
when resuming the execution of the debugged process. Y ou can change this GDB behaviour by using the GDB
command set breakpoi nt al ways-inserted on.

« v.info nenory [aspacengr] showsthestatistics of Valgrind'sinternal heap management. If option - -
profi | e- heap=yes wasgiven, detailed statistics will be output. With the optional argument aspacenyr .
the segment list maintained by valgrind address space manager will be output. Note that this list of segments
is always output on the Valgrind log.

 v.info exectxt shows information about the "executable contexts' (i.e. the stack traces) recorded by
Valgrind. For some programs, Valgrind can record a very high number of such stack traces, causing a high
memory usage. This monitor command shows all the recorded stack traces, followed by some statistics. This
can be used to analyse the reason for having abig number of stack traces. Typically, you will use this command
if v. i nfo menory hasshown significant memory usage by the "exectxt" arena.

» v.info schedul er showsvariousinformation about threads. First, it outputs the host stack trace, i.e. the
Valgrind code being executed. Then, for each thread, it outputs the thread state. For non terminated threads, the
state is followed by the guest (client) stack trace. Finally, for each active thread or for each terminated thread
slot not yet re-used, it shows the max usage of the valgrind stack.

Showing the client stack traces allows to compare the stack traces produced by the Vagrind unwinder with the
stack traces produced by GDB+Va grind gdbserver. Pay attention that GDB and Valgrind scheduler status have
their own thread numbering scheme. To make the link between the GDB thread number and the corresponding
Valgrind scheduler thread number, use the GDB command i nf o t hr eads. The output of this command
shows the GDB thread number and the valgrind 'tid'. The 'tid' is the thread number output by v. i nfo
schedul er . Whenusingthecallgrind tool, the callgrind monitor command st at us outputsinternal callgrind
information about the stack/call graph it maintains.

* v.info stats showsvariousvalgrind core and tool statistics. With this, Valgrind and tool statistics can be
examined while running, even without option - - st at s=yes.

e v.info unwi nd <addr> [<l en>] showsthe CFl unwind debug info for the address range [addr, addr
+len-1]. The default value of <len> is 1, giving the unwind information for the instruction at <addr>.

The GDB valgrind front end command val gri nd v.info unwi nd ADDR [LEN] acceptsany address
expression for its first ADDR argument, such as $pc. The second optional argument is any integer expression.
Note that these 2 arguments must be separated by a space.

* v.set debugl og <i nt val ue> setstheValgrind debugloglevel to <intvalue>. Thisallowsto dynamically
change the log level of Valgrind e.g. when a problem is detected.

The GDB valgrind front end command val grind v.set debuglog LEVEL accepts any address
expression for its LEVEL argument.

e v.set hostvisibility [yes*|no] Thevaue"yes" indicatesto gdbserver that GDB can look at the
Valgrind 'host' (internal) statusmemory. "no" disables this access. When hostvisibility is activated, GDB can
e.g. look at Valgrind global variables. As an example, to examine aValgrind global variable of the memcheck
tool on an x86, do the following setup:

55

Using and understanding the Valgrind core: Advanced Topics

(gdb) nonitor v.set hostvisibility yes

Enabl ed access to Val grind menory/status by GDB

If not yet done, tell GDB which valgrind file(s) to use, typically:

add- synbol -file /hone/philippe/val grind/git/inprove/lnst/l|ibexec/val grind/ nmencheck-an

(gdb) add-synbol -file /hone/philippe/val grind/git/inprove/lnst/|ibexec/val grind/ nmenche

add synbol table fromfile "/home/philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/
.text_addr = 0x58001000

(y or n) y
Readi ng synbol s from /home/ philippe/valgrind/git/inprove/lnst/|ibexec/valgrind/ menchec

(gdb)

After that, variables defined in memcheck-x86-linux can be accessed, e.g.

(gdb) p /x vgPlain_threads[1].o0s_state
$3 = {Iwpid = 0x4688, threadgroup = 0x4688, parent = 0xO0,
val gri nd_stack_base = 0x62e78000, val grind_stack_ init_SP = 0x62f 79f e0,
exi tcode = 0x0, fatal sig = 0x0}
(gdb) p vex_control
$5 = {iropt_verbosity = 0, iropt_level = 2,
i ropt _regi ster_updates = VexRegUpdUnwi ndr egsAt MemAccess,
iropt _unroll _thresh = 120, guest_nax_insns = 60, guest_chase_thresh = 10}

(gdb)

e« v.transl ate <address> [<tracefl ags>] showsthetrandation of the block containing addr ess
withthegiventraceflags. Thet r acef | ags vauebit patterns have similar meaningto Valgrind's- -t r ace-
f 1 ags option. It can be given in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1s and Os bit (e.g.
0b00100000). Thedefault value of thetraceflagsis 0b00100000, corresponding to "show after instrumentation”.
The output of this command always goesto the Valgrind log.

The additional bit flag Ob100000000 (bit 8) has no equivalent in the - -t r ace- f | ags option. It enables
tracing of the gdbserver specific instrumentation. Note that this bit 8 can only enable the addition of gdbserver
instrumentation in the trace. Setting it to 0 will not disable the tracing of the gdbserver instrumentation if it is
active for some other reason, for example because there is a breakpoint at this address or because gdbserver
isin single stepping mode.

The GDB valgrind front end command val grind v.transl ate ADDR [TRACEFLAG accepts any
address expression for its first ADDR argument, such as $pc. The second optional argument is any integer
expression. Note that these 2 arguments must be separated by a space.

3.3. Function wrapping

Vagrind allows calls to some specified functions to be intercepted and rerouted to a different, user-supplied
function. This can do whatever it likes, typically examining the arguments, calling onwards to the original, and
possibly examining the result. Any number of functions may be wrapped.

Function wrapping is useful for instrumenting an APl in some way. For example, Helgrind wraps functions in
the POSIX pthreads API so it can know about thread status changes, and the core is able to wrap functionsin the
MPI (message-passing) APl so it can know of memory status changes associated with message arrival/departure.

Such information is usually passed to Valgrind by using client requests in the wrapper functions, although the
exact mechanism may vary.

3.3.1. A Simple Example

Supposing we want to wrap some function
int foo (int x, int y) { returnx +vy; }

56

Using and understanding the Valgrind core: Advanced Topics

A wrapper is a function of identical type, but with a special name which identifies it as the wrapper for f 0o.
Wrappers need to include supporting macros from val gri nd. h. Here is a simple wrapper which prints the
arguments and return value:

#i ncl ude <stdio. h>
#i ncl ude "val grind. h"
int | _WRAP_SONAME_FNNAME_ZU(NONE, foo) (int x, int y)
{
i nt result;
OigFn fn;
VALGRI ND_GET_ORI G FN(fn);
printf("foo's wapper: args % %\n", X, y);
CALL_FN WWN(result, fn, x,vy);
printf("foo's wapper: result %\n", result);
return result;

}

To become active, the wrapper merely needsto be present in atext section somewherein the same process' address
space as the function it wraps, and for its ELF symbol name to be visible to Valgrind. In practice, this means
either compilingto a. o and linking it in, or compilingto a. so and LD_PRELQADIng it in. The latter is more
convenient in that it doesn't require relinking.

All wrappers have approximately the above form. There are three crucial macros:

| VWRAP_SONAME_FNNANME ZU: this generates the real name of the wrapper. This is an encoded name which
Va grind notices when reading symbol tableinformation. What it saysis: | am the wrapper for any function named
f oo whichisfound in an ELF shared object with an empty ("NONE") soname field. The specification mechanism
is powerful in that wildcards are allowed for both sonames and function names. The details are discussed below.

VALGRI ND_GET_ORI G_FN: once in the wrapper, the first priority isto get hold of the address of the original
(and any other supporting information needed). Thisis stored in avalue of opaquetype Or i gFn. Theinformation
is acquired using VALGRI ND_GET_CORI G_FN. It is crucia to make this macro call before caling any other
wrapped function in the same thread.

CALL_FN_W WN eventually we will want to call the function being wrapped. Calling it directly does not work,
since that just gets us back to the wrapper and leads to an infinite loop. Instead, the result Ivalue, Or i gFn and
arguments are handed to one of a family of macros of the form CALL_FN_*. These cause Valgrind to call the
origina and avoid recursion back to the wrapper.

3.3.2. Wrapping Specifications

This scheme has the advantage of being self-contained. A library of wrappers can be compiled to object codein
the normal way, and does not rely on an external script telling Valgrind which wrappers pertain to which originals.

Each wrapper has a name which, in the most general case says. | am the wrapper for any function whose name
matches FNPATT and whose ELF "soname" matches SOPATT. Both FNPATT and SOPATT may contain
wildcards (asterisks) and other characters (spaces, dots, @, etc) which are not generally regarded as valid C
identifier names.

This flexibility is needed to write robust wrappers for POSIX pthread functions, where typically we are not
completely sureof either the function name or the soname, or alternatively wewant to wrap awhole set of functions
at once.

For example, pt hr ead_cr eat e in GNU libpthread is usually a versioned symbol - one whose name endsiin,

eg, @=L1 BC 2. 3. Hence we are not sure what its real name is. We also want to cover any soname of the form
['i bpt hr ead. so*. So the header of the wrapper will be

57

Using and understanding the Valgrind core: Advanced Topics

int | _WRAP_SONAME FNNAME ZZ(| i bpt hr eadZdsoZdO, pt hr eadZucr eat eZAZa)
(... formals ...)

{ ... body ...}

In order to write unusual characters as valid C function names, a Z-encoding scheme is used. Names are written
literally, except that a capital Z acts as an escape character, with the following encoding:

Za encodes *

Zp i

Zc :

Zd

Zu _

Zh -

Zs (space)

ZA @

7z z

ZL (# only in valgrind 3.3.0 and | ater

ZR) # only in valgrind 3.3.0 and | ater
Hence |i bpthreadZdsoZd0 is an encoding of the soname |ibpthread.so.0 and

pt hr eadZucr eat eZAZa is an encoding of the function name pt hread_create@.

The macro | _WRAP_SONAME_FNNAME _ZZ constructs a wrapper name in which both the soname (first
component) and function name (second component) are Z-encoded. Encoding the function name can be tiresome
and is often unnecessary, so a second macro, | _WWRAP_SONAME_FNNAME_ZU, can be used instead. The _ZU
variantisalso useful for writing wrappersfor C++ functions, in which thefunction nameisusually aready mangled
using some other convention in which Z plays an important role. Having to encode a second time quickly becomes
confusing.

Since the function name field may contain wildcards, it can be anything, including just * . The same is true for
the soname. However, some ELF objects - specifically, main executables - do not have sonames. Any object
lacking a soname is treated as if its soname was NONE, which is why the original example above had a name
| _V\RAP_SONAME_FNNAME_ZU(NONE, f 00) .

Note that the soname of an ELF object is not the same as its file name, although it is often similar. You can find
the soname of an object | i bf 0o. so usingthecommandr eadel f -a |i bfoo.so | grep sonane.

3.3.3. Wrapping Semantics

Theability for awrapper to replace an infinitefamily of functionsispowerful but brings complicationsin situations
where ELF objects appear and disappear (are dlopen'd and diclose'd) on thefly. Vagrind triesto maintain sensible
behaviour in such situations.

For example, suppose a process has dlopened (an ELF object with soname) obj ect 1. so, which contains
functionl. It startstousef uncti onl immediately.

After awhileit dlopenswr apper s. so, which containsawrapper for f unct i onl in(soname) obj ect 1. so.
All subsequent callsto f unct i onl arererouted to the wrapper.

If w apper s. so islater diclose'd, callstof unct i onl are naturally routed back to the original.

Alternatively, if obj ect 1. so is diclosed but wr appers. so remains, then the wrapper exported by
wWr apper s. so becomesinactive, sincethereisnoway to gettoit - thereisno original to call any more. However,
Vagrind remembers that the wrapper is still present. If obj ect 1. so iseventually dlopen'd again, the wrapper
will become active again.

In short, valgrind inspects all code loading/unloading events to ensure that the set of currently active wrappers
remains consistent.

58

Using and understanding the Valgrind core: Advanced Topics

A second possible problem isthat of conflicting wrappers. It is easily possible to load two or more wrappers, both
of which claim to be wrappers for some third function. In such cases Valgrind will complain about conflicting
wrappers when the second one appears, and will honour only the first one.

3.3.4. Debugging

Figuring out what's going on given the dynamic nature of wrapping can bedifficult. The- -t race-redi r =yes
option makes this possible by showing the compl ete state of the redirection subsystem after every mmap/nunnap
event affecting code (text).

There are two central concepts:

» A "redirection specification” is a binding of a (soname pattern, fnname pattern) pair to a code address. These
bindings are created by writing functionswith namesmadewiththel _WRAP_SONAME_FNNAMVE {ZZ, ZU}
macros.

* An"activeredirection" is acode-address to code-address binding currently in effect.

The state of the wrapping-and-redirection subsystem comprises a set of specifications and a set of active bindings.
The specifications are acquired/discarded by watching all nmap/nmunmap events on code (text) sections. The
active binding set is (conceptually) recomputed from the specifications, and all known symbol names, following
any change to the specification set.

--trace-redir =yes showsthe contents of both sets following any such event.
- v prints aline of text each time an active specification is used for the first time.
Hence for maximum debugging effectiveness you will need to use both options.

One final comment. The function-wrapping facility is closely tied to Valgrind's ability to replace (redirect)
specified functions, for example to redirect calls to mal | oc to its own implementation. Indeed, a replacement
function can be regarded as a wrapper function which does not call the original. However, to make the
implementation more robust, the two kinds of interception (wrapping vs replacement) are treated differently.

--trace-redir=yes shows specifications and bindings for both replacement and wrapper functions. To
differentiate the two, replacement bindings are printed using R- > whereas wraps are printed using W >.

3.3.5. Limitations - control flow

For the most part, the function wrapping implementation isrobust. The only important caveat is: in awrapper, get
hold of the Or i gFn information using VALGRI ND_GET_ORI G_FN before calling any other wrapped function.
Once you have the Or i gFn, arbitrary calls between, recursion between, and longjumps out of wrappers should
work correctly. There is never any interaction between wrapped functions and merely replaced functions (eg
mal | oc), soyou cancall mal | oc etc safely from within wrappers.

The above comments are true for { x86,amd64,ppc32,arm,mips32,s390} -linux. On ppc64-linux function wrapping
is more fragile due to the (arguably poorly designed) ppc64-linux ABI. This mandates the use of a shadow
stack which tracks entries/exits of both wrapper and replacement functions. This gives two limitations: firstly,
longjumping out of wrappers will rapidly lead to disaster, since the shadow stack will not get correctly cleared.
Secondly, sincethe shadow stack hasfinite size, recursion between wrapper/replacement functionsisonly possible
to alimited depth, beyond which Valgrind has to abort the run. This depth is currently 16 calls.

For all platforms ({x86,amd64,ppc32,ppc64,arm,mips32,s390} -linux) all the above comments apply on a per-
thread basis. In other words, wrapping isthread-safe: each thread must individually observe the above restrictions,
but there is no need for any kind of inter-thread cooperation.

3.3.6. Limitations - original function signatures

As shown in the above example, to call the original you must use amacro of theform CALL_FN_* . For technical
reasonsit isimpossibleto create asingle macro to deal with all argument types and numbers, so afamily of macros

59

Using and understanding the Valgrind core: Advanced Topics

covering the most common casesis supplied. In what follows, "W' denotes a machine-word-typed value (a pointer
oraCl ong), and 'v' denotes C'svoi d type. The currently available macros are;

CALL_FN v_v -- call an original of type void fn (void)
CALL_FN WV -- call an original of type long fn (void)
CALL_FN v_W -- call an original of type void fn (long)
CALL_FN W W -- call an original of type long fn (long)
CALL FN v.WW -- call an original of type void fn (long, long)
CALL_ FN WWWV -- call an original of type long fn (long, long)

CALL_ FN v.WMWV -- call an original of type void fn (long, long, long)
CALL_ FN WWMWV -- call an original of type long fn (long, long, long)

CALL_FN W WMWYV -- call an original of type long fn (long, long, long, long)

CALL_FN W5W -- call an original of type long fn (long, long, |long, |ong,
CALL_FN W6W -- call an original of type long fn (long, long, |long, |ong,
and so on, up to

CALL_FN W 12w

The set of supported types can be expanded as needed. It is regrettable that this limitation exists. Function
wrapping has proven difficult to implement, with a certain apparently unavoidable level of ickiness. After several
implementation attempts, the present arrangement appears to be the least-worst tradeoff. At least it works reliably
in the presence of dynamic linking and dynamic code |oading/unloading.

Y ou should not attempt to wrap a function of one type signature with a wrapper of a different type signature.
Such trickery will surely lead to crashes or strange behaviour. Thisis not a limitation of the function wrapping
implementation, merely areflection of the fact that it gives you sweeping powers to shoot yourself in the foot if
you are not careful. Imagine the instant havoc you could wreak by writing awrapper which matched any function
name in any soname - in effect, one which claimed to be awrapper for all functionsin the process.

3.3.7. Examples

In the sourcetree, nentheck/ t est s/ wr ap[1- 8] . ¢ provide a series of examples, ranging from very simple
to quite advanced.

npi /i bnpi wr ap. ¢ is an example of wrapping a big, complex API (the MPI-2 interface). This file defines
almost 300 different wrappers.

60

| ong)
| ong,

| on

4. Memcheck: a memory error
detector

To usethistool, youmay specify - - t ool =nentheck ontheVagrind command line. Y ou don't haveto, though,
since Memcheck is the default tool.

4.1. Overview

Memcheck is a memory error detector. It can detect the following problems that are common in C and C++
programs.

» Accessing memory you shouldn't, e.g. overrunning and underrunning heap blocks, overrunning the top of the
stack, and accessing memory after it has been freed.

» Using undefined values, i.e. valuesthat have not been initialised, or that have been derived from other undefined
values.

* Incorrect freeing of heap memory, such as double-freeing heap blocks, or mismatched use of mal | oc/new/
new] versusfree/del et e/del et e[]

Mismatches will also be reported for si zed and al i gned allocation and dealocation functions if the
deallocation value does not match the allocation value.

» Overlapping sr ¢ and dst pointersin mentpy and related functions.

» Passing afishy (presumably negative) value to the si ze parameter of a memory allocation function.
» Using asi ze vaue of O with realloc.

» Usinganal i gnment value that is not a power of two.

* Memory lesks.

Problems like these can be difficult to find by other means, often remaining undetected for long periods, then
causing occasional, difficult-to-diagnose crashes.

Memcheck also provides Execution Trees memory profiling using the command line option - - xt r ee- nenory
and the monitor command xt nenory.

4.2. Explanation of error messages from
Memcheck

Memcheck issues arange of error messages. This section presents aquick summary of what error messages mean.
The precise behaviour of the error-checking machinery isdescribed in Detail s of Memcheck's checking machinery.

4.2.1. lllegal read / lllegal write errors

For example:

Invalid read of size 4
at Ox40F6BBCC. (within /usr/lib/libpng.so.2.1.0.9)
by Ox40F6B804: (within /usr/lib/libpng.so.2.1.0.9)
by Ox40BO7FF4: read_png_i mage(Q nagel O *) (kernel/gpngi 0. cpp: 326)
by Ox40AC751B: Q magel O :read() (kernel/qi mage. cpp: 3621)

61

Memcheck: amemory error detector

Addr ess OxBFFFFOEO is not stack'd, nalloc'd or free'd

This happens when your program reads or writes memory at a place which Memcheck reckons it shouldn't. In
this example, the program did a 4-byte read at address OxBFFFFOEO, somewhere within the system-supplied
library libpng.s0.2.1.0.9, which was called from somewhere else in the same library, called from line 326 of
gpngi o. cpp, and so on.

Memcheck tries to establish what the illegal address might relate to, since that's often useful. So, if it pointsinto
ablock of memory which has already been freed, you'll be informed of this, and also where the block was freed.
Likewise, if it should turn out to be just off the end of a heap block, acommon result of off-by-one-errorsin array
subscripting, you'll beinformed of thisfact, and al so where the block was allocated. If you usethe- - r ead- var -
i nf o option Memcheck will run more slowly but may give amore detailed description of any illegal address.

In this example, Memcheck can't identify the address. Actually the address is on the stack, but, for some reason,
thisis not a valid stack address -- it is below the stack pointer and that isn't allowed. In this particular case it's
probably caused by GCC generating invalid code, a known bug in some ancient versions of GCC.

Note that Memcheck only tells you that your program is about to access memory at anillegal address. It can't stop
the access from happening. So, if your program makes an access which normally would result in a segmentation
fault, you program will still suffer the same fate -- but you will get a message from Memcheck immediately prior
to this. In this particular example, reading junk on the stack is non-fatal, and the program stays alive.

4.2.2. Use of uninitialised values

For example:

Condi tional junp or nobve depends on uninitialised value(s)
at 0x402DFA94: 1O vfprintf (_itoa.h:49)
by 0x402E8476: _10O printf (printf.c:36)
by 0x8048472: main (tests/manuel 1.c: 8)

An uninitialised-value use error is reported when your program uses a value which hasn't been initialised -- in
other words, is undefined. Here, the undefined value is used somewhere inside the pr i nt f machinery of the C
library. This error was reported when running the following small program:

int main()
{

int Xx;

printf ("x = %\n", x);
}

It is important to understand that your program can copy around junk (uninitialised) data as much as it likes.
Memcheck observes this and keepstrack of the data, but does not complain. A complaint isissued only when your
program attempts to make use of uninitialised datain a way that might affect your program's externally-visible
behaviour. In this example, x is uninitialised. Memcheck observes the value being passedto _1 O pri ntf and
thenceto _I O _vf pri nt f, but makes no comment. However, _| O vf pri nt f hasto examine the value of x
so it can turn it into the corresponding ASCII string, and it is at this point that Memcheck complains.

Sources of uninitialised data tend to be:
» Local variablesin procedures which have not been initialised, as in the example above.

» The contents of heap blocks (allocated with mal | oc, new, or asimilar function) before you (or a constructor)
write something there.

To see information on the sources of uninitialised data in your program, use the - -t rack- ori gi ns=yes
option. This makes Memcheck run more slowly, but can make it much easier to track down the root causes of
uninitialised value errors.

62

Memcheck: amemory error detector

4.2.3. Use of uninitialised or unaddressable values in
system calls

Memcheck checks all parametersto system calls:
* It checks all the direct parameters themselves, whether they are initialised.

» Also, if asystem call needs to read from a buffer provided by your program, Memcheck checks that the entire
buffer is addressable and its contents are initialised.

» Also, if the system call needsto writeto auser-supplied buffer, Memcheck checksthat the buffer isaddressable.

After the system call, Memcheck updates its tracked information to precisely reflect any changesin memory state
caused by the system call.

Here's an example of two system calls with invalid parameters:

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(void)

{
char* arr mal | oc(10);
int* arr2 mal | oc(si zeof (int));
wite(1 /* stdout */, arr, 10);
exit(arr2[0]);

}

Y ou get these complaints ...

Syscall paramwite(buf) points to uninitialised byte(s)
at 0x25A48723: _ wite _nocancel (in /lib/tls/libc-2.3.3.5s0)
by Ox259AFAD3: _ libc_start _main (in /lib/tls/libc-2.3.3.5s0)
by 0x8048348: (within /auto/honmes/njn25/grind/ head4/ a. out)
Addr ess 0x25AB8028 is 0 bytes inside a block of size 10 alloc'd
at 0x259852B0: nall oc (vg_replace nalloc.c: 130)
by 0x80483F1: main (a.c:5)

Syscal |l paramexit(error_code) contains uninitialised byte(s)
at 0x25A21B44: QA __exit (in /lib/tls/libc-2.3.3.5s0)
by 0x8048426: main (a.c:8)

... because the program has (a) written uninitialised junk from the heap block to the standard output, and (b) passed
an uninitialised value to exi t . Note that the first error refers to the memory pointed to by buf (not buf itself),
but the second error refers directly to exi t 'sargument ar r 2[0] .

4.2.4. lllegal frees

For example:

Invalid free()
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)
Addr ess 0x3807F7B4 is 0 bytes inside a bl ock of size 177 free'd
at Ox4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: nmmin (tests/doublefree.c: 10)

63

Memcheck: amemory error detector

Memcheck keepstrack of the blocksallocated by your programwithmal | oc/new, soit can know exactly whether
or not theargument to f r ee/del et e islegitimate or not. Here, thistest program has freed the same block twice.
Aswiththeillegal read/write errors, Memcheck attemptsto make sense of the addressfreed. If, ashere, the address
is one which has previously been freed, you wil be told that -- making duplicate frees of the same block easy to
spot. You will also get this message if you try to free a pointer that doesn't point to the start of a heap block.

4.2.5. When a heap block is freed with an inappropriate
deallocation function

In the following example, ablock allocated with new{] haswrongly been deallocated with f r ee:

M smat ched free() / delete / delete []

at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray:: ~QGArray(void) (tools/qgarray.cpp: 149)
by 0x4C261C41: Ppt Doc: : ~Ppt Doc(voi d) (include/ gnenmarray. h: 60)
by 0x4C261FOE: Ppt Xm :: ~Ppt Xm (voi d) (pptxmn.cc: 44)

Addr ess 0x4BB292A8 is 0 bytes inside a bl ock of size 64 alloc'd
at 0x4004318C. operator new] (unsigned int) (vg _clientfuncs.c: 152)
by 0x4C21BCl5: KLaol a::readSBStrean(int) const (klaola.cc:314)
by 0x4C21C155: KLaol a:: strean{KLaol a: : O_LENode const *) (klaol a.cc: 416)
by 0x4C21788F: OLEFilter::convert(QCString const & (olefilter.cc:272)

In C++ it'simportant to deallocate memory in away compatible with how it was allocated.

Most of the time in C++ you will write code that uses new expr essi on and del et e expressi on (see
cppreference new expression and cppreference delete expression). A new expression will call oper at or new
to perform the allocation and then call the constructor (if one exists) on the object. Similarly a delete expression
will call the destructor on the object (if one exists) and then call oper at or del et e. The array overloads call
constructors/destructors for each object in the array.

Thededl is:

« If dlocated withmal | oc, cal | oc,real | oc,val | oc or nenal i gn, you must deallocate withf r ee.
« If alocated with new, you must deallocate with del et e.

« If alocated with new], you must deallocate with del et e[] .

Mixing types of allocators and deall ocatorsis undefined behaviour. That means that on some platforms you might
not have any problems, but the same program may then crash on a different platform, Solaris for example. So it's
best to fix it properly. According to the KDE folks "it's amazing how many C++ programmers don't know this".

The reason behind the requirement is as follows. In some C++ implementations, del et e[] must be used for
objects allocated by new{] because the compiler stores the size of the array and the pointer-to-member to the
destructor of the array's content just before the pointer actually returned. del et e doesn't account for thisand will
get confused, possibly corrupting the heap. Even if thereisno corruption there are likely to be resource leaks since
using the wrong delete may result in the wrong number of destructors being called.

C++ digned allocations need to be freed using aligned delete with the same alignment.

4.2.6. Overlapping source and destination blocks

The following C library functions copy some data from one memory block to another (or something similar):
nmencpy, strcpy,strncpy,strcat,strncat . Theblocks pointed to by their sr ¢ and dst pointersaren't
allowed to overlap. The POSIX standards have wording along the lines "If copying takes place between objects
that overlap, the behavior is undefined." Therefore, Memcheck checks for this.

For example:

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete

Memcheck: amemory error detector

==27492== Sour ce and destination overlap in nmencpy(Oxbffff294, Oxbffff280, 21)

==27492== at 0x40026CDC. nentpy (nct_replace_strmemc: 71)
==27492== by 0x804865A: main (overl ap.c: 40)

Y ou don't want the two blocks to overlap because one of them could get partially overwritten by the copying.

Y ou might think that Memcheck is being overly pedantic reporting this in the case where dst islessthan sr c.
For example, the obvious way to implement mentpy is by copying from the first byte to the last. However, the
optimisation guides of some architectures recommend copying from the last byte down to the first. Also, some
implementations of mentpy zerodst before copying, because zeroing the destination's cache ling(s) canimprove
performance.

Themoral of thestory is: if you want to writetruly portable code, don't make any assumptions about the language
implementation.

4.2.7. Fishy argument values

All memory allocation functionstake an argument specifying the size of the memory block that should beall ocated.
Clearly, the requested size should be a non-negative value and is typically not excessively large. For instance, it
is extremely unlikly that the size of an allocation request exceeds 2**63 bytes on a 64-bit machine. It is much
more likely that such avalue is the result of an erroneous size calculation and is in effect a negative value (that
just happens to appear excessively large because the hit pattern is interpreted as an unsigned integer). Such a
value is called a "fishy value". The si ze argument of the following alocation functions is checked for being
fishy: mal | oc, cal | oc, real | oc, menal i gn, posi x_menal i gn, al i gned_al | oc, new, new [].
__builtin_new, builtin_vec_new, Forcal | oc both arguments are checked.

For example:

==32233== Argunent 'size' of function nalloc has a fishy (possibly negative) val ue:

==32233== at Ox4C2CFA7: malloc (vg replace nall oc. c: 298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

In earlier Vagrind versions those values were being referred to as "silly arguments’ and no back-trace was
included.

4.2.8. Realloc size zero

The (ab)use or realloc to also do the job of f r ee has been poorly understood for along time. In the C17 standard
ISO/IEC 9899:2017] the behaviour of realloc when the size argument is zero is specified as implementation
defined. Memcheck warns about the non-portable use or realloc.

For example:

==77609== realloc() with size O

==77609== at 0x48502B8: reall oc (vg_replace_malloc.c: 1450)

==77609== by 0x201989: nmin (realloczero.c: 8)

==77609== Address 0x5464040 is 0 bytes inside a block of size 4 alloc'd
==77609== at 0x484CBB4: malloc (vg_replace_nall oc. c: 397)

==77609== by 0x201978: main (realloczero.c:7)

4.2.9. Alignment Errors

C and C++ have severa functions that alow the user to obtain aligned memory. Typicaly this is done for
performance reasons so that the memory will be cache line or memory page aligned. C has the functions
menmal i gn, posi x_nenal i gn and al i gned_al | oc. C++ has numerous overloads of oper at or new
and operator del ete. Of these, posix_memalign is quite clearly specified, the others vary quite widely
between implementations. Valgrind will generate errors for values of alignment that are invalid on any platform.

65

-3

Memcheck: amemory error detector

nmemal i gn will produce errorsif the alignment is zero or not amultiple of two.

posi x_nmemal i gn will produce errors if the alignment is less than sizeof(size t), not a multiple of two or if
thesizeis zero.

al i gned_al | oc will produce errorsif the alignment is not a multiple of two , if the size is zero or if the size
isnot an integral multiple of the alignment.

al i gned newwill produce errors if the alignment is zero or not a multiple of two. The not hr ow overloads
will return aNULL pointer. The non-nothrow overloads will abort Valgrind.

al i gned del et e will produce errors if the alignment is zero or not a multiple of two or if the alignment is
not the same asthat used by al i gned new.

si zed del et e will produce errors if the size is not the same as that used by new.
si zed al i gned del et e combinesthe error conditions of the individual sized and aligned del ete operators.

Example output:

==65825== I nvalid alignnment value: 3 (should be power of 2)
==65825== at 0x485197E: nenmlign (vg_replace_malloc.c: 1740)
==65825== by 0x201CD2: nmain (nemalign.c: 39)

4.2.10. Memory leak detection

Memcheck keeps track of all heap blocksissued in responseto callsto mal | oc/newet a. So when the program
exits, it knows which blocks have not been freed.

If - - | eak- check isset appropriately, for each remaining block, Memcheck determinesif the block isreachable
from pointers within the root-set. The root-set consists of (a) general purpose registers of all threads, and (b)
initialised, aligned, pointer-sized data words in accessible client memory, including stacks.

There are two ways ablock can be reached. Thefirstiswith a"start-pointer”, i.e. apointer to the start of the block.
The second iswith an "interior-pointer”, i.e. apointer to the middle of the block. There are several ways we know
of that an interior-pointer can occur:

» The pointer might have originally been a start-pointer and have been moved aong deliberately (or not
deliberately) by the program. In particular, this can happen if your program uses tagged pointers, i.e. if it uses
the bottom one, two or three bits of a pointer, which are normally always zero due to alignment, in order to
store extrainformation.

* It might be arandom junk value in memory, entirely unrelated, just a coincidence.

* It might beapointer totheinner char array of aC++ st d: : st ri ng. For example, some compilersadd 3 words
at the beginning of the std::string to store the length, the capacity and a reference count before the memory
containing the array of characters. They return a pointer just after these 3 words, pointing at the char array.

» Some code might allocate ablock of memory, and usethefirst 8 bytesto store (block size - 8) asa64bit number.
sql i t e3MenMal | oc doesthis.

* It might be apointer to an array of C++ objects (which possess destructors) allocated with new|] . Inthis case,
some compilers store a"magic cookie" containing the array length at the start of the allocated block, and return
apointer to just past that magic cookie, i.e. an interior-pointer. See this page for more information.

* It might be a pointer to an inner part of a C++ object using multiple inheritance.

You can optionally activate heuristics to use during the leak search to detect the interior pointers corresponding
tothest dstri ng,l engt h64, newar ray andnul ti pl ei nherit ance cases. If the heuristic detects that
an interior pointer corresponds to such a case, the block will be considered as reachable by the interior pointer. In
other words, the interior pointer will be treated as if it were a start pointer.

66

https://www.math.utah.edu/docs/info/gxxint_1.html#SEC17

Memcheck: amemory error detector

With that in mind, consider the nine possible cases described by the following figure.

Poi nter chain AAA Leak Case BBB Leak Case
(1) RRR ---=--cmmu-- > BBB DR
(2) RRR ---> AAA ---> BBB DR I R
(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5 RRR ------ P > BBB (y)DR, (n)DL
(6) RRR ---> AAA -?-> BBB DR (y)IR (n)DL

(7) RRR -?-> AAA ---> BBB (y)DR, (n)DL (y)IR (n)IL
(8) RRR-?-> AMA -?-> BBB (y)DR (n)DL (y,y)IR (n,y)IL, (_,nDL
(9) RRR AAA -?-> BBB DL (y)IL, (n)DL

Poi nter chain | egend:

- RRR a root set node or DR bl ock
- AAA, BBB: heap bl ocks

- ---> a start-pointer

- -?-> an interior-pointer

Leak Case | egend:

- DR Directly reachable

- IR Indirectly reachable

- DL: Directly I ost

- IL: Indirectly | ost

- (y)XY: it's XY if the interior-pointer is a real pointer

- (nN)XY: it's XY if the interior-pointer is not a real pointer
- (XY it's XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these casesin its output,
resulting in the following four leak kinds.

o "Still reachable". Thiscoverscases 1 and 2 (for the BBB blocks) above. A start-pointer or chain of start-pointers
to the block is found. Since the block is still pointed at, the programmer could, at least in principle, have freed
it before program exit. "Still reachable" blocks are very common and arguably not a problem. So, by defaullt,
Memcheck won't report such blocks individually.

» "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no pointer to the block can
be found. The block is classified as"lost", because the programmer could not possibly have freed it at program
exit, since no pointer to it exists. Thisislikely a symptom of having lost the pointer at some earlier point in the
program. Such cases should be fixed by the programmer.

* "Indirectly lost". This covers cases 4 and 9 (for the BBB blocks) above. This means that the block is lost, not
because there are no pointers to it, but rather because all the blocks that point to it are themselves lost. For
example, if you have abinary tree and the root nodeislost, al its children nodeswill be indirectly lost. Because
the problem will disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck won't
report such blocks individually by default.

e "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a chain of one or more
pointers to the block has been found, but at least one of the pointersis an interior-pointer. This could just be a
random value in memory that happens to point into a block, and so you shouldn't consider this ok unless you
know you have interior-pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best way that leaks
could be reported; in particular, interior-pointers are treated inconsistently. It is possible the categorisation may
be improved in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed” no matter what which of the
above four kinds it belongs to.

67

Memcheck: amemory error detector

The following is an example leak summary.

LEAK SUMVARY:
definitely lost: 48 bytes in 3 bl ocks.
indirectly lost: 32 bytes in 2 bl ocks.
possi bly lost: 96 bytes in 6 bl ocks.
still reachable: 64 bytes in 4 bl ocks.
suppressed: 0 bytes in O bl ocks.

If heuristics have been used to consider some blocks as reachable, the leak summary details the heuristically
reachable subset of 'still reachable:’ per heuristic. In the below example, of the 95 bytes still reachable, 87 bytes
(56+7+8+16) have been considered heuristically reachable.

LEAK SUMVARY
definitely lost: 4 bytes in 1 bl ocks
indirectly lost: 0 bytes in O bl ocks
possibly lost: O bytes in O bl ocks

still reachable: 95 bytes in 6 bl ocks
of which reachabl e via heuristic:
stdstring : 56 bytes in 2 bl ocks
| engt h64 : 16 bytes in 1 bl ocks
newar r ay : 7 bytes in 1 bl ocks

mul ti pl ei nheritance: 8 bytes in 1 bl ocks
suppressed: 0 bytes in O bl ocks

If - -1 eak- check=f ul | isspecified, Memcheck will give detailsfor each definitely lost or possibly lost block,
including where it was allocated. (Actually, it merges results for al blocks that have the same leak kind and
sufficiently similar stack traces into a single "loss record”. The - - | eak-r esol uti on lets you control the
meaning of "sufficiently similar”.) It cannot tell you when or how or why the pointer to a leaked block was lost;
you have to work that out for yourself. In general, you should attempt to ensure your programs do hot have any
definitely lost or possibly lost blocks at exit.

For example:

8 bytes in 1 blocks are definitely lost in loss record 1 of 14

at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:39)
88 (8 direct, 80 indirect) bytes in 1 blocks are definitely lost in |Ioss record 13 of
at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: nk (leak-tree.c:11)
by Ox........: main (leak-tree.c:25)

The first message describes a simple case of a single 8 byte block that has been definitely lost. The second case
mentions another 8 byte block that has been definitely lost; the differenceisthat afurther 80 bytesin other blocks
are indirectly lost because of this lost block. The loss records are not presented in any notable order, so the loss
record numbers aren't particularly meaningful. The loss record numbers can be used in the Valgrind gdbserver to
list the addresses of the leaked blocks and/or give more details about how a block is still reachable.

The option --show | eak- ki nds=<set > controls the set of leak kinds to show when - -1 eak-
check=f ul | isspecified.

The <set > of leak kindsis specified in one of the following ways:
» acommaseparated list of one or more of def i nite i ndirect possible reachable.

» al | to specify the complete set (all leak kinds).

68

Memcheck: amemory error detector

* none for the empty set.
The default value for the leak kinds to show is- - show- | eak- ki nds=defi ni t e, possi bl e.

To also show the reachable and indirectly lost blocksin addition to the definitely and possibly lost blocks, you can
use- - show | eak- ki nds=al | . To only show the reachable and indirectly lost blocks, use- - show | eak-
ki nds=i ndi rect, reachabl e. The reachable and indirectly lost blocks will then be presented as shown in
the following two examples.

64 bytes in 4 blocks are still reachable in |oss record 2 of 4
at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|eak-cases.c:74)

32 bytes in 2 blocks are indirectly lost in loss record 1 of 4

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: nk (|eak-cases.c:52)
by Ox........: main (|leak-cases.c: 80)

Because there are different kinds of leaks with different severities, an interesting question is: which leaks should
be counted as true "errors" and which should not?

The answer to this question affectsthe numbers printed in the ERROR SUMMARY line, and al so the effect of the - -
error - exit code option. First, aleak isonly counted asatrue"error" if - - | eak- check=f ul | isspecified.
Then, the option - - err or s-f or - | eak- ki nds=<set > controls the set of leak kinds to consider as errors.
The default valueis- - error s- f or - | eak- ki nds=defi nite, possible

4.3. Memcheck Command-Line Options

- -l eak- check=<no| summary| yes|ful | > [default: summary]

When enabled, search for memory leaks when the client program finishes. If set to summary, it says how
many leaks occurred. If settof ul | or yes, each individual leak will be shown in detail and/or counted as
an error, as specified by the options - - show | eak- ki nds and - - err ors-f or - | eak- ki nds.

If - - xm =yes isgiven, memcheck will automatically usethevalue- - | eak- check=f ul | . You can use
- -show | eak- ki nds=none to reduce the size of the xml output if you are not interested in the leak
results.

eak-resol uti on=<| ow nmed| hi gh> [defaul t: high]

When doing leak checking, determines how willing Memcheck is to consider different backtraces to be the
same for the purposes of merging multiple leaksinto asingle leak report. When set to | ow, only the first two
entries need match. When med, four entries have to match. When hi gh, all entries need to match.

For hardcore leak debugging, you probably want to use - - | eak-r esol ut i on=hi gh together with - -
num cal | er s=40 or some such large number.

Notethat the- - | eak- r esol ut i on setting doesnot affect Memcheck'sability tofindleaks. It only changes
how the results are presented.

- -show | eak- ki nds=<set > [default: definite, possible]
Specifiesthe leak kindsto show inaf ul | leak search, in one of the following ways:
» acommaseparated list of one or more of defi nite i ndirect possible reachable.

« all to specify the complete set (al leak kinds). It is equivdent to --show | eak-
ki nds=definite,indirect, possibl e, reachabl e.

* none for the empty set.

69

Memcheck: amemory error detector

--errors-for-1eak-kinds=<set> [default: definite, possible]

Specifies the leak kinds to count as errorsin af ul | leak search. The <set > is specified similarly to - -
show | eak- ki nds

- -l eak-check-heuristics=<set> [default: all]

Specifiesthe set of leak check heuristicsto be used during leak searches. The heuristics control which interior
pointersto ablock causeit to be considered as reachable. The heuristic set is specified in one of the following

ways:

e a comma separated list of one or more of stdstring | engt h64 newar r ay
mul ti pl ei nheritance.

« all to activate the complete set of heuristics. It is equivaent to --Ieak-check-
heuri stics=stdstring, | ength64, newarray, nul tipl ei nheritance.

* none for the empty set.

Note that these heuristics are dependent on the layout of the objects produced by the C++ compiler. They have
been tested with somegcc versions (e.g. 4.4 and 4.7). They might not work properly with other C++ compilers.

--show r eachabl e=<yes| no> , --show possi bl y-I ost =<yes| no>
These options provide an aternative way to specify the leak kinds to show:

e --showreachabl e=no --show possi bl y-I ost=yes is equivalent to --show- | eak-
ki nds=definite, possi bl e.

e --showreachabl e=no --show possi bl y-1ost=no is equivalent to --show- | eak-
ki nds=definite.

» --show reachabl e=yes isequivalentto- - show | eak- ki nds=al | .
Note that - - show possi bl y-1 ost =no hasno effect if - - show r eachabl e=yes is specified.
--xtree-1| eak=<no| yes> [no]

If set toyes, theresultsfor theleak search doneat exit will be output in a'Callgrind Format' execution treefile.
Note that this automatically sets the options - - | eak- check=f ul | and - - show | eak- ki nds=al |,
to allow xtree visualisation tools such as kcachegrind to select what kind to leak to visualize. The produced
file will contain the following events:

* RB: Reachable Bytes

PB : Possibly lost Bytes
» | B: Indirectly lost Bytes
» DB: Definitely lost Bytes (direct plus indirect)

DI B: Definitely Indirectly lost Bytes (subset of DB)
* RBk : reachable Blocks

e PBK : Possibly lost Blocks

* | Bk : Indirectly lost Blocks

» DBk : Definitely lost Blocks

The increase or decrease for all events above will also be output in the file to provide the delta (increase
or decrease) between 2 successive leak searches. For example, i RB is the increase of the RB event, dPBk
is the decrease of PBk event. The values for the increase and decrease events will be zero for the first leak
search done.

70

Memcheck: amemory error detector

See Execution Trees for a detailed explanation about execution trees.
--xtree-leak-file=<filename> [default: xtleak.kcg. %p]

Specifiesthat VValgrind should produce the xtree leak report in the specified file. Any %p, %g or % sequences
appearing in the filename are expanded in exactly the same way as they are for - -1 og-fi | e. See the
description of --log-file for details.

See Execution Trees for a detailed explanation about execution trees formats.
--undef -val ue- errors=<yes| no> [default: yes]

Controls whether Memcheck reports uses of undefined value errors. Set thisto no if you don't want to see
undefined value errors. It also has the side effect of speeding up Memcheck somewhat. AddrCheck (removed
in Valgrind 3.1.0) functioned like Memcheck with - - undef - val ue- err or s=no.

--track-origi ns=<yes| no> [default: no]

Controls whether Memcheck tracks the origin of uninitialised values. By default, it does not, which means
that although it can tell you that an uninitialised value is being used in a dangerous way, it cannot tell you
where the uninitialised value came from. This often makesit difficult to track down the root problem.

When set toyes, Memcheck keepstrack of the origins of all uninitialised values. Then, when an uninitialised
valueerror isreported, Memcheck will try to show theorigin of thevalue. An origin can be one of thefollowing
four places: aheap block, astack allocation, aclient request, or miscellaneous other sources(eg, acall tobr k).

For uninitialised values originating from a heap block, Memcheck shows where the block was allocated. For
uninitialised values originating from a stack allocation, Memcheck can tell you which function allocated the
value, but no more than that -- typically it shows you the source location of the opening brace of the function.
So you should carefully check that all of the function's local variables are initialised properly.

Performance overhead: origin tracking is expensive. It halves Memcheck's speed and increases memory use
by a minimum of 100MB, and possibly more. Nevertheless it can drastically reduce the effort required to
identify the root cause of uninitialised value errors, and so is often a programmer productivity win, despite
running more slowly.

Accuracy: Memcheck tracks origins quite accurately. To avoid very large space and time overheads, some
approximations are made. It is possible, although unlikely, that Memcheck will report an incorrect origin, or
not be able to identify any origin.

Notethat thecombination- - t r ack- or i gi ns=yes and- - undef - val ue- err or s=noisnonsensical.
Memcheck checks for and rejects this combination at startup.

--partial -1 oads- ok=<yes| no> [defaul t: yes]

Controls how Memcheck handles 32-, 64-, 128- and 256-bit naturally aligned loads from addresses for which
some bytes are addressable and others are not. Wheny es, such loadsdo not produce an address error. Instead,
loaded bytes originating from illegal addresses are marked as uninitialised, and those corresponding to legal
addresses are handled in the normal way.

When no, loads from partially invalid addresses are treated the same as loads from completely invalid
addresses: an illegal-address error isissued, and the resulting bytes are marked as initialised.

Note that code that behavesin thisway isin violation of the SO C/C++ standards, and should be considered
broken. If at al possible, such code should be fixed.

- -expensi ve- def i nedness- checks=<no| aut o] yes> [defaul t: auto]

Controls whether Memcheck should employ more precise but also more expensive (time consuming)
instrumentati on when checking the definedness of certain values. In particular, this affectsthe instrumentation
of integer adds, subtracts and equality comparisons.

Selecting - - expensi ve- def i nedness- checks=yes causes Memcheck to use the most accurate
analysis possible. This minimises false error rates but can cause up to 30% performance degradation.

71

Memcheck: amemory error detector

Selecting - - expensi ve- defi nedness-checks=no causes Memcheck to use the cheapest
instrumentation possible. This maximises performance but will normally give an unusably high false error
rate.

The default setting, - - expensi ve- def i nedness- checks=aut o, is strongly recommended. This
causes Memcheck to use the minimum of expensive instrumentation needed to achieve the same false error
rate as - - expensi ve- def i nedness- checks=yes. It also enables an instrumentation-time analysis
pass which aims to further reduce the costs of accurate instrumentation. Overall, the performance loss is
generaly around 5% relative to - - expensi ve- def i nedness- checks=no, athough this is strongly
workload dependent. Note that the exact instrumentation settings in this mode are architecture dependent.

--keep-stacktraces=al l oc|free|alloc-and-free|alloc-then-free| none [default:
al | oc-and-free]

Controls which stack trace(s) to keep for malloc'd and/or free'd blocks.

With al | oc-t hen-fr ee, astack trace is recorded at allocation time, and is associated with the block.
When the block is freed, a second stack trace is recorded, and this replaces the allocation stack trace. As a
result, any "use after free" errors relating to this block can only show a stack trace for where the block was
freed.

With al | oc- and- f r ee, both allocation and the deallocation stack traces for the block are stored. Hence
a"use after free" error will show both, which may make the error easier to diagnose. Comparedto al | oc-
t hen-fr ee, this setting dlightly increases Valgrind's memory use as the block contains two references
instead of one.

With al | oc, only the allocation stack trace is recorded (and reported). With f r ee, only the deallocation
stack trace is recorded (and reported). These values somewhat decrease Valgrind's memory and cpu usage.
They can be useful depending on the error types you are searching for and the level of detail you need to
analyse them. For example, if you are only interested in memory leak errors, it is sufficient to record the
allocation stack traces.

With none, no stack traces are recorded for malloc and free operations. If your program allocates a lot
of blocks and/or allocates/frees from many different stack traces, this can significantly decrease cpu and/or
memory required. Of course, few details will be reported for errors related to heap blocks.

Note that once a stack trace isrecorded, Valgrind keeps the stack trace in memory even if it is not referenced
by any block. Some programs (for example, recursive algorithms) can generate a huge number of stack traces.
If Valgrind uses too much memory in such circumstances, you can reduce the memory required with the
options - - keep- st ackt r aces and/or by using asmaller value for the option - - nunt cal | er s.

If you want to use - - xt r ee- menor y=f ul | memory profiling (see Execution Trees), then you cannot
specify - - keep- st ackt races=free or - - keep- st ackt races=none.

--freelist-vol =<nunber> [default: 20000000]

When the client program releases memory using free (in C) or del et e (C++), that memory is not
immediately made availablefor re-allocation. Instead, it is marked inaccessible and placed in aqueue of freed
blocks. The purpose is to defer as long as possible the point at which freed-up memory comes back into
circulation. This increases the chance that Memcheck will be able to detect invalid accesses to blocks for
some significant period of time after they have been freed.

This option specifies the maximum total size, in bytes, of the blocksin the queue. The default value is twenty
million bytes. Increasing thisincreasesthe total amount of memory used by Memcheck but may detect invalid
uses of freed blocks which would otherwise go undetected.

--freelist-big-bl ocks=<nunber> [default: 1000000]

When making blocks from the queue of freed blocks available for re-allocation, Memcheck will in priority re-
circulate the blocks with a size greater or equal to - - f r eel i st - bi g- bl ocks. This ensures that freeing
big blocks (in particular freeing blocks bigger than - - f r eel i st - vol) does not immediately lead to are-

72

Memcheck: amemory error detector

circulation of al (or alot of) thesmall blocksin thefreelist. In other words, thisoptionincreasesthelikelihood
to discover dangling pointers for the "small" blocks, even when big blocks are freed.

Setting avalue of 0 meansthat all the blocks are re-circulated in a FIFO order.
- -wor kar ound- gcc296- bugs=<yes| no> [defaul t: no]

When enabled, assume that reads and writes some small distance below the stack pointer are due to bugsin
GCC 2.96, and does not report them. The "small distance” is 256 bytes by default. Note that GCC 2.96 isthe
default compiler on some ancient Linux distributions (RedHat 7.X) and so you may need to use this option.
Do not useit if you do not have to, asit can cause real errors to be overlooked. A better alternative is to use
amore recent GCC in which thisbug is fixed.

Y ou may also need to use this option when working with GCC 3.X or 4.X on 32-bit PowerPC Linux. Thisis
because GCC generates code which occasionally accesses below the stack pointer, particularly for floating-
point to/from integer conversions. Thisisin violation of the 32-bit PowerPC EL F specification, which makes
no provision for locations below the stack pointer to be accessible.

This option isdeprecated as of version 3.12 and may be removed from future versions. Y ou should instead use
--i gnor e-range- bel ow sp to specify the exact range of offsets below the stack pointer that should be
ignored. A suitable equivalentis- - i gnor e-r ange- bel ow sp=1024- 1.

gnor e-r ange- bel ow sp=<nunber >- <nunber >

This is a more general replacement for the deprecated - - wor kar ound- gcc296- bugs option. When
specified, it causes Memcheck not to report errorsfor accesses at the specified offsets below the stack pointer.
The two offsets must be positive decimal numbers and -- somewhat counterintuitively -- the first one must be
larger, in order to imply a non-wraparound address range to ignore. For example, to ignore 4 byte accesses
at 8192 bytes below the stack pointer, use- - i gnor e- r ange- bel ow sp=8192- 8189. Only one range
may be specified.

--show m smat ched- f rees=<yes| no> [defaul t: yes]

When enabled, Memcheck checksthat heap blocks are deall ocated using afunction that matchesthe all ocating
function. That is, it expectsf r ee to be used to deallocate blocks allocated by mal | oc, del et e for blocks
allocated by new, and del et e[] for blocks alocated by new] . If a mismatch is detected, an error is
reported. Thisisin general important because in some environments, freeing with a non-matching function
can cause crashes.

There is however a scenario where such mismatches cannot be avoided. That is when the user provides
implementations of newnew|] that call mal | oc and of del et e/del et e[] that cal f r ee, and these
functions are asymmetricaly inlined. For example, imaginethat del et e[] isinlined but new{] isnot. The
result is that Memcheck "sees' all del et e[] callsasdirect callsto f r ee, even when the program source
contains no mismatched calls.

This causes a lot of confusing and irrelevant error reports. - - show ni smat ched- f r ees=no disables
these checks. It isnot generally advisableto disable them, though, because you may missreal errorsasaresult.

--showreal |l oc-si ze-zero=<yes| no> [defaul t: yes]

When enabled, Memcheck checksfor usesof r eal | oc withasize of zero. Thisusageof r eal | oc isunsafe
sinceit is not portable. On some systems it will behave likef r ee. On other systemsit will either do nothing
or else behavelikeacall tof r ee followed by acall to mal | oc with asize of zero.

--i gnore-ranges=0xPP- 0xQJ , OXRR- 0xSS]

Any ranges listed in this option (and multiple ranges can be specified, separated by commas) will be ignored
by Memcheck's addressability checking.

--mal l oc-fill =<hexnunber >

Fills blocks allocated by mal | oc, new, etc, but not by cal | oc, with the specified byte. This can be
useful when trying to shake out obscure memory corruption problems. The allocated area is still regarded

73

Memcheck: amemory error detector

by Memcheck as undefined -- this option only affects its contents. Note that - - mal | oc-fi | | does not
affect ablock of memory when it is used as argument to client requests VALGRIND _MEMPOOL_ALLOC
or VALGRIND_MALLOCLIKE_BLOCK.

--free-fill =<hexnunber >

Fills blocks freed by f r ee, del et e, etc, with the specified byte value. This can be useful when trying
to shake out obscure memory corruption problems. The freed area is still regarded by Memcheck as
not valid for access -- this option only affects its contents. Note that - -free-fil | does not affect
a block of memory when it is used as argument to client requests VALGRIND_MEMPOOL _FREE or
VALGRIND_FREELIKE_BLOCK.

4.4. Writing suppression files

The basic suppression format is described in Suppressing errors.

The suppression-type (second) line should have the form:

Mentheck: suppressi on_t ype
The Memcheck suppression types are as follows:

e Val uel, Val ue2, Val ue4, Val ue8, Val uel6, meaning an uninitialised-value error when using a value
of 1, 2, 4, 8 or 16 bytes.

» Cond (or itsold name, Val ue0), meaning use of an uninitialised CPU condition code.

* Addr 1, Addr 2, Addr 4, Addr 8, Addr 16, meaning an invalid address during a memory access of 1, 2, 4,
8 or 16 bytes respectively.

» Junp, meaning an jJump to an unaddressable location error.

e Par am meaning an invalid system call parameter error.

* Fr ee, meaning aninvalid or mismatching free.

e Overl ap, meaningasr c /dst overlapinmencpy or asimilar function.
» Leak, meaning a memory leak.

Par amerrors have a mandatory extra information line at this point, which is the name of the offending system
call parameter.

Leak errors have an optional extrainformation line, with the following format:

mat ch- | eak- ki nds: <set >

where <set > specifies which leak kinds are matched by this suppression entry. <set > is specified in the same
way aswith the option - - show- | eak- ki nds, that is, one of the following:

» acommaseparated list of one or more of defi nite i ndirect possible reachable.
» al | to specify the complete set (all leak kinds).

» none for the empty set.

If this optional extralineis not present, the suppression entry will match all leak kinds.

Be aware that leak suppressions that are created using - - gen- suppr essi ons will contain this optional extra
line, and therefore may match fewer leaks than you expect. You may want to remove the line before using the
generated suppressions.

The other Memcheck error kinds do not have extralines.

74

Memcheck: amemory error detector

If you give the - v option, Valgrind will print the list of used suppressions at the end of execution. For a leak
suppression, this output gives the number of different loss records that match the suppression, and the number
of bytes and blocks suppressed by the suppression. If the run contains multiple leak checks, the number of bytes
and blocks are reset to zero before each new leak check. Note that the number of different loss records is not
reset to zero.

In the example below, in the last leak search, 7 blocks and 96 bytes have been suppressed by a suppression with
thenamesone_| eak_suppr essi on:

--21041-- used_suppressi on: 10 sone_ot her | eak_suppressi on s.supp: 14 suppressed: 12
--21041-- used_suppressi on: 39 sone_| eak_suppression s.supp: 2 suppressed: 96 bytes |

For Val ueN and Addr N errors, the first line of the calling context is either the name of the function in which
the error occurred, or, failing that, the full path of the . so file or executable containing the error location. For
Fr ee errors, thefirst line isthe name of the function doing thefreeing (eg,free, _builtin_vec_del et e,
etc). For Over | ap errors, thefirst lineisthe name of the function with the overlapping arguments (eg. nencpy,
st rcpy, etc).

The last part of any suppression specifies the rest of the calling context that needs to be matched.

4.5. Details of Memcheck's checking
machinery

Read this section if you want to know, in detail, exactly what and how Memcheck is checking.

4.5.1. Valid-value (V) bits

It is simplest to think of Memcheck implementing a synthetic CPU which is identical to a real CPU, except for
one crucia detail. Every bit (literally) of data processed, stored and handled by the real CPU has, in the synthetic
CPU, an associated "valid-value' bit, which says whether or not the accompanying bit has alegitimate value. In
the discussions which follow, thisbit isreferred to asthe V (valid-value) hit.

Each byte in the system therefore has a 8 V bits which follow it wherever it goes. For example, when the CPU
loads a word-size item (4 bytes) from memory, it also loads the corresponding 32 V bits from a bitmap which
storesthe V bitsfor the process' entire address space. If the CPU should later write the whole or some part of that
value to memory at a different address, the relevant V bits will be stored back in the V-bit bitmap.

In short, each bit in the system has (conceptually) an associated V bit, which follows it around everywhere, even
inside the CPU. Yes, all the CPU'sregisters (integer, floating point, vector and condition registers) have their own
V bit vectors. For this to work, Memcheck uses a great deal of compression to represent the V bits compactly.

Copying values around does not cause Memcheck to check for, or report on, errors. However, when a value is
used in away which might conceivably affect your program's externally-visible behaviour, the associated V bits
areimmediately checked. If any of these indicate that the value is undefined (even partially), an error is reported.

Here's an (admittedly nonsensical) example:

int i, j;

int a[10], b[10];

for (i =0; i <10; i++) {
j = a[i];
b[i] =j;

}

Memcheck emits no complaints about this, since it merely copies uninitiaised values from a[] into b[], and
doesn't use them in away which could affect the behaviour of the program. However, if the loop is changed to:

75

Memcheck: amemory error detector

for (i =0; i <10; i++) {
jo+=alil];

}

if (] ==77)
printf("hello there\n");

then Memcheck will complain, at thei f , that the condition depends on uninitialised values. Note that it doesn't
complainatthej += a[i];,sinceat that point the undefinednessis not "observable". It's only when adecision
has to be made as to whether or not to dothepr i nt f -- an observable action of your program -- that Memcheck

complains.

Most low level operations, such as adds, cause Memcheck to usethe V bitsfor the operandsto calculate the V bits
for the result. Even if the result is partially or wholly undefined, it does not complain.

Checks on definedness only occur in three places. when a value is used to generate a memory address, when
control flow decision needs to be made, and when a system call is detected, Memcheck checks definedness of
parameters as required.

If acheck should detect undefinedness, an error message isissued. Theresulting value is subsequently regarded as
well-defined. To do otherwise would give long chains of error messages. In other words, once Memcheck reports
an undefined value error, it tries to avoid reporting further errors derived from that same undefined value.

This sounds overcomplicated. Why not just check all reads from memory, and complain if an undefined value
is loaded into a CPU register? Well, that doesn't work well, because perfectly legitimate C programs routinely
copy uninitialised valuesaround in memory, and we don't want endless complaints about that. Here'sthe canonical
example. Consider astruct like this:

struct S{ int x; char c; };
struct S sl1, s2;

sl.x = 42;
sl.c ='z2";
s2 = sli;

The question to ask is: how largeisstruct S, inbytes? Ani nt is4 bytesand achar one byte, so perhapsa
struct S occupies5 bytes? Wrong. All non-toy compilers we know of will round the size of st ruct Sup
to awhole number of words, in this case 8 bytes. Not doing this forces compilers to generate truly appalling code
for accessing arrays of st r uct S'son some architectures.

So s1 occupies 8 bytes, yet only 5 of them will be initialised. For the assignment s2 = s1, GCC generates
codeto copy al 8 byteswholesaleinto s2 without regard for their meaning. If Memcheck simply checked values
as they came out of memory, it would yelp every time a structure assignment like this happened. So the more
complicated behaviour described above is necessary. This allows GCC to copy s1 into s2 any way it likes, and
awarning will only be emitted if the uninitialised values are later used.

As explained above, Memcheck maintains 8 V bits for each byte in your process, including for bytes that are in
shared memory. However, the same piece of shared memory can be mapped multiple times, by several processes
or even by the same process (for example, if the process wants a read-only and a read-write mapping of the same
page). For such multiple mappings, Memcheck tracks the V bits for each mapping independently. This can lead
to false positive errors, as the shared memory can be initialised via a first mapping, and accessed via another
mapping. The access via this other mapping will have its own V bits, which have not been changed when the
memory was initialised via the first mapping. The bypass for these false positives is to use Memcheck's client
requests VALGRI ND_MAKE_MEM DEFI NED and VALGRI ND_MAKE_MEM UNDEFI NED to inform Memcheck
about what your program does (or what another process does) to these shared memory mappings.

4.5.2. Valid-address (A) bits

Notice that the previous subsection describes how the validity of values is established and maintained without
having to say whether the program does or does not have the right to access any particular memory location. We
now consider the latter question.

76

Memcheck: amemory error detector

Asdescribed above, every hitin memory or in the CPU has an associated valid-value (V) bit. In addition, al bytes
in memory, but not in the CPU, have an associated valid-address (A) bit. Thisindicates whether or not the program
can legitimately read or writethat location. It does not give any indication of the validity of the data at that location
-- that's the job of the V bits -- only whether or not the location may be accessed.

Every timeyour program reads or writes memory, Memcheck checksthe A bits associated with the address. If any
of them indicate an invalid address, an error is emitted. Note that the reads and writes themselves do not change
the A bits, only consult them.

So how do the A bits get set/cleared? Like this:
* When the program starts, al the global data areas are marked as accessible.

* Whentheprogram doesmal | oc/new, the A bitsfor exactly the areaallocated, and not abyte more, are marked
as accessible. Upon freeing the areathe A bits are changed to indicate inaccessibility.

* When the stack pointer register (SP) moves up or down, A bits are set. The rule is that the area from SP up
to the base of the stack is marked as accessible, and below SP isinaccessible. (If that soundsillogical, bear in
mind that the stack grows down, not up, on almost al Unix systems, including GNU/Linux.) Tracking SP like
this has the useful side-effect that the section of stack used by afunction for local variables etc is automatically
marked accessible on function entry and inaccessible on exit.

» When doing system calls, A bits are changed appropriately. For example, mmap magically makes files appear
in the process' address space, so the A bits must be updated if mmap succeeds.

» Optionally, your program can tell Memcheck about such changes explicitly, using the client request mechanism
described above.

4.5.3. Putting it all together

Memcheck's checking machinery can be summarised as follows:

» Each byte in memory has 8 associated V (valid-value) bits, saying whether or not the byte has a defined value,
and asingle A (valid-address) bit, saying whether or not the program currently has the right to read/write that
address. As mentioned above, heavy use of compression means the overhead is typically around 25%.

» When memory isread or written, therelevant A bitsare consulted. If they indicate an invalid address, Memcheck
emits an Invalid read or Invalid write error.

» When memory is read into the CPU's registers, the relevant V bits are fetched from memory and stored in the
simulated CPU. They are not consulted.

» When aregister iswritten out to memory, the V bitsfor that register are written back to memory too.

» When values in CPU registers are used to generate a memory address, or to determine the outcome of a
conditional branch, the V bits for those values are checked, and an error emitted if any of them are undefined.

» When valuesin CPU registers are used for any other purpose, Memcheck computes the V bits for the result,
but does not check them.

» OncetheV bits for avalue in the CPU have been checked, they are then set to indicate validity. This avoids
long chains of errors.

* When values are loaded from memory, Memcheck checks the A bits for that location and issues an illegal-
addresswarning if needed. In that case, the V bitsloaded areforced to indicate Valid, despite the location being
invalid.

This apparently strange choice reduces the amount of confusing information presented to the user. It avoids
the unpleasant phenomenon in which memory is read from a place which is both unaddressable and contains

77

Memcheck: amemory error detector

invalid values, and, asaresult, you get not only an invalid-address (read/write) error, but also apotentially large
set of uninitialised-value errors, one for every time the valueis used.

Thereisahazy boundary case to do with multi-byte loads from addresses which are partialy valid and partialy
invalid. See details of the option - - par ti al - | oads- ok for details.

Memcheck intercepts calls to mal | oc, cal | oc, real | oc, val | oc, neral i gn, free, new, new],
del et e and del et e[] . The behaviour you get is:

e mal | oc/newnew] : the returned memory is marked as addressable but not having valid values. This means
you haveto write to it before you can read it.

e cal | oc: returned memory is marked both addressable and valid, since cal | oc clearsthe areato zero.

e real | oc:if thenew sizeislarger than the old, the new sectionis addressable but invalid, aswithmal | oc. If
the new size is smaller, the dropped-off section is marked as unaddressable. Y ou may only passtor eal | oc
apointer previously issued to you by mal | oc/cal | oc/real | oc.

» freeldel et e/del et e[] : you may only pass to these functions a pointer previously issued to you by the
corresponding alocation function. Otherwise, Memcheck complains. If the pointer isindeed valid, Memcheck
marks the entire area it points at as unaddressable, and places the block in the freed-blocks-queue. Theaimis
to defer aslong as possible reallocation of this block. Until that happens, all attempts to access it will elicit an
invalid-address error, as you would hope.

4.6. Memcheck Monitor Commands

The Memcheck tool provides monitor commands handled by VVal grind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver). Valgrind python code provides GDB front end commands giving an easier
usage of the memcheck monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch a memcheck monitor command viaits GDB front end command, instead of prefixing the
command with "monitor", you must use the GDB mentheck command (or the shorter aiases nt). Using the
memcheck GDB front end command provide a more flexible usage, such as evaluation of address and length
arguments by GDB. In GDB, you can use hel p nentheck to get help about the memcheck front end monitor
commands and you can use apr opos nentheck to get all the commands mentionning the word "memcheck"
in their name or on-line help.

 xb <addr> [<l en>] shows the definedness (V) bits and values for <len> (default 1) bytes starting at
<addr>. For each 8 bytes, two lines are output.

The first line shows the validity bits for 8 bytes. The definedness of each byte in the range is given using two
hexadecimal digits. These hexadecimal digits encode the validity of each bit of the corresponding byte, using
0if the bit is defined and 1 if the bit is undefined. If abyte is not addressable, its validity bits are replaced by
___ (adouble underscore).

The second line shows the values of the bytes below the corresponding validity bits. The format used to show
the bytes data is similar to the GDB command 'x /<len>xb <addr>". The value for a non addressable bytes is
shown as ?? (two question marks).

In the following example, st ri ngl0 is an array of 10 characters, in which the even numbered bytes are
undefined. In the below example, the byte corresponding to st ri ng10[5] is not addressable.

(gdb) p &stringlO
$4 = (char (*)[10]) 0x804a2f0
(gdb) nmo xb 0x804a2f0 10

ff 00 ff 00 ff . ff 00
0x804A2F0: Ox 3f Ox6e Ox 3f 0x65 Ox 3f 0x?? Ox 3f 0x65
ff 00
0x804A2F8: Ox 3f 0x00

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

78

Memcheck: amemory error detector

(gdb)

The GDB memcheck front end command mencheck xb ADDR [LEN] acceptsany address expression for
itsfirst ADDR argument. The second optional argument is any integer expression. Note that these 2 arguments
must be separated by a space. The following example shows how to get the definedness of st ri ng10 using
the memcheck xb front end command.

(gdb) nt xb &stringl0 sizeof (stringlO0)

ff 00 ff 00 ff . ff 00
0x804A2FO0: Ox3f Ox6e Ox3f 0x65 Ox3f 0x?? Ox3f 0x65
ff 00
0x804A2F8: Ox3f 0x00
Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

(gdb)

The command xb cannot be used with registers. To get the validity bits of a register, you must start Valgrind
with the option - - vgdb- shadow- r egi st er s=yes. The validity bits of a register can then be obtained
by printing the 'shadow 1' corresponding register. In the below x86 example, the register eax has al its hits
undefined, while the register ebx isfully defined.

(gdb) p /x $eaxsl
$9 = Oxffffffff
(gdb) p /x $ebxsl
$10 = 0x0

(gdb)

get _vbits <addr> [<l en>] showsthedefinedness (V) bitsfor <len> (default 1) bytes starting at <addr>
using the same convention as the xb command. get _vbi t s only shows the V bits (grouped by 4 bytes). It
does not show the values. If you want to associate V bits with the corresponding byte values, the xb command
will be easier to use, in particular on little endian computers when associating undefined parts of an integer
with their V bits values.

The following example shows the result of get _vbits on the stringl0 used in the xb command
explanation. The GDB memcheck equivalent front end command nencheck get_vbits ADDR
[LEN] accepts any ADDR expression and any LEN expression (separated by a space).

(gdb) nonitor get vbits 0x804a2f0 10

ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e
(gdb) menctheck get vbits &stringlO sizeof(stringl0Q)
ffooffoo ff__ff00 ffOO

Addr ess 0x804A2F0 | en 10 has 1 bytes unaddressabl e

make_nenory [noaccess| undefi ned| def i ned| Def i nedi f addr essabl e] <addr >
[<l en>] marks the range of <len> (default 1) bytes at <addr> as having the given status. Parameter
noaccess marks the range as non-accessible, so Memcheck will report an error on any access to it.
undef i ned or def i ned mark the area as accessible, but Memcheck regards the bytes in it respectively as
having undefined or defined values. Def i nedi f addr essabl e marks as defined, bytes in the range which
are aready addressible, but makes no change to the status of bytesin the range which are not addressible. Note
that the first letter of Def i nedi f addr essabl e isan uppercase D to avoid confusion with def i ned.

The GDB equivalent memcheck front end commands nentheck nake_nenory [noaccess|
undef i ned| def i ned| Def i nedi f addr essabl e] ADDR [LEN] accept any address expression for
their first ADDR argument. The second optional argument isany integer expression. Notethat these 2 arguments
must be separated by a space.

In the following example, the first byte of the st ri ng10 ismarked as defined and then is marked noaccess:

79

Memcheck: amemory error detector

(gdb) nonitor make_nenory defi ned 0x8049e28 1
(gdb) nonitor get_vbits 0x8049e28 10

0000f f 00 ffOOff00 ffOO

(gdb) nmencheck nmake nenory noaccess &stringlO[0]
(gdb) nmenctheck get _vbits &stringlO sizeof (stringl0)
__ooffoo ffooffoo ffoO

Addr ess 0x8049E28 | en 10 has 1 bytes unaddressabl e

(gdb)

check_nmenory [addressabl e|defined] <addr> [<len>] checks that the range of <len>
(default 1) bytes at <addr> has the specified accessibility. It then outputs a description of <addr>. In the
following example, adetailed descriptionisavailable becausetheoption- - r ead- var - i nf o=yes wasgiven
at Valgrind startup:

(gdb) rnonitor check nenory defined 0x8049e28 1

Addr ess 0x8049E28 | en 1 defi ned

==14698== Locati on 0x8049e28 is 0 bytes inside stringl0O[O0],
==14698== declared at prog.c:10, in frame #0 of thread 1

(gdb)

The GDB equivalent memcheck front end commands nenctheck check nenory [addressabl e|
defined] ADDR [LEN] accept any addressexpression for their first ADDR argument. The second optional
argument is any integer expression. Note that these 2 arguments must be separated by a space.

| eak_check [full*]|summary|xtleak] [kinds <set>|reachabl e|possibleleak*|

definitel eak] [heuristics heurl,heur2,...] [newincreased*|changed|any]

[unlimted*|limted <max_loss_records_output>] peforms aleak check. The * in the
arguments indicates the default values.

If the[ful |l *| sunmary| xt| eak] argument is summary, only a summary of the leak search is given;
otherwise afull leak report is produced. A full leak report gives detailed information for each leak: the stack
trace wheretheleaked blockswere allocated, the number of blocks|eaked and their total size. When afull report
is requested, the next two arguments further specify what kind of leaks to report. A leak's details are shown if
they match both the second and third argument. A full leak report might output detailed information for many
leaks. The nr of leaksfor which information is output can be controlled using thel i ni t ed argument followed
by the maximum nr of leak records to output. If this maximum is reached, the leak search outputs the records
with the biggest number of bytes.

Thevalue xt | eak also produces afull leak report, but output it as an xtree in afile xtleak.kcg.%p.%n (see --
log-file). See Execution Trees for adetailed explanation about execution trees formats. See --xtree-leak for the
description of the eventsin a xtree leak file.

The ki nds argument controls what kind of blocks are shown for af ul | leak search. The set of leak kinds
to show can be specified using a <set > similarly to the command line option - - show- | eak- ki nds.
Alternatively, thevaluedef i ni t el eak isequivalenttoki nds defi ni t e,thevaluepossi bl el eak is
equivalentto ki nds definite, possi bl e :itwill alsoshow possibly leaked blocks, .i.e those for which
only an interior pointer was found. The value r eachabl e will show all block categories (i.e. is equivalent
toki nds all).

The heuri sti cs argument controls the heuristics used during the leak search. The set of heuristics to use
can be specified using a<set > similarly to the command line option - - | eak- check- heuri sti cs. The
default valuefor theheuri sti cs argumentisheuri sti cs none.

The[new| i ncr eased* | changed| any] argument controls what kinds of changes are shown for af ul |

leak search. The value i ncr eased specifies that only block allocation stacks with an increased number of
leaked bytes or blocks since the previous leak check should be shown. The value changed specifies that
alocation stacks with any change since the previous leak check should be shown. The value new specifies to

80

Memcheck: amemory error detector

show only the block allocation stacks that are new since the previous leak search. The value any specifies that
all leak entries should be shown, regardless of any increase or decrease. If newor i ncr eased or changed
are specified, the leak report entries will show the delta relative to the previous leak report and the new loss
records will have a"new" marker (even wheni ncr eased or changed were specified).

The following example shows usage of the | eak_check monitor command on the mencheck/ t est s/
| eak- cases. c regression test. The first command outputs one entry having an increase in the leaked bytes.
The second command is the same as the first command, but uses the abbreviated forms accepted by GDB and
the Valgrind gdbserver. It only outputs the summary information, as there was no increase since the previous
leak search.

(gdb) nonitor |eak _check full possibleleak increased
==19520== 16 (+16) bytes in 1 (+1) blocks are possibly lost in new |loss record 9 of 1-

==19520== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19520== by 0x80484D5: nk (| eak-cases.c:52)

==19520== by 0x804855F: f (| eak-cases.c: 81)

==19520== by 0x80488E0: main (| eak-cases.c: 107)

==19520==

==19520== LEAK SUMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+16) bytes in 2 (+1) bl ocks
==19520== still reachable: 96 (+16) bytes in 6 (+1) bl ocks
==19520== suppressed: 0 (+0) bytes in O (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak _check

==19520==

(gdb) nmo

==19520== LEAK SUMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) bl ocks
==19520== possibly lost: 32 (+0) bytes in 2 (+0) bl ocks
==19520== still reachable: 96 (+0) bytes in 6 (+0) bl ocks
==19520== suppressed: 0 (+0) bytes in O (+0) bl ocks

==19520== Reachabl e bl ocks (those to which a pointer was found) are not shown.
==19520== To see them add 'reachable any' args to | eak_check

==19520==

(gdb)

Notethat when using Valgrind's gdbserver, it isnot necessary torerunwith - - | eak- check=ful | - - show
r eachabl e=yes to see the reachable blocks. You can obtain the same information without rerunning by
using the GDB command noni t or | eak_check full reachabl e any (or, using abbreviation: no
I f r a).

The GDB equivalent memcheck front end command menctheck | eak check auto-completesthe user input
by providing the full list of keywords still relevant according to what is already typed. For example, if the
"summary" keyword has been provided, the following TABs to auto-complete other items will not propose
anymore "full" and "xtleak". Note that KIND and HEUR values are not part of auto-completed elements.

bl ock _|i st <l oss_record _nr>|<loss_record nr_fromp..<loss record nr_to>
[unlimted*|linmted <max_blocks>] [heuristics heurl, heur2,...] shows
the list of blocks belonging to <loss record nr> (or to the loss records range
<l oss_record_nr_frone..<l oss_record_nr_to>). The nr of blocks to print can be controlled
using thel i m t ed argument followed by the maximum nr of blocks to output. If one or more heuristics are
given, only prints the loss records and blocks found via one of the given heur 1, heur 2, . . . heuristics.

A leak search merges the allocated blocks in loss records : aloss record re-groups all blocks having the same
state (for example, Definitely Lost) and the same all ocation backtrace. Each loss record isidentified in the leak

81

Memcheck: amemory error detector

search result by alossrecord number. Thebl ock | i st command showsthelossrecordinformation followed
by the addresses and sizes of the blocks which have been merged in the loss record. If ablock was found using
an heuristic, the block size is followed by the heuristic.

If adirectly lost block causes some other blocks to be indirectly lost, the block list command will also show
these indirectly lost blocks. The indirectly lost blocks will be indented according to the level of indirection
between the directly lost block and the indirectly lost block(s). Each indirectly lost block is followed by the
reference of itsloss record.

The block_list command can be used on the results of aleak search aslong as no block has been freed after this
|eak search: as soon asthe program frees abl ock, anew leak searchisneeded beforeblock_list can beused again.

In the below example, the program leaks a tree structure by losing the pointer to the block A (top of the tree).
So, the block A isdirectly lost, causing an indirect loss of blocks B to G. The first block _list command shows
the loss record of A (a definitely lost block with address 0x4028028, size 16). The addresses and sizes of the
indirectly lost blocks due to block A are shown below the block A. The second command shows the details of
one of theindirect loss records output by the first command.

/\ /\

(gdb) bt
#0 main () at leak-tree.c:69
(gdb) nonitor |eak check full any

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost

==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)
==19552== by 0x80484FC. f (l|eak-tree.c:41)
==19552== by 0x8048856: main (|eak-tree.c:63)
==19552==

==19552== LEAK SUMVARY:

==19552== definitely lost: 16 bytes in 1 bl ocks
==19552== indirectly lost: 96 bytes in 6 bl ocks
==19552== possibly lost: O bytes in O bl ocks
==19552== still reachable: 0 bytes in O bl ocks
==19552== suppressed: 0 bytes in O bl ocks
==19552==

(gdb) nonitor block list 7

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely | ost

==19552== at 0x40070B4: malloc (vg_replace _mall oc. c: 263)
==19552== by 0x80484D5: nk (| eak-tree.c:28)

==19552== by 0x80484FC. f (l|eak-tree.c:41)

==19552== by 0x8048856: main (|eak-tree.c:63)

==19552== 0x4028028[16]

==19552== 0x4028068[16] indirect |loss record 1

==19552== 0x40280E8[16] indirect |oss record 3
==19552== 0x4028128[16] indirect | oss record 4
==19552== 0x40280A8[16] indirect |oss record 2

==19552== 0x4028168[16] indirect |loss record 5
==19552== 0x40281A8[16] indirect |oss record 6

(gdb) nmo b 2

==19552== 16 bytes in 1 blocks are indirectly lost in |oss record 2 of 7
==19552== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)

82

in loss r

in loss r

Memcheck: amemory error detector

==19552== by 0x80484D5: nk (| eak-tree.c:28)
==19552== by 0x8048519: f (l|eak-tree.c:43)
==19552== by 0x8048856: main (l|eak-tree.c:63)
==19552== 0x40280A8][16]

==19552== 0x4028168[16] indirect |loss record 5
==19552== 0x40281A8[16] indirect |loss record 6
(gdb)

who_poi nts_at <addr> [<l en>] showsal the locations where a pointer to addr is found. If len is
equal to 1, the command only shows the locations pointing exactly at addr (i.e. the "start pointers’ to addr). If
lenis> 1, "interior pointers' pointing at the len first bytes will also be shown.

The locations searched for are the same as the locations used in the leak search. So, who_poi nts_at can
a.0. be used to show why the leak search still can reach a block, or can search for dangling pointers to a freed
block. Each location pointing at addr (or pointing inside addr if interior pointers are being searched for) will
be described.

The GDB equivalent memcheck front end command nencheck who_poi nts_at ADDR [LEN] accept
any address expression for its first ADDR argument. The second optional argument is any integer expression.
Note that these 2 arguments must be separated by a space.

In the below example, the pointers to the 'tree block A’ (see example in command bl ock | i st) is shown
before the tree was leaked. The descriptions are detailed as the option - - r ead- var - i nf o=yes was given
at Valgrind startup. The second call shows the pointers (start and interior pointers) to block G. The block G
(Ox40281A38) isreachable via block C (0x40280a8) and register ECX of tid 1 (tid is the Valgrind thread id). It
is"interior reachable" viathe register EBX.

(gdb) nonitor who_points_at 0x4028028

==20852== Searching for pointers to 0x4028028

==20852== *0x8049e20 points at 0x4028028

==20852==Locati on 0x8049e20 is O bytes inside global var "t"

==20852== decl ared at |eak-tree.c:35

(gdb) nonitor who_points_at 0x40281A8 16

==20852== Searching for pointers pointing in 16 bytes from 0x40281a8
==20852== *(0x40280ac points at 0x40281a8

==20852==Address 0x40280ac is 4 bytes inside a block of size 16 alloc'd

==20852== at 0x40070B4: malloc (vg_replace_mall oc. c: 263)
==20852== by 0x80484D5: nk (| eak-tree.c:28)

==20852== by 0x8048519: f (l|eak-tree.c:43)

==20852== by 0x8048856: main (|eak-tree.c:63)

==20852==tid 1 register ECX points at 0x40281a8
==20852==tid 1 register EBX interior points at 2 bytes inside 0x40281a8

(gdb)

When who_poi nts_at finds an interior pointer, it will report the heuristic(s) with which this interior
pointer will be considered as reachable. Note that this is done independently of the value of the option
- -1 eak-check- heuri sti cs. In the below example, the loss record 6 indicates a possibly lost block.
who_poi nts_at reports that there is an interior pointer pointing in this block, and that the block can be
considered reachable using the heuristic mrul ti pl ei nheri t ance.

(gdb) nonitor block list 6

==3748== 8 bytes in 1 blocks are possibly lost in |loss record 6 of 7

==3748== at 0x4007D77: operator new(unsigned int) (vg_replace_malloc.c:313)
==3748== by 0x8048954: main (|l eak cpp_interior.cpp:43)

==3748== 0x402A0EOQ[8]

(gdb) nonitor who_points_at 0x402A0EQ 8

83

Memcheck: amemory error detector

==3748== Searching for pointers pointing in 8 bytes from 0x402a0e0

==3748== *0xbe8ee078 interior points at 4 bytes inside 0x402a0e0

==3748== Address 0xbe8ee078 is on thread 1's stack

==3748== bl ock at 0x402a0e0 consi dered reachabl e by ptr 0x402a0e4 using nul tipl ei nheri

(gdb)

« xtnenory [<fil enane> default xtnmenory. kcg. %p. %] requests Memcheck tool to produce an
xtree heap memory report. See Execution Trees for a detailed explanation about execution trees.

4.7. Client Requests

Thefollowing client requestsaredefinedinnencheck. h. Seementheck. h for exact detailsof their arguments.

* VALGRI ND_MAKE_MEM NOACCESS, VALGRI ND_MAKE_MEM_UNDEFI NED and
VALGRI ND_MAKE_MEM DEFI NED. These mark address ranges as completely inaccessible, accessible but
containing undefined data, and accessible and containing defined data, respectively. They return -1, when run
on Valgrind and O otherwise.

* VALGRI ND_MAKE_MEM DEFI NED | F_ADDRESSABLE. This is just like
VALGRI ND_MAKE NMEM DEFI NED but only affects those bytes that are already addressable.

* VALGRI ND_CHECK_MEM | S_ADDRESSABLE and VALGRI ND_CHECK _MEM | S_DEFI NED: check
immediately whether or not the given address range has the rel evant property, and if not, print an error message.
Also, for the convenience of the client, returns zero if the relevant property holds; otherwise, the returned value
isthe address of thefirst byte for which the property is not true. Always returns 0 when not run on Valgrind.

e VALGRI ND_CHECK VALUE | S DEFI NED: a quick and easy way to find out whether Valgrind thinks a
particular value (Ivalue, to be precise) is addressable and defined. Prints an error messageif not. It hasno return
value.

* VALGRI ND_DO _LEAK_CHECK: does a full memory leak check (like - - | eak- check=f ul ') right now.
Thisis useful for incrementally checking for leaks between arbitrary places in the program's execution. It has
no return value.

* VALGRI ND_DO ADDED LEAK CHECK: same as VALGRI ND_DO_LEAK_CHECK but only shows the
entries for which there was an increase in leaked bytes or leaked number of blocks since the previous leak
search. It has no return value.

* VALGRI ND_ DO CHANGED LEAK CHECK: same as VALGRI ND_DO LEAK CHECK but only shows the
entriesfor which therewas an increase or decreasein leaked bytes or |eaked number of blocks sincethe previous
leak search. It has no return value.

* VALGRI ND_DO NEW LEAK CHECK: sameas VALGRI ND DO LEAK CHECK but only shows the new
entries since the previous leak search. It has no return value.

* VALGRI ND DO QUI CK_LEAK CHECK:likeVALGRI ND_DO LEAK CHECK, except it producesonly aleak
summary (like - - | eak- check=sumar y). It has no return value.

* VALGRI ND_COUNT_LEAKS: fills in the four arguments with the number of bytes of memory found
by the previous leak check to be leaked (i.e. the sum of direct leaks and indirect leaks), dubious,
reachable and suppressed. Thisis useful in test harness code, after calling VALGRI ND_DO_LEAK_CHECK or
VALGRI ND_DO _QUI CK_LEAK_CHECK.

* VALGRI ND_COUNT_LEAK_BLOCKS: identical to VALGRI ND_COUNT_LEAKS except that it returns the
number of blocks rather than the number of bytes in each category.

 VALGRI ND _GET_VBI TSand VALGRI ND_SET_VBI TS: allow you to get and set the V (validity) bitsfor an
address range. Y ou should probably only set V bits that you have got with VALGRI ND_GET_VBI TS. Only
for those who really know what they are doing.

Memcheck: amemory error detector

VALGRI ND_CREATE_BLOCK and VALGRI ND_DI SCARD. VALGRI ND_CREATE_BL OCK takes an address,
anumber of bytes and a character string. The specified address range is then associated with that string. When
Memcheck reports an invalid access to an address in the range, it will describe it in terms of this block rather
than in terms of any other block it knows about. Note that the use of this macro does not actually change the
state of memory in any way -- it merely gives a name for the range.

At some point you may want Memcheck to stop reporting errors in terms of the block named by
VALGRI ND_CREATE _BLOCK. To make this possible, VALGRI ND_CREATE BLOCK returns a "block
handle', whichisa Ci nt value. You can pass this block handle to VALGRI ND_DI SCARD. After doing so,
Valgrind will no longer relate addressing errors in the specified range to the block. Passing invalid handles to
VALGRI ND_DI SCARD is harmless.

4.8. Memory Pools: describing and working
with custom allocators

Some programs use custom memory allocators, often for performance reasons. Left to itself, Memcheck isunable
to understand the behaviour of custom allocation schemes aswell as it understands the standard allocators, and so
may miss errors and leaks in your program. What this section describes is away to give Memcheck enough of a
description of your custom allocator that it can make at |east some sense of what is happening.

There are many different sorts of custom allocator, so Memcheck attempts to reason about them using a loose,
abstract model. We use the following terminology when describing custom allocation systems:

Custom alocation involves a set of independent "memory pools'.

Memcheck's notion of a a memory pool consists of a single "anchor address' and a set of non-overlapping
"chunks" associated with the anchor address.

Typically apool's anchor addressis the address of a book-keeping "header" structure.

Typically the pool's chunks are drawn from a contiguous "superblock” acquired through the system mal | oc
or mmap.

Keep in mind that the last two points above say "typically": the Vagrind mempool client request APl is
intentionally vague about the exact structure of a mempool. There is no specific mention made of headers or
superblocks. Nevertheless, the following picture may help elucidate the intention of the termsin the API:

"pool "
(anchor address)

%
Foococooooo +-- -+
| header | o |
Foococooooo +- | -+
I
v super bl ock
Foocsoooo Foocodfoooocooooooooo Foocodfooocooocoocooooooooo +
| |rzB] allocation |rzB|
Foocsoooo Foocodfoooocooooooooo Foocodfooocooocoocooooooooo +
N N
I I
n addr n n addr n +"Si Zell

Note that the header and the superblock may be contiguous or discontiguous, and there may be multiple
superblocks associated with a single header; such variations are opague to Memcheck. The API only requires that
your allocation scheme can present sensible values of "pool”, "addr" and "size".

85

Memcheck: amemory error detector

Typically, before making client requests related to mempools, a client program will have allocated
such a header and superblock for their mempool, and marked the superblock NOACCESS using the
VALGRI ND_MAKE_MEM NOACCESS client request.

When dealing with mempools, the goal isto maintain a particular invariant condition: that Memcheck believesthe
unallocated portions of the pool's superblock (including redzones) are NOACCESS. To maintain this invariant,
the client program must ensure that the superblock starts out in that state; Memcheck cannot make it so, since
Memcheck never explicitly learns about the superblock of a pool, only the alocated chunks within the pool.

Once the header and superblock for a pool are established and properly marked, there are a number of client
requests programs can use to inform Memcheck about changes to the state of a mempool:

VALGRI ND_CREATE_MEMPOOL(pool, rzB, is_zeroed): Thisrequest registersthe addresspool as
the anchor address for a memory pool. It aso provides asize r zB, specifying how large the redzones placed
around chunks allocated from the pool should be. Finally, it providesani s_zer oed argument that specifies
whether the pool's chunks are zeroed (more precisely: defined) when allocated.

Upon completion of this request, no chunks are associated with the pool. The request simply tells Memcheck
that the pool exists, so that subsequent calls can refer to it asa pool.

VALGRI ND_CREATE_MEMPOOL_EXT(pool, rzB, is_zeroed, flags): Create amemory pool
with some flags (that can be OR-ed together) specifying extended behaviour. When flags is zero, the behaviour
isidentical to VALGRI ND_CREATE_MEMPOOQL.

e The flag VALGRI ND_VMEMPOOL_METAPOCL specifies that the pieces of memory associated with the
pool using VALGRI ND_MEMPOCL_ALLOC will be used by the application as superblocks to dole out
MALLOC_LIKE blocks using VALGRI ND_MALLOCLI KE_BLOCK. In other words, a meta pool is a "2
levels' pool : first level isthe blocks described by VALGRI ND_MEMPOOL_ALLCC. The second level blocks
aredescribed using VALGRI ND_MALLOCLI KE_BLOCK. Note that the association between the pool and the
second level blocksisimplicit : second level blockswill be located inside first level blocks. It is necessary to
use the VALGRI ND_VEMPOOL_ METAPQOL flag for such 2 levels poals, as otherwise valgrind will detect
overlapping memory blocks, and will abort execution (e.g. during lesk search).

« VALGRI ND_ MEMPOOL_AUTO FREE. Such a meta pool can aso be marked as an 'auto free
pool using the flag VALGRI ND_MEMPOOL_AUTO FREE, which must be OR-ed together with
the VALGRI ND_MEMPOOL_METAPOCL. For an 'auto free' pool, VALGRI ND_MEMPOOL_FREE will
automatically free the second level blocks that are contained inside the first level block freed
with VALGRI ND_MEMPOOL_FREE. In other words, calling VALGRI ND_MEMPOCOL_FREE will cause
implicit calls to VALGRI ND_FREELI KE_BLOCK for al the second level blocks included in the first
level block. Note: it is an error to use the VALGRI ND_MEMPOOL_AUTO FREE flag without the
VALGRI ND_MEMPOOL_METAPQOQL flag.

VALGRI ND_DESTROY_MEMPOOL(pool) : This request tells Memcheck that a pool is being torn down.
Memcheck then removes all records of chunks associated with the pool, as well as its record of the pool's
existence. While destroying its records of a mempool, Memcheck resets the redzones of any live chunksin the
pool to NOACCESS.

VALGRI ND_MEMPOOL_ALLQOC(pool , addr, size): Thisrequestinforms Memcheck that asi ze-byte
chunk has been alocated at addr , and associates the chunk with the specified pool . If the pool was created
with nonzero r zB redzones, Memcheck will mark the r zB bytes before and after the chunk as NOACCESS.
If the pool was created with the i s_zer oed argument set, Memcheck will mark the chunk as DEFINED,
otherwise Memcheck will mark the chunk as UNDEFINED.

VALGRI ND_MEMPOOL_FREE(pool , addr): This request informs Memcheck that the chunk at addr
should no longer be considered alocated. Memcheck will mark the chunk associated with addr as
NOACCESS, and deleteits record of the chunk's existence.

VALGRI ND_MEMPOOL_TRI M pool , addr, si ze): Thisrequesttrimsthechunksassociated withpool .
The request only operates on chunks associated with pool . Trimming isformally defined as:

e All chunksentirely insidetherangeaddr . . (addr +si ze- 1) are preserved.

86

Memcheck: amemory error detector

e All chunks entirely outside the range addr.. (addr+size-1) are discarded, as though
VALGRI ND_MEMPOOL_ FREE was called on them.

« All other chunks must intersect with therangeaddr . . (addr +si ze- 1) ; areasoutside theintersection are
marked as NOACCESS, as though they had been independently freed with VALGRI ND_VEMPOOL_ FREE.

Thisis a somewhat rare request, but can be useful in implementing the type of mass-free operations common
in custom LIFO allocators.

* VALGRI ND_MOVE_MEMPQOL(pool A, pool B) : Thisreguest informs Memcheck that the pool previously
anchored at address pool A has moved to anchor address pool B. Thisisarare request, typically only needed
if your eal | oc the header of amempool.

No memory-status bits are altered by this request.

 VALGRI ND_ MEMPOOL_CHANGE(pool , addr A, addrB, si ze): Thisrequestinforms Memcheck that
the chunk previoudly allocated at address addr A within pool has been moved and/or resized, and should be
changed to cover theregion addr B. . (addr B+si ze- 1) . Thisisararerequest, typically only needed if you
r eal | oc asuperblock or wish to extend a chunk without changing its memory-status bits.

No memory-status bits are altered by this request.

* VALGRI ND_MEMPOOL_EXI STS(pool) : This request informs the caler whether or not Memcheck is
currently tracking a mempool at anchor address pool . It evaluates to 1 when there is a mempool associated
with that address, O otherwise. Thisisarare request, only useful in circumstances when client code might have
lost track of the set of active mempools.

4.9. Debugging MPI Parallel Programs with
Valgrind

Memcheck supports debugging of distributed-memory applications which use the MPI message passing standard.
This support consists of a library of wrapper functions for the PMPI _* interface. When incorporated into
the application's address space, either by direct linking or by LD _PRELQAD, the wrappers intercept calls to
PMPI _Send, PMPI _Recv, etc. They then use client requests to inform Memcheck of memory state changes
caused by the function being wrapped. This reduces the number of false positives that Memcheck otherwise
typically reports for MPI applications.

The wrappers also take the opportunity to carefully check size and definedness of buffers passed as arguments
to MPI functions, hence detecting errors such as passing undefined data to PMPI _Send, or receiving data into
abuffer which istoo small.

Unlike most of the rest of Valgrind, the wrapper library is subject to a BSD-style license, so you can link it into
any code base you like. Seethetop of npi / | i bnpi wr ap. ¢ for license details.

4.9.1. Building and installing the wrappers

The wrapper library will be built automatically if possible. Valgrind's configure script will ook for a suitable
npi cc tobuild it with. Thismust be the samenpi cc you useto build the MPI application you want to debug. By
default, Valgrind tries npi cc, but you can specify a different one by using the configure-time option - - wi t h-

npi cc. Currently the wrappers are only buildable with npi ccs which are based on GNU GCC or Intel's C++
Compiler.

Check that the configure script prints aline like this:

checki ng for usable Ml 2-conpliant npicc and npi.h... yes, npicc

Ifitsays. .. no,your npi cc hasfailed to compile and link atest MPI2 program.

87

Memcheck: amemory error detector

If the configure test succeeds, continue in the usual way with make and make i nstal | . Thefind install tree
should then contain | i bnpi wr ap- <pl at f or n®. so.

Compile up atest MPI program (eg, MPI hello-world) and try this:

LD PRELOAD=$prefi x/lib/val grind/Iibnpiw ap-<pl atfornp. so \
mpirun [args] $prefix/bin/valgrind ./hello

Y ou should see something similar to the following

val grind MPl wrappers 31901: Active for pid 31901
val grind MPl wrappers 31901: Try MPIWRAP_DEBUG=hel p for possible options

repeated for every processin the group. If you do not seethese, thereisan build/installation problem of somekind.

TheMPI functionsto bewrapped are assumed to bein an EL F shared object with sonamematching! i brpi . so*.
Thisis known to be correct at least for Open MPI and Quadrics MPI, and can easily be changed if required.

4.9.2. Getting started

Compile your MPI application as usual, taking care to link it using the same npi cc that your Vagrind build
was configured with.

Use the following basic scheme to run your application on Valgrind with the wrappers engaged:

VPl WRAP_DEBUG=[wr apper - ar gs]
LD PRELOAD=$prefix/1ib/val grind/libnpiw ap-<platfornp. so
npi run [npirun-args]
$prefix/bin/valgrind [val grind-args]
[application] [app-args]

— — - —

As an dternative to LD PRELOADINng | i brpi wr ap- <pl at f or n>. so, you can simply link it to your
application if desired. This should not disturb native behaviour of your application in any way.

4.9.3. Controlling the wrapper library

Environment variable MPI WRAP_ DEBUGI s consulted at startup. The default behaviour isto print astarting banner

val grind MPI wrappers 16386: Active for pid 16386
val grind MPI wrappers 16386: Try MPIWRAP_DEBUG=hel p for possible options

and then berelatively quiet.
You can give alist of comma-separated optionsin MPl WRAP_DEBUG. These are

* ver bose: show entries/exits of all wrappers. Also show extradebugging info, such asthe status of outstanding
MPI _Request sresulting from uncompleted MPl _I r ecvs.

* qui et : opposite of ver bose, only print anything when the wrappers want to report a detected programming
error, or in case of catastrophic failure of the wrappers.

» war n: by default, functionswhichlack proper wrappers are not commented on, just silently ignored. This causes
awarning to be printed for each unwrapped function used, up to a maximum of three warnings per function.

* strict: print an error message and abort the program if afunction lacking awrapper is used.

If youwant to use Valgrind's XML output facility (- - xm =yes), you should passqui et in VPl WRAP_ DEBUG
so asto get rid of any extraneous printing from the wrappers.

88

Memcheck: amemory error detector

4.9.4. Functions

All MPI2 functions except MPI _W i ck, MPI _W i me and MPI _Pcont rol have wrappers. The first two
are not wrapped because they return a doubl e, which Valgrind's function-wrap mechanism cannot handle
(but it could easily be extended to do so). MPI _Pcont r ol cannot be wrapped as it has variable arity: i nt
MPI _Pcontrol (const int level, ...)

Most functions are wrapped with a default wrapper which does nothing except complain or abort if it is called,
depending on settings in MPI WRAP_DEBUG listed above. The following functions have "real”, do-something-
useful wrappers:

PMPI _Send PWPI _Bsend PMPI _Ssend PMPI _Rsend
PWMPI _Recv PMPI _Get count
PVMPI _Isend PMPI | bsend PMPI | ssend PWPI | rsend

PMPI _Irecv
PMPI _VWait PMPI _Waitall
PMPI _Test PMPI _Testall

PMPI _| probe PMPI _Probe

PMPI _Cancel

PMPI _Sendr ecv

PMPI _Type_comit PMPlI _Type free
PMPI _Pack PMPI _Unpack

PMPI _Bcast PMPI _Gat her PMPI _Scatter PMPI _Alltoall
PMPI _Reduce PWPI _Allreduce PMPI _Op_create

PMPI _Comm create PWMPI _Comm dup PMPI _Comm free PMPI _Comm rank PMPI _Comm size

PMPI _Error_string
PVMPI Init PVPI Initialized PMPI _Finalize

A few functionssuch asPMPI _Addr ess arelisted asHAS NO WRAPPER. They have no wrapper at all asthere
is nothing worth checking, and giving a no-op wrapper would reduce performance for no reason.

Note that the wrapper library itself can itself generate large numbers of calls to the MPI implementation,
especialy when walking complex types. The most common functions caled are PMPlI _Extent,
PMPI _Type_get _envel ope, PMPI _Type_get _contents,and PMPI _Type_free.

4.9.5. Types

MPI-1.1 structured types are supported, and walked exactly. The currently supported
combiners are MPI _COVBI NER_NAMED, MPI _COVBI NER_CONTI GUOUS, MPI _COVBI NER_VECTOR,
MPI _COMVBI NER_HVECTOR MPI _COVBI NER_| NDEXED, MPI _COVBI NER_HI NDEXED and
MPI _COVBI NER_STRUCT. Thisshould cover all MPI-1.1 types. Themechanism (functionwal k_t ype) should
extend easily to cover MPI2 combiners.

MPI defines some named structured types (MPI _FLOAT | NT, MPI _DOUBLE | NT, MPI _LONG | NT,
MPI 21 NT, MPl _SHORT | NT, MPI _LONG_DOUBLE | NT) which are pairs of somebasictypeandaCi nt .
Unfortunately the MPI specification makes it impossible to look inside these types and see where the fields are.

89

Memcheck: amemory error detector

Therefore these wrappers assume the types are laid out asstruct { float val; int loc; } (for
MPI _FLQOAT I NT), etc, and act accordingly. This appears to be correct at least for Open MPI 1.0.2 and for
Quadrics MPI.

If strict isan option specified in MPI WRAP_DEBUG, the application will abort if an unhandled type is
encountered. Otherwise, the application will print awarning message and continue.

Some effort is made to mark/check memory ranges corresponding to arrays of values in a single pass. This is
important for performance since asking Valgrind to mark/check any range, no matter how small, carries quite a
large constant cost. Thisoptimisationisapplied to arraysof primitivetypes(doubl e, f | oat ,i nt,l ong,| ong
| ong,short,char,andl ong doubl e onplatformswheresi zeof (1 ong doubl e) == 8). For arraysof
all other types, the wrappers handle each element individually and so there can be avery large performance cost.

4.9.6. Writing new wrappers

For the most part the wrappers are straightforward. The only significant complexity arises with nonblocking
receives.

Theissueisthat MPl _| r ecv states the recv buffer and returns immediately, giving ahandle (MPI _Request)
for the transaction. Later the user will have to poll for completion with MPI Wi t etc, and when the transaction
completes successfully, the wrappers have to paint the recv buffer. But the recv buffer details are not presented to
MPI Wi t -- only the handle is. The library therefore maintains a shadow table which associates uncompleted
MPI _Request s with the corresponding buffer address/count/type. When an operation completes, the table is
searched for the associated address/count/type info, and memory is marked accordingly.

Access to the table is guarded by a (POSIX pthreads) lock, so as to make the library thread-safe.
Thetableisallocated with mal | oc and never f r eed, so it will show up in leak checks.

Writing new wrappers should befairly easy. The sourcefileisnpi / | i bnpi wr ap. c. If possible, find an existing
wrapper for afunction of similar behaviour to the one you want to wrap, and use it asastarting point. The wrappers
are organised in sections in the same order as the MPI 1.1 spec, to aid navigation. When adding a wrapper,
remember to comment out the definition of the default wrapper in the long list of defaults at the bottom of the
file (do not removeiit, just comment it out).

4.9.7. What to expect when using the wrappers

The wrappers should reduce Memcheck's false-error rate on MPI applications. Because the wrapping is done at
the MPI interface, therewill still potentially be alarge number of errorsreported in the MPI implementation bel ow
theinterface. The best you can do is try to suppress them.

Y ou may also find that the input-side (buffer length/definedness) checksfind errorsin your MPI use, for example
passing too short abuffer to MPI _Recv.

Functionswhich are not wrapped may increasethefa se error rate. A possible approachistorunwith MPI _ DEBUG
containingwar n. Thiswill show you functions which lack proper wrappers but which are nevertheless used. You
can then write wrappers for them.

A known source of potential false errors are the PMPI _Reduce family of functions, when using a custom (user-
defined) reduction function. In a reduction operation, each node notionally sends data to a "central point" which
uses the specified reduction function to merge the data itemsinto a single item. Hence, in general, datais passed
between nodes and fed to the reduction function, but the wrapper library cannot mark the transferred data as
initialised beforeit is handed to the reduction function, because all that happens"inside" the PMPI _Reduce call.
Asaresult you may see false positives reported in your reduction function.

90

5. Cachegrind: a high-precision
tracing profiler

To usethistool, specify - - t ool =cachegr i nd onthe Vagrind command line.

5.1. Overview

Cachegrind isahigh-precision tracing profiler. It runs slowly, but collects precise and reproducible profiling data.
It can merge and diff data from different runs. To expand on these characteristics:

» Precise. Cachegrind measures the exact number of instructions executed by your program, not an
approximation. Furthermore, it presents the gathered data at the file, function, and line level. Thisisdifferent to
many other profilers that measure approximate execution time, using sampling, and only at the function level.

* Reproducible. In general, execution time is a better metric than instruction counts because it's what users
perceive. However, execution time often has high variability. When running the exact same program on the
exact same input multiple times, execution time might vary by several percent. Furthermore, small changesin a
program can change its memory layout and have even larger effects on runtime. In contrast, instruction counts
are highly reproducible; for some programs they are perfectly reproducible. This means the effects of small
changes in a program can be measured with high precision.

For these reasons, Cachegrind is an excellent complement to time-based profilers.

Cachegrind can annotate programs written in any language, so long as debug info is present to map machine code

back to the origina source code. Cachegrind has been used successfully on programs written in C, C++, Rust,

and assembly.

Cachegrind can also simulate how your program interacts with a machine's cache hierarchy and branch predictor.

This simulation was the original motivation for the tool, hence its name. However, the simulations are basic and

unlikely to reflect the behaviour of a modern machine. For this reason they are off by default. If you really want
cache and branch information, a profiler like per f that accesses hardware counters is a better choice.

5.2. Using Cachegrind and cg_annotate

First, asfor normal Valgrind use, you should compile with debugging info (the - g option in most compilers). But
by contrast with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your
program asit will be normally run.

Second, run Cachegrind itself to gather the profiling data.

Third, run cg_annotate to get a detailed presentation of that data. cg_annotate can combine the results of multiple
Cachegrind output files. It can also perform a diff between two Cachegrind output files.

5.2.1. Running Cachegrind

To run Cachegrind on a program pr og, run:

val grind --tool =cachegri nd prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

91

Cachegrind: a high-precision tracing profiler

==17942== refs: 8, 195, 070

Thel refs number isshort for "Instruction cache references’, which is equivalent to "instructions executed".
If you enable the cache and/or branch simulation, additional counts will be shown.

5.2.2. Output File

Cachegrind aso writes more detailed profiling data to a file. By default this Cachegrind output file is named
cachegri nd. out . <pi d> (where <pi d> is the program's process ID), but its name can be changed with
the - - cachegri nd- out - fi | e option. This file is human-readable, but is intended to be interpreted by the
accompanying program cg_annotate, described in the next section.

Thedefault . <pi d> suffix on the output file name servestwo purposes. First, it means existing Cachegrind output

filesaren'timmediately overwritten. Second, and moreimportantly, it allowscorrect profilingwiththe- - t r ace-
chi | dr en=yes option of programs that spawn child processes.

5.2.3. Running cg_annotate

Before using cg_annotate, it isworth widening your window to be at least 120 characterswideif possible, because
the output lines can be quite long.

Then run:
cg_annotate <fil enane>

on a Cachegrind output file.

5.2.4. The Metadata Section

Thefirst part of the output looks like this:

-- Met adat a

I nvocati on: ../ cg_annotate concord. cgout
Command: ./concord ../cg_nain.c
Events recorded: Ir

Event s shown: Ir

Event sort order: |Ir

Thr eshol d: 0.1%

Annot ati on: on

It summarizes how Cachegrind and the profiled program were run.
* Invocation: the command line used to produce this output.
» Command: the command line used to run the profiled program.

» Eventsrecorded: which events were recorded. By default, thisis| r . More eventswill be recorded if cache and/
or branch simulation is enabled.

» Events shown: the events shown, which is a subset of the events gathered. This can be adjusted with the - -
show option.

» Event sort order: the sort order used for the subsequent sections. For example, in this case those sections are

sorted from highest | r counts to lowest. If there are multiple events, one will be the primary sort event, and
then there can be a secondary sort event, tertiary sort event, etc., though more than one is rarely needed. This

92

Cachegrind: a high-precision tracing profiler

order can be adjusted with the - - sor t option. Note that this does not specify the order in which the columns
appear. That is specified by the "events shown" line (and can be changed with the - - show option).

Threshold: cg_annotate by default omits files and functions with very low counts to keep the output size
reasonable. By default cg_annotate only shows files and functions that account for at least 0.1% of the primary
sort event. The threshold can be adjusted with the - - t hr eshol d option.

Annotation: whether source file annotation is enabled. Controlled with the - - annot at e option.

If cache simulation is enabled, details of the cache parameters will be shown above the "Invocation” line.

5

.2.5. Global, File, and Function-level Counts

Next comes the summary for the whole program:

81

195, 070 (100.0% PROGRAM TOTALS

Thel r column label is suffixed with underscores to show the bounds of the columns underneath.

Then comes file:function counts. Here is the first part of that section:

<

N

N

N

N

N

N

Ir file:function

3,078,746 (37.6% 37.6% /home/njn/grind/ wsl/cachegrind/concord.c:

1, 630, 232 (19.9% get _word
630,918 (7.7% hash
461,095 (5.6% i nsert
130,560 (1.6% add_exi sting
91,014 (1.1% init_hash table
88,056 (1.1% Create
46,676 (0.6% new wor d_node
1,746,038 (21.3% 58.9% ./nmalloc/./malloc/nalloc.c:
1, 285,938 (15.7% _int_malloc

458,225 (5.6% mal | oc
1,107,550 (13.5% 72.4% ./libio/./libio/getc.c:getc
551,071 (6.7% 79.1% ./string/../sysdeps/x86 64/ nultiarch/strcnp-avx2.S: __strcnp
521,228 (6.4% 85.5% ./ctype/../include/ctype.h:
260,616 (3.2% __ctype_tolower_|oc
260,612 (3.2% __ctype_ b loc

468,163 (5.7% 91.2% 2?72
468,151 (5. 7% 2272

456,071 (5.6% 96.8% /usr/include/ctype. h:get word

93

Cachegrind: a high-precision tracing profiler

Each entry covers one file, and one or more functions within that file. If there is only one significant function
within afile, asin thefirst entry, the file and function are shown on the same line separate by a colon. If there are
multiple significant functions within afile, asin the third entry, each function getsits own line.

This example involves a small C program, and shows a combination of code from the program itself (including
functions like get _wor d and hash in the file concor d. c) as well as code from system libraries, such as
functionslikemal | oc and get c.

Each entry is preceded with a <, which can be useful when navigating through the output in an editor, or grepping
through results.

The first percentage in each column indicates the proportion of the total event count is covered by thisline. The
second percentage, which only shows on the first line of each entry, shows the cumulative percentage of al the
entries up to and including this one. The entries shown here account for 96.8% of the instructions executed by
the program.

Thename ??? isused if thefile name and/or function name could not be determined from debugging information.
If 2?7? filenames dominate, the program probably wasn't compiled with - g. If ??? function names dominate, the
program may have had symbols stripped.

After that comes function:file counts. Here is the first part of that section:

Ir function:file

> 2,086,303 (25.5% 25.5% get_ word:

1, 630,232 (19.9% / hone/ nj n/ gri nd/ ws1/ cachegri nd/ concord. c
456, 071 (5.6% [usr/include/ctype. h
> 1,285,938 (15.7% 41.1% _int_malloc:./malloc/./malloc/malloc.c
> 1,107,550 (13.5% 54.7% getc:./libio/./libio/getc.c

> 630,918 (7.7% 62.49% hash:/home/ njn/grind/ wsl/ cachegrind/concord.c
> 551,071 (6.7% 69.1% _ strcnp_avx2:./string/../sysdeps/x86_ 64/ multiarch/strcnp-a
> 480,248 (5.9% 74.9% mall oc:
458, 225 (5.6% ./malloc/./malloc/mlloc.c
22,023 (0.3% ./malloc/./malloc/arena.c
> 468,151 (5.7% 80.7% ?7?7:???
> 461,095 (5.6% 86.3% insert:/home/njn/grind/ wsl/cachegrind/concord.c

Thisis similar to the previous section, but is grouped by functions first and files second. Also, the entry markers
are> instead of <.

Y ou might wonder why this section is needed, and how it differsfrom the previous section. The answer isinlining.
In this example there are two entries demonstrating a function whose code is effectively spread across more than
onefile: get _wor d and mal | oc. Hereis an example from profiling the Rust compiler, a much larger program
that uses inlining more:

Cachegrind: a high-precision tracing profiler

> 30,469,230 (1.3% 11.1% <rustc_mddle::ty::context::Cixtlnterners> :intern_ty:

10, 269, 220 (0.5% /hone/ njn/.cargo/ registry/src/github. com 1lecc6299db9ec82
7,696, 827 (0.3% / hone/ nj n/ dev/rust O/ conpi |l er/rustc_m ddl e/ src/ty/ context
3,858,099 (0.2% /hone/ njn/ dev/rustO/library/core/src/cell.rs

In this case the compiled function i nt er n_t y includes code from three different source files, due to inlining.
These should be examined together. Older versions of cg annotate presented this entry as three separate
file:function entries, which would typically be intermixed with all the other entries, making it hard to see that they
areadl realy part of the same function.

5.2.6. Per-line Counts

By default, asource file is annotated if it contains at |east one function that meets the significance threshold. This
can be disabled with the - - annot at e option.

To continue the previous example, hereis part of the annotation of thefileconcor d. c:

-- Annotated source file: /home/njn/grind/ wsl/cachegrind/docs/concord.c

/* Function builds the hash table fromthe given file. */
void init_hash_table(char *file_nane, Wrd_Node *table[])

8 (0.0% {
. FILE *file_ptr;
. Wrd_ I nfo *data;
2 (0.0% int line =1, i;
. /* Structure used when reading in words and |ine nunbers. */
3 (0.0% data = (Wrd_Info *) create(sizeof (Wrd_Info));
. /* Initialise entire table to NULL. */
2,993 (0.0% for (i = 0; i < TABLE SIZE; i++)
997 (0.0% table[i] = NULL;
. [* Open file, check it. */
4 (0.0% file_ptr = fopen(file_nane, "r");
2 (0.0% if (!(file_ptr)) {
fprintf(stderr, "Couldn't open '%'.\n", file_nane);
exit (EXI T_FAI LURE) ;
}
/* "Cet' the words and lines one at a time fromthe file, and insel
. ** into the table one at a tine. */
55,363 (0.7% while ((line = get_word(data, line, file_ptr)) != EOF)
31,632 (0.4% i nsert (data->word, data->line, table);
2 (0.0% free(data);
2 (0.0% fclose(file_ptr);
6 (0.0% }

Each executed line is annotated with its event counts. Other lines are annotated with a dot. This may be because
they contain no executable code, or they contain executable code but were never executed.

You can easily tell if afunction is inlined from this output. If it is not inlined, it will have event counts on the
lines containing the opening and closing braces. If itisinlined, it will not have event counts on those lines. In the
exampleabove, i nit _hash_t abl e does have counts, so you can tell it isnot inlined.

95

Cachegrind: a high-precision tracing profiler

Note again that inlining can lead to surprising results. If afunction f is aways inlined, in the file:function and
function:file sections counts will be attributed to the functionsit isinlined into, rather than itself. However, if you
look at the line-by-line annotations for f you'll see the counts that belong to f . So it's worth looking for large
counts/percentages in the line-by-line annotations.

Sometimes only a small section of a source file is executed. To minimise uninteresting output, Cachegrind only
shows annotated lines and lines within a small distance of annotated lines. Gaps are marked with line numbers,

for example:

(counts and code for |ine 704)

- line 375 -- oo
- line Bl4 --- oo

(counts and code for |ine 878)

The number of lines of context shown around annotated linesis controlled by the - - cont ext option.

Any significant source files that could not be found are shown like this:

-- Annot ated source file:

./malloc/./malloc/malloc.c

Unannot at ed because one or

- ./malloc/./malloc/malloc.c

nore of these original

files are unreadabl e:

Thisiscommon for library files, because libraries are usually compiled with debugging information but the source
filesarerarely present on a system.

Cachegrind relies heavily on accurate debug info. Sometimes compilers do not map a particular compiled
instruction to line number O, where the 0 represents "unknown" or "none". This is annoying but does happen in
practice. cg_annotate prints these in the following way:

-- Annot ated source file:

/ hone/ nj n/ dev/ rust O/ conpi l er/rustc_borrowck/src/lib.rs

1, 046, 746 (0. 0%

<unknown (line 0)>

Finally, when annotation is performed, the output ends with a summary of how many counts were annotated and
unannotated, and why. For example:

3,534, 817 (43.1%
0
0
4,132,126 (50. 4%
59,950 (0.7%
468,163 (5.7%

annot at ed:
annot at ed:
unannot at ed:
unannot at ed:
unannot at ed:
unannot at ed:

files
files
files
files
files
files

5.2.7. Forking Programs

known & above
known & above
known & above
known & above
known & bel ow
unknown

threshol d & readabl e, |ine nunbers
threshol d & readabl e, |ine nunbers
threshold & two or nmore non-identic
t hreshol d & unreadabl e

t hreshol d

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

96

Cachegrind: a high-precision tracing profiler

If the output file name (controlled by - - cachegr i nd- out - f i | e) does not contain %p, then the outputs from
the parent and child will be intermingled in a single output file, which will aimost certainly make it unreadable
by cg_annotate.

5.2.8. cg_annotate Warnings

There are two situations in which cg_annotate prints warnings.

« If asourcefileismore recent than the Cachegrind output file. Thisis because the information in the Cachegrind
output fileisonly recorded with line numbers, so if theline numbers change at all in the source (e.g. lines added,
deleted, swapped), any annotations will be incorrect.

« If information is recorded about line numbers past the end of afile. This can be caused by the above problem,
e.g. shortening the source file while using an old Cachegrind output file. If this happens, the figures for the
bogus lines are printed anyway (and clearly marked as bogus) in case they are important.

5.2.9. Merging Cachegrind Output Files

cg_annotate can merge data from multiple Cachegrind output filesin asingle run. (Thereisalso aprogram called
cg_merge that can merge multiple Cachegrind output files into a single Cachegrind output file, but it is now
deprecated because cg_annotate's merging does a better job.)

Useit asfollows:

cg_annotate filel file2 file3 ...

cg_annotate computes the sum of these files (effectively fil el +fil e2 +fi | e3), and then produces output
as usua that shows the summed counts.

The most common merging scenario is if you want to aggregate costs over multiple runs of the same program,
possibly on different inputs.

5.2.10. Differencing Cachegrind output files

cg_annotate can diff datafrom two Cachegrind output filesin asingle run. (Thereisalso aprogram called cg_diff
that can diff two Cachegrind output files into a single Cachegrind output file, but it is now deprecated because
cg_annotate's differencing does a better job.)

Useit asfollows:

cg_annotate --diff filel file2

cg_annotate computes the difference between these two files (effectively fi | e2 - fi | el), and then produces
output as usual that shows the count differences. Note that many of the counts may be negative; this indicates that
the counts for the relevant file/function/line are smaller in the second version than those in the first version.

The simplest common scenario is comparing two Cachegrind output files that came from the same program, but
on different inputs. cg_annotate will do agood job on this without assistance.

A more complex scenarioisif you want to compare Cachegrind output filesfrom two dlightly different versions of
aprogram that you have sitting side-by-side, running on the sameinput. For example, you might havever si onl/

prog. c andver si on2/ pr og. c. A straight comparison of the two would not be useful. Because functions are
always paired with filenames, a function f would be listed asver si onl/ prog. c: f for the first version but
ver si on2/ prog. c: f for the second version.

In this case, use the - - nod- f i | enane option. Its argument is a search-and-replace expression that will be
applied to al thefilenamesin both Cachegrind output files. It can be used to remove minor differencesinfilenames.

97

Cachegrind: a high-precision tracing profiler

For example, the option - - nod- f i | enane=" s/ versi on[0- 9]/ versi onN "' will suffice for the above
example.

Similarly, sometimes compilers auto-generate certain functions and give them randomized names like T. 1234
where the suffixes vary from build to build. You can use the - - nod- f uncnane option to remove small
differenceslike these; it worksin the sasmeway as- - nod- f i | enane.

When - - nod- f i | enane isused to compare two different versions of the same program, cg_annotate will not
annotate any file that is different between the two versions, because the per-line counts are not reliable in such a
case. For example, imagine if ver si on2/ pr og. ¢ isthe same asver si onl/ pr og. ¢ except with an extra
blank line at the top of thefile. Every single per-line count will have changed. In comparison, the per-file and per-
function counts have not changed, and are still very useful for determining differences between programs. You
might think that this means every interesting file will be left unannotated, but again inlining means that files that
areidentical in the two versions can have different counts on many lines.

5.2.11. Cache and Branch Simulation

Cachegrind can simulate how your program interacts with a machine's cache hierarchy and/or branch predictor.
The cache simulation models a machine with independent first-level instruction and data caches (11 and D1),
backed by a unified second-level cache (L2). For these machines (in the cases where Cachegrind can auto-detect
the cache configuration) Cachegrind simulates the first-level and last-level caches. Therefore, Cachegrind always
referstothell, D1 and LL (last-level) caches.

When simulating the cache, with - - cache- si mryes, Cachegrind gathers the following statistics:

* | cache reads (I r, which equals the number of instructions executed), 11 cache read misses (I 1nr) and LL
cacheinstruction read misses (I Lnt).

» D cache reads (Dr , which equals the number of memory reads), D1 cache read misses (D1nt), and LL cache
data read misses (DLnT).

* D cache writes (Dw, which equals the number of memory writes), D1 cache write misses (D1nw), and LL cache
data write misses (DLmw).

Notethat D1 total accessesisgivenby D1nr +D1lnw, andthat LL total accessesisgivenby | Lnr +DLnr + DLmw.
When simulating the branch predictor, with - - br anch- si mryes, Cachegrind gathers the following statistics:
» Conditional branches executed (Bc) and conditional branches mispredicted (Bcnj.

« Indirect branches executed (Bi) and indirect branches mispredicted (Bi nj.

When cache and/or branch simulation is enabled, cg_annotate will print multiple counts per line of output. For
example:

Ir Bc Bcm Bi
> 8,547 (0.1% 99.4% 936 (0.1% 99.1% 177 (0.3% 96.7% 59 (0.0%
8,503 (0.1% 928 (0.1% 175 (0.3% 59 (0.0%

5.3. Cachegrind Command-line Options

Cachegrind-specific options are:
--cachegrind-out-file=<file>

Write the Cachegrind output filetof i | e rather than to the default output file, cachegr i nd. out . <pi d>.
The %p and %g format specifiers can be used to embed the process ID and/or the contents of an environment
variablein the name, asisthe case for the core option - - | og-fi |l e.

98

Cachegrind: a high-precision tracing profiler

- -cache-si neno| yes [no]

Enables or disables collection of cache access and miss counts.
- -branch- si meFno| yes [no]

Enables or disables collection of branch instruction and misprediction counts.
--instr-at-start=no|yes [yes]

Enables or disables instrumentation a the start of execution. Use this in combination
with CACHEGRI ND_START _| NSTRUVENTATI ON and CACHEGRI ND_STOP_| NSTRUVENTATI ON to
measure only part of a client program's execution.

--11=<si ze>, <associativity>, <line size>

Specify the size, associativity and line size of the level 1 instruction cache. Only useful with - - cache-
Si mryes.

--Dl=<si ze>, <associativity>, <line size>
Specify the size, associativity and line size of the level 1 data cache. Only useful with - - cache- si nryes.
--LL=<si ze>, <associ ativity>, <line size>

Specify the size, associativity and line size of the last-level cache. Only useful with - - cache- si nryes.

5.4. cg_annotate Command-line Options

-h --help
Show the help message.
--version
Show the version number.
--diff
Diff two Cachegrind output files.
--nod-fil enane <regex> [default: none]

Specifies an s/ ol d/ new/ search-and-replace expression that is applied to al filenames. Useful when
differencing, for removing minor differences in paths between two different versions of a program that are
sitting in different directories. Ani suffix makes the regex case-insensitive, and a g suffix makes it match
multiple times.

--nod- funcnane <regex> [default: none]

Like- - nod- fi | enane, but for filenames. Useful for removing minor differencesin randomized names of
auto-generated functions generated by some compilers.

--show=A, B, C [default: all, using order in the Cachegrind output file]

Specifies which events to show (and the column order). Default isto use all present in the Cachegrind output
file (and use the order in the file). Best used in conjunction with - - sort .

--sort=A,B,C [default: order in the Cachegrind output file]

Specifies the events upon which the sorting of the file:function and function:file entries will be based.

99

Cachegrind: a high-precision tracing profiler

--threshol d=X [default: 0.1%

Sets the significance threshold for the file:function and function:files sections. A file or function is shown
if it accounts for more than X% of the counts for the primary sort event. If annotating source files, this also
affects which files are annotated.

--show percs, --no-show percs, --show percs=<no|yes> [default: yes]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of
each function and line.

--annotate, --no-annotate, --auto=<no|yes> [default: yes]
Enables or disables source file annotation.
--context=N [default: 8]

The number of lines of context to show before and after each annotated line. Use alarge number (e.g. 100000)
to show all source lines.

5.5. cg_merge Command-line Options

-o outfile

Write the output to to out f i | e instead of standard outpuit.

5.6. cg_diff Command-line Options

-h --help
Show the help message.
--version
Show the version number.
--nod-fil ename=<expr> [defaul t: none]
Specifiesan s/ ol d/ new/ search-and-replace expression that is applied to all filenames.
- -nod- f uncnane=<expr> [defaul t: none]

Like- - nod-fi | enamne, but for filenames.

5.7. Cachegrind Client Requests

Cachegrind provides the following client requestsin cachegr i nd. h.
CACHEGRI ND_START_| NSTRUVENTATI ON

Start Cachegrind instrumentation if not aready enabled. Use this in combination with
CACHEGRI ND_STOP_I NSTRUVENTATI ONand - -i nstr-at-start to measure only part of aclient
program's execution.

CACHEGRI ND_STOP_| NSTRUMENTATI ON

Stop Cachegrind instrumentation if not aready disabled. Use this in combination with
CACHEGRI ND_START | NSTRUMENTATI ONand - -i nstr - at - st art to measure only part of aclient
program's execution.

100

Cachegrind: a high-precision tracing profiler

5.8. Simulation Detalls

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest
to some people.

5.8.1. Cache Simulation Specifics

The cache simulation approximates the hardware of an AMD Athlon CPU circa 2002. Its specific characteristics
are asfollows:

» Write-allocate: when awrite miss occurs, the block written to is brought into the D1 cache. Most modern caches
have this property.

« Bit-selection hash function: the set of ling(s) in the cache to which amemory block mapsis chosen by themiddle
bits M--(M+N-1) of the byte address, where:

¢ linesize=2"M bytes
e (cachesize/ line size/ associativity) = 2”N bytes

* Inclusive LL cache: the LL cache typically replicates all the entries of the L1 caches, because fetching into L1
involves fetching into LL first (this does not guarantee strict inclusiveness, aslines evicted from LL still could
residein L1). Thisis standard on Pentium chips, but AMD Opterons, Athlons and Durons use an exclusive LL
cache that only holds blocks evicted from L 1. Ditto most modern VIA CPUs.

The cache configuration simulated (cache size, associativity and line size) is determined automatically using the
x86 CPUID instruction. If you have a machine that (a) doesn't support the CPUID instruction, or (b) supports it
in an early incarnation that doesn't give any cache information, then Cachegrind will fall back to using a default
configuration (that of a model 3/4 Athlon). Cachegrind will tell you if this happens. You can manually specify
one, two or all three levels (I1/D1/LL) of the cache from the command lineusing the--11,--D1 and - - LL
options. For cache parameters to be valid for simulation, the number of sets (with associativity being the number
of cachelinesin each set) hasto be a power of two.

On PowerPC platforms Cachegrind cannot automatically determine the cache configuration, so you will need to
specify it withthe- -1 1,-- D1 and - - LL options.

Other noteworthy behaviour:

» References that straddle two cache lines are treated as follows:
« If both blocks hit --> counted as one hit
* If one block hits, the other misses --> counted as one miss.
« If both blocks miss --> counted as one miss (not two)

* Instructions that modify a memory location (e.g. i nc and dec) are counted as doing just aread, i.e. asingle
datareference. This may seem strange, but since the write can never cause amiss (the read guarantees the block
isin the cache) it's not very interesting.

Thus it measures not the number of times the data cache is accessed, but the number of times a data cache
miss could occur.

If you are interested in simulating a cache with different properties, it is not particularly hard to write your own
cache simulator, or to modify the existing onesincg_si m c.

5.8.2. Branch Simulation Specifics

Cachegrind simulates branch predictorsintended to be typical of mainstream desktop/server processors of around
2004.

101

Cachegrind: a high-precision tracing profiler

Conditional branches are predicted using an array of 16384 2-hit saturating counters. The array index used for a
branch instruction is computed partly from the low-order bits of the branch instruction's address and partly using
the taken/not-taken behaviour of the last few conditional branches. As a result the predictions for any specific
branch depend both on its own history and the behaviour of previous branches. Thisis a standard technique for
improving prediction accuracy.

For indirect branches (that is, jumps to unknown destinations) Cachegrind uses a simple branch target address
predictor. Targets are predicted using an array of 512 entries indexed by the low order 9 bits of the branch
instruction's address. Each branch is predicted to jump to the same address it did last time. Any other behaviour
causes amispredict.

More recent processors have better branch predictors, in particular better indirect branch predictors. Cachegrind's
predictor design is deliberately conservative so as to be representative of the large installed base of processors
which pre-date widespread deployment of more sophisticated indirect branch predictors. In particular, |ate model
Pentium 4s (Prescott), Pentium M, Core and Core 2 have more sophisticated indirect branch predictors than
modelled by Cachegrind.

Cachegrind does not simulate a return stack predictor. It assumes that processors perfectly predict function return
addresses, an assumption which is probably close to being true.

See Hennessy and Patterson's classic text "Computer Architecture: A Quantitative Approach”, 4th edition (2007),
Section 2.3 (pages 80-89) for background on modern branch predictors.

5.8.3. Accuracy

Cachegrind's instruction counting has one shortcoming on x86/amd64:

» When a REP-prefixed instruction executes each iteration is counted separately. In contrast, hardware counters
count each such instruction just once, ho matter how many times it iterates. It is arguable that Cachegrind's
behaviour is more useful.

Cachegrind's cache profiling has a number of shortcomings:

* It doesn't account for kernel activity. The effect of system calls on the cache and branch predictor contentsis
ignored.

* It doesn't account for other process activity. Thisis arguably desirable when considering a single program.

* It doesn't account for virtual-to-physical address mappings. Hence the simulation is not a true representation
of what's happening in the cache. Most caches and branch predictors are physically indexed, but Cachegrind
simulates caches using virtual addresses.

* It doesn't account for cache misses not visible at the instruction level, e.g. those arising from TLB misses, or
speculative execution.

 Valgrind will schedule threads differently from how they would be when running natively. This could warp the
results for threaded programs.

» The x86/amd64 instructions bt s, bt r and bt ¢ will incorrectly be counted as doing a data read if both the
arguments are registers, e.g.:

btsl % ax, %edx
This should only happen rarely.

» x86/amd64 FPU instructions with data sizes of 28 and 108 bytes (e.g. f save) are treated as though they only
access 16 bytes. These instructions seem to be rare so hopefully this won't affect accuracy much.

Another thing worth noting is that results are very sensitive. Changing the size of the executable being profiled,
or the sizes of any of the shared libraries it uses, or even the length of their file names, can perturb the results.
Variationswill be small, but don't expect perfectly repeatable results if your program changes at al.

102

Cachegrind: a high-precision tracing profiler

Many Linux distributions perform address space layout randomisation (ASLR), in which identical runs of the
same program have their shared libraries loaded at different locations, as a security measure. This also perturbs
the results.

5.9. Implementation Details

This section talks about details you don't need to know about in order to use Cachegrind, but may be of interest
to some people.

5.9.1. How Cachegrind Works

The best reference for understanding how Cachegrind works is chapter 3 of "Dynamic Binary Analysis and
Instrumentation”, by Nicholas Nethercote. It is available on the Valgrind publications page.

5.9.2. Cachegrind Output File Format

The file format is fairly straightforward, basically giving the cost centre for every line, grouped by files and
functions. It's also totally generic and self-describing, in the sense that it can be used for any events that can
be counted on a line-by-line basis, not just cache and branch predictor events. For example, earlier versions of
Cachegrind didn't have a branch predictor simulation. When this was added, the file format didn't need to change
at all. So the format (and consequently, cg_annotate) could be used by other tools.

Thefile format:

count _line
sunmary_line ::
count

[ine_num (ws+ count)* ws*
"summary:" ws? count (ws+ count)+ ws*
num

file = desc_line* cnd _|ine events line data_|ine+ sunmary |ine
desc_line = "desc:" ws? non_nl _string

cnd_I|ine ="cnmd:" ws? cmd

events |ine = "events:" ws? (event ws)+

data_line = file_line | fn_line | count_line

file_line = "fl=" filenane

fn_line = "fn=" fn_nanme

Where:

e non_nl _stri ng isany string not containing a newline.

» cnd isastring holding the command line of the profiled program.
e event isastring containing no whitespace.

e fil ename andf n_nane arestrings.

e numand | i ne_numare decimal numbers.

e Ws iswhitespace.

The contents of the "desc:" lines are printed out at the top of the summary. This is a generic way of providing
simulation specific information, e.g. for giving the cache configuration for cache simulation.

More than one line of info can be present for each file/fn/line number. In such cases, the counts for the named
events will be accumulated.

The number of countsin each | i ne and the summary_| i ne should not exceed the number of eventsin the
event _|ine. If thenumberineachl i ne isless, cg annotate treats those missing as though they were a"0"
entry. This can reducefile size.

103

http://www.valgrind.org/docs/pubs.html

Cachegrind: a high-precision tracing profiler

Afile_linechangesthecurrentfilename. A f n_| i ne changesthe current function name. A count _|i ne
contains counts that pertain to the current filename/fn_name. A "fn="fil e_| i ne andaf n_I| i ne must appear
beforeany count _| i nesto give the context of thefirst count _| i nes.

Similarly, eachfi | e_I i ne must beimmediately followed by af n_1 i ne.

The summary line is redundant, because it just holds the total counts for each event. But this serves as a useful
sanity check of the data; if the totals for each event don't match the summary line, something has gone wrong.

104

6. Callgrind: a call-graph generating
cache and branch prediction profiler

To usethistool, you must specify - - t ool =cal | gri nd on the Valgrind command line.

6.1. Overview

Callgrind is a profiling tool that records the call history among functions in a program's run as a call-graph. By
default, the collected data consists of the number of instructions executed, their relationship to source lines, the
caller/callee relationship between functions, and the numbers of such calls. Optionally, cache simulation and/
or branch prediction (similar to Cachegrind) can produce further information about the runtime behavior of an
application.

The profile dataiswritten out to afile at program termination. For presentation of the data, and interactive control
of the profiling, two command line tools are provided:

callgrind_annotate
Thiscommand readsin the profile data, and printsasorted lists of functions, optionally with source annotation.

For graphical visualization of the data, try K Cachegrind, which isa KDE/Qt based GUI that makesit easy to
navigate the large amount of data that Callgrind produces.

callgrind_control

This command enables you to interactively observe and control the status of a program currently running
under Callgrind's control, without stopping the program. Y ou can get statistics information as well as the
current stack trace, and you can request zeroing of counters or dumping of profile data.

6.1.1. Functionality

Cachegrind collects flat profile data: event counts (data reads, cache misses, etc.) are attributed directly to the
function they occurred in. This cost attribution mechanism is called self or exclusive attribution.

Callgrind extends this functionality by propagating costs across function call boundaries. If function f oo calls
bar , the costs from bar are added into f 0o's costs. When applied to the program as a whole, this builds up a
picture of so called inclusive costs, that is, where the cost of each function includes the costs of al functions it
called, directly or indirectly.

Asan example, theinclusive cost of mai n should be almost 100 percent of thetotal program cost. Because of costs
arising before mai n isrun, such asinitialization of the run time linker and construction of global C++ objects, the
inclusive cost of mai n isnot exactly 100 percent of the total program cost.

Together with the call graph, this allows you to find the specific call chains starting from mai n in which the
majority of the program'’s costs occur. Caller/callee cost attribution is aso useful for profiling functions called
from multiple call sites, and where optimization opportunities depend on changing codein the callers, in particul ar
by reducing the call count.

Callgrind's cache simulation is based on that of Cachegrind. Read the documentation for Cachegrind: a cache and
branch-prediction profiler first. The material below describes the features supported in addition to Cachegrind's
features.

Callgrind's ability to detect function calls and returns depends on the instruction set of the platform itisrun on. It
works best on x86 and amd64, and unfortunately currently does not work so well on PowerPC, ARM, Thumb or
MIPS code. Thisis because there are no explicit call or return instructions in these instruction sets, so Callgrind
has to rely on heuristics to detect calls and returns.

105

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

6.1.2. Basic Usage

As with Cachegrind, you probably want to compile with debugging info (the - g option) and with optimization
turned on.

To start a profile run for a program, execute:

valgrind --tool =callgrind [callgrind options] your-program [program options]
While the simulation is running, you can observe execution with:

callgrind_control -b

Thiswill print out the current backtrace. To annotate the backtrace with event counts, run
callgrind_control -e -b

After program termination, a profile data file named cal | gri nd. out . <pi d> is generated, where pid is the
process ID of the program being profiled. The data file contains information about the calls made in the program
among the functions executed, together with Instruction Read (Ir) event counts.

To generate a function-by-function summary from the profile datafile, use
call grind_annotate [options] callgrind.out.<pid>

This summary is similar to the output you get from a Cachegrind run with cg_annotate: the list of functionsis
ordered by exclusive cost of functions, which also are the onesthat are shown. Important for the additional features
of Callgrind are the following two options:

* --incl usi ve=yes: Instead of using exclusive cost of functionsas sorting order, use and show inclusive cost.

» --tree=bot h: Interleaveinto thetop level list of functions, information on the callers and the callees of each
function. In these lines, which represents executed calls, the cost gives the number of events spent in the call.
Indented, above each function, thereisthelist of callers, and below, thelist of callees. The sum of eventsin calls
to agiven function (caller lines), as well as the sum of eventsin calls from the function (callee lines) together
with the self cost, gives the total inclusive cost of the function.

By default, you will also get annotated source code for al relevant functions for which the source can be found.
In addition to source annotation as produced by cg_annot at e, you will see the annotated call sites with call
counts. For al other options, consult the (Cachegrind) documentation for cg_annot at e.

For better call graph browsing experience, it is highly recommended to use KCachegrind. If your code has a
significant fraction of its cost in cycles (sets of functions calling each other in a recursive manner), you have to
use KCachegrind, ascal | gri nd_annot at e currently does not do any cycle detection, which isimportant to
get correct resultsin this case.

If you are additionally interested in measuring the cache behavior of your program, use Callgrind with the option
- - cache- si mryes. For branch prediction simulation, use- - br anch- si mryes. Expect afurther slow down
approximately by afactor of 2.

If the program section you want to profile is somewhere in the middle of the run, it is beneficial to fast forward to
this section without any profiling, and then enable profiling. Thisis achieved by using the command line option
--instr-atstart=no andrunning, inashell:cal |l grind _control -i on justbeforetheinteresting
code section is executed. To exactly specify the code position where profiling should start, use the client request
CALLGRI ND_START_| NSTRUMVENTATI ON.

If you want to be able to see assembly code level annotation, specify - - dunp- i nst r =yes. Thiswill produce
profile data at instruction granularity. Note that the resulting profile data can only be viewed with KCachegrind.
For assembly annotation, it also is interesting to see more details of the control flow inside of functions, i.e.
(conditional) jumps. Thiswill be collected by further specifying - - col | ect - j unps=yes.

106

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

6.2. Advanced Usage

6.2.1. Multiple profiling dumps from one program run

Sometimesyou are not interested in characteristics of afull program run, but only of asmall part of it, for example
execution of one agorithm. If there are multiple algorithms, or one algorithm running with different input data, it
may even be useful to get different profile information for different parts of a single program run.

Profile data files have names of the form

cal l grind.out.pid.part-threadl D

where pid isthe PID of the running program, part is a number incremented on each dump (".part" is skipped for
the dump at program termination), and threadID is athread identification ("-threadID" is only used if you request
dumps of individual threads with - - separ at e- t hr eads=yes).

There are different ways to generate multiple profile dumps while a program is running under Callgrind's
supervision. Nevertheless, all methodstrigger the same action, whichis"dump al profileinformation sincethelast
dump or program start, and zero cost counters afterwards’. To allow for zeroing cost counters without dumping,
there is a second action "zero all cost counters now". The different methods are:

» Dump on program termination. This method is the standard way and doesn't need any special action on your
part.

» Spontaneous, interactive dumping. Use
callgrind_control -d [hint [PlID Nane]]

to request the dumping of profileinformation of the supervised application with PID or Name. hintisan arbitrary
string you can optionally specify to later be able to distinguish profile dumps. The control program will not
terminate before the dump iscompletely written. Note that the application must be actively running for detection
of the dump command. So, for a GUI application, resize the window, or for a server, send a request.

If you are using K Cachegrind for browsing of profileinformation, you can use the toolbar button For ce dump.
Thiswill request adump and trigger areload after the dump is written.

» Periodic dumping after execution of a specified number of basic blocks. For this, use the command line
option - - dunp- ever y- bb=count .

e Dumping at enter/leave of specified functions. Use the option - - dunp- bef ore=functi on and
--dunp-after=function. To zero cost counters before entering a function, use --zero-
bef or e=f uncti on.

Y ou can specify these options multiple timesfor different functions. Function specifications support wildcards:
eg. use- - dunp- bef ore=' f 00*' to generate dumps before entering any function starting with foo.

» Program controlled dumping. Insert CALLGRI ND_DUMP_STATS; at the position in your code where you
want a profile dump to happen. Use CALLGRI ND_ZERO_STATS; to only zero profile counters. See Client
reguest reference for more information on Callgrind specific client requests.

If you are running a multi-threaded application and specify the command line option - - separ at e-
t hr eads=yes, every thread will be profiled on its own and will create its own profile dump. Thus, the last
two methods will only generate one dump of the currently running thread. With the other methods, you will get
multiple dumps (one for each thread) on a dump request.

6.2.2. Limiting the range of collected events

By default, whenever events are happening (such as an instruction execution or cache hit/miss), Callgrind is
aggregating them into event counters. However, you may be interested only in what is happening within a given

107

https://kcachegrind.github.io/html/Home.html

Callgrind: a call-graph generating cache and branch prediction profiler

function or starting from a given program phase. To this end, you can disable event aggregation for uninteresting
program parts. While attribution of eventsto functions aswell as producing separate output per program phase can
be done by other means (see previous section), there are two benefits by disabling aggregation. First, thisis very
fine-granular (e.g. just for aloop within a function). Second, disabling event aggregation for complete program
phases allows to switch off time-consuming cache simulation and alows Callgrind to progress at much higher
speed with an slowdown of around factor 2 (identical toval gri nd --t ool =none).

There are two aspects which influence whether Callgrind is aggregating events at some point in time of program
execution. First, there isthe collection state. If thisis off, no aggregation will be done. By changing the collection
state, you can control event aggregation at avery fine granularity. However, thereis not much differencein regard
to execution speed of Callgrind. By default, collection is switched on, but can be disabled by different means (see
below). Second, there is the instrumentation mode in which Callgrind is running. This mode either can be on or
off. If instrumentation is off, no observation of actions in the program will be done and thus, no actions will be
forwarded to the simulator which could trigger events. In the end, no events will be aggregated. The huge benefit
is the much higher speed with instrumentation switched off. However, this only should be used with care and in
a coarse fashion: every mode change resets the simulator state (ie. whether amemory block is cached or not) and
flushes Valgrindsinternal cache of instrumented code blocks, resulting in latency penalty at switching time. Also,
cache simulator results directly after switching on instrumentation will be skewed due to identified cache misses
which would not happenin redlity (if you care about thiswarm-up effect, you should make sureto temporarly have
collection state switched off directly after turning instrumentation mode on). However, switching instrumentation
state is very useful to skip larger program phases such as an initialization phase. By default, instrumentation is
switched on, but as with the collection state, can be changed by various means.

Callgrind can start with instrumentation mode switched off by specifying option - -i nstr-at st art =no.
Afterwards, instrumentation can be controlled in two ways: first, interactively with:

callgrind_control -i on

(and switching off again by specifying "off" instead of "on"). Second, instrumentation state
can be programmatically changed with the macros CALLGRI ND_START_| NSTRUVENTATI ON; and
CALLGRI ND_STOP_I NSTRUMENTATI ON,; .

Similarly, the collection state at program start can be switched off by --i nstr-atstart=no. During
execution, it can be controlled programmatically with the macro CALLGRI ND_TOGGLE_COLLECT; . Further,
you can limit event collection to a specific function by using - -t oggl e- col | ect =f uncti on. This will
toggle the collection state on entering and leaving the specified function. When this option isin effect, the default
collection state at program start is "off". Only events happening while running inside of the given function will
be collected. Recursive calls of the given function do not trigger any action. This option can be given multiple
times to specify different functions of interest.

6.2.3. Counting global bus events

For access to shared data among threads in a multithreaded code, synchronization is required to avoid raced
conditions. Synchronization primitives are usually implemented via atomic instructions. However, excessive use
of such instructions can lead to performance issues.

To enable analysis of this problem, Callgrind optionally can count the number of atomic instructions executed.
More precisely, for x86/x86_64, these are instructions using a lock prefix. For architectures supporting LL/SC,
these are the number of SC instructions executed. For both, the term "global bus events' is used.

The short name of the event type used for global buseventsis™Ge". To count global busevents, use- - col | ect -
bus=yes.

6.2.4. Avoiding cycles

Informally speaking, acycleisagroup of functions which call each other in arecursive way.

Formally speaking, a cycle is a nonempty set S of functions, such that for every pair of functionsFand G in S,
itispossibleto cal from F to G (possibly viaintermediate functions) and also from G to F. Furthermore, S must

108

Callgrind: a call-graph generating cache and branch prediction profiler

be maximal -- that is, be the largest set of functions satisfying this property. For example, if athird function H is
caled frominside S and calls back into S, then H is also part of the cycle and should be included in S.

Recursion is quite usual in programs, and therefore, cycles sometimes appear in the call graph output of Callgrind.
However, thetitle of this chapter should raise two questions. What is bad about cycles which makes you want to
avoid them? And: How can cycles be avoided without changing program code?

Cyclesare not bad in itself, but tend to make performance analysis of your code harder. Thisis because inclusive
costs for cals inside of a cycle are meaningless. The definition of inclusive cogt, i.e. self cost of a function
plusinclusive cost of its callees, needs a topological order among functions. For cycles, this does not hold true:
callees of afunction in a cycleinclude the function itself. Therefore, K Cachegrind does cycle detection and skips
visuaization of any inclusive cost for calls inside of cycles. Further, all functionsin a cycle are collapsed into
artificial functions called like Cycl e 1.

Now, when a program exposes really big cycles (asis true for some GUI code, or in general code using event or
callback based programming style), you lose the nice property to let you pinpoint the bottlenecks by following
call chains from mai n, guided viainclusive cost. In addition, KCachegrind loses its ability to show interesting
parts of the call graph, asit usesinclusive costs to cut off uninteresting areas.

Despite the meaningless of inclusive costs in cycles, the big drawback for visualization motivates the possibility
to temporarily switch off cycle detection in KCachegrind, which can lead to misguiding visualization. However,
often cycles appear because of unlucky superposition of independent call chainsin a way that the profile result
will see acycle. Neglecting uninteresting calls with very small measured inclusive cost would break these cycles.
In such cases, incorrect handling of cycles by not detecting them still gives meaningful profiling visualization.

It hasto be noted that currently, callgrind_annotate does not do any cycledetection at all. For program executions
with function recursion, it e.g. can print nonsense inclusive costs way above 100%.

After describing why cycles are bad for profiling, it is worth talking about cycle avoidance. The key insight here
is that symbols in the profile data do not have to exactly match the symbols found in the program. Instead, the
symbol name could encode additional information from the current execution context such as recursion level of
the current function, or even some part of the call chain leading to the function. While encoding of additional
information into symbols is quite capable of avoiding cycles, it has to be used carefully to not cause symbol
explosion. The latter imposes large memory requirement for Callgrind with possible out-of-memory conditions,
and big profile datafiles.

A further possibility to avoid cycles in Callgrind's profile data output is to simply leave out given functions in
the call graph. Of course, this also skips any call information from and to an ignored function, and thus can break
acycle. Candidates for this typically are dispatcher functions in event driven code. The option to ignore calls to
afunction is - - f n- ski p=f uncti on. Aside from possibly breaking cycles, thisis used in Callgrind to skip
trampoline functionsinthe PLT sectionsfor callsto functionsin shared libraries. Y ou can see the differenceif you
profilewith - - ski p- pl t =no. If acall isignored, its cost events will be propagated to the enclosing function.

If you have arecursive function, you can distinguish the first 10 recursion levels by specifying - - separ at e-
recs10=f uncti on. Or for al functions with - - separ at e- r ecs=10, but this will give you much bigger
profile data files. In the profile data, you will see the recursion levels of "func" as the different functions with

names "func”, "func'2", "func'3" and so on.

If you have call chains"A >B > C" and "A > C > B" in your program, you usually get a"false" cycle"B <> C".
Use- - separat e-cal | ers2=B--separ at e- cal | er s2=C, and functions"B" and "C" will betreated as
different functions depending on thedirect caller. Using the apostrophe for appending this" context" to the function
name, youget"A >B'A >CB"and"A >CA >B'C", and therewill beno cycle. Use- - separ at e- cal | er s=2
to get a 2-caller dependency for all functions. Note that doing this will increase the size of profile datafiles.

6.2.5. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent. To start
with empty profile counter values in the child, the client request CALLGRI ND_ZERO STATS; can be inserted
into code to be executed by the child, directly after f or k.

109

Callgrind: a call-graph generating cache and branch prediction profiler

However, you will have to make sure that the output file format string (controlled by - - cal | gri nd- out -
fil e)doescontain % (whichistrue by default). Otherwise, the outputs from the parent and child will overwrite
each other or will be intermingled, which almost certainly is not what you want.

Y ou will be able to control the new child independently from the parent via callgrind_control.

6.3. Callgrind Command-line Options

In the following, options are grouped into classes.

Some options allow the specification of a function/symbol name, such as - - dunp- bef or e=f uncti on, or
- - fn-ski p=functi on. All these options can be specified multiple times for different functions. In addition,
the function specifications actually are patterns by supporting the use of wildcards *' (zero or more arbitrary
characters) and '? (exactly one arbitrary character), similar to file name globbing in the shell. This feature is
important especially for C++, as without wildcard usage, the function would have to be specified in full extent,
including parameter signature.

6.3.1. Dump creation options

These options influence the name and format of the profile datafiles.
--callgrind-out-file=<file>

Writetheprofiledatatof i | e rather than to the default output file, cal | gri nd. out . <pi d>. The %p and
% format specifiers can be used to embed the process ID and/or the contents of an environment variable in
the name, as is the case for the core option - - | og- fi | e. When multiple dumps are made, the file name
is modified further; see below.

--dunp-line=<no|yes> [default: yes]

This specifies that event counting should be performed at source line granularity. This alows source
annotation for sources which are compiled with debug information (- g).

--dunp-instr=<no| yes> [defaul t: no]

This specifiesthat event counting should be performed at per-instruction granularity. Thisallowsfor assembly
code annotation. Currently the results can only be displayed by KCachegrind.

--conpress-strings=<no|yes> [default: yes]

This option influences the output format of the profile data. It specifies whether strings (file and function
names) should be identified by numbers. This shrinks the file, but makes it more difficult for humansto read
(which is not recommended in any case).

- -conpress- pos=<no| yes> [default: yes]

Thisoption influencesthe output format of the profile data. It specifieswhether numerical positionsare aways
specified as absolute values or are allowed to be relative to previous numbers. This shrinksthefile size.

- - conbi ne- dunps=<no| yes> [defaul t: no]

When enabled, when multiple profile data parts are to be generated these parts are appended to the same
output file. Not recommended.

6.3.2. Activity options

These options specify when actions relating to event counts are to be executed. For interactive control use
callgrind_contral.

110

Callgrind: a call-graph generating cache and branch prediction profiler

--dunp- every-bb=<count> [default: 0, never]

Dump profile data every count basic blocks. Whether a dump is needed is only checked when Valgrind's
internal scheduler is run. Therefore, the minimum setting useful is about 100000. The count is a 64-bit value
to make long dump periods possible.

- - dunp- bef or e=<f uncti on>

Dump when entering f unct i on.
- -zer o- bef ore=<functi on>

Zero al costs when entering f unct i on.
- -dunp- af t er=<functi on>

Dump when leaving f unct i on.

6.3.3. Data collection options

These options specify when events are to be aggregated into event counts. Also see Limiting range of event
collection.

--instr-atstart=<yes|no> [default: yes]

Specify if you want Callgrind to start simulation and profiling from the beginning of the program. When
set to no, Callgrind will not be able to collect any information, including calls, but it will have at most a
slowdown of around 4, whichisthe minimum Valgrind overhead. I nstrumentation can beinteractively enabled
viacal I grind_control -i on.

Note that the resulting call graph will most probably not contain rmai n, but will contain all the functions
executed after instrumentation was enabled. Instrumentation can also be programmatically enabled/disabled.
See the Callgrind includefilecal | gri nd. h for the macro you have to use in your source code.

For cache simulation, results will be less accurate when switching on instrumentation later in the program
run, asthe simulator starts with an empty cache at that moment. Switch on event collection |ater to cope with
thiserror.

--coll ect-atstart=<yes|no> [default: yes]
Specify whether event collection is enabled at beginning of the profile run.
To only look at parts of your program, you have two possibilities:

1. Zero event counters before entering the program part you want to profile, and dump the event countersto
afile after leaving that program part.

2. Switch on/off collection state as needed to only see event counters happening while inside of the program
part you want to profile.

The second option can be used if the program part you want to profile is called many times. Option 1, i.e.
creating alot of dumpsis not practical here.

Collection state can be toggled at entry and exit of a given function with the option - - t oggl e- col | ect .
If you use this option, collection state should be disabled at the beginning. Note that the specification of - -
t oggl e- col | ect implicitly sets- - col | ect - st at e=no.

Collection state can be toggled also by inserting the client request CALLGRI ND_TOGGLE_COLLECT ;
at the needed code positions.

--toggl e-col | ect =<functi on>

Toggle collection on entry/exit of f unct i on.

111

Callgrind: a call-graph generating cache and branch prediction profiler

--col |l ect-junps=<no|yes> [default: no]

This specifies whether information for (conditional) jumps should be collected. Asabove, callgrind_annotate
currently is not able to show you the data. Y ou have to use KCachegrind to get jump arrows in the annotated
code.

--col | ect-systi ne=<no| yes| nsec| usec| nsec> [defaul t: no]
This specifies whether information for system call times should be collected.
The value no indicates to record no system call information.

The other values indicate to record the number of system calls done (sysCount event) and the elapsed time
(sysTime event) spent in system calls. The- - col | ect - syst i me value gives the unit used for sysTime:
milli seconds, micro seconds or nano seconds. With thevalue nsec, callgrind also records the cpu time spent
during system calls (sysCpuTime).

Thevaueyes isasynonym of nsec. Thevaue nsec isnot supported on Darwin.
--col |l ect-bus=<no| yes> [defaul t: no]

This specifies whether the number of global bus events executed should be collected. The event type "Ge"
is used for these events.

6.3.4. Cost entity separation options

These options specify how event counts should be attributed to execution contexts. For example, they specify
whether the recursion level or the call chain leading to a function should be taken into account, and whether the
thread ID should be considered. Also see Avoiding cycles.

--separ at e-t hreads=<no| yes> [defaul t: no]

This option specifies whether profile data should be generated separately for every thread. If yes, the file
names get "-threadl D" appended.

--separate-call ers=<cal l ers> [defaul t: 0]

Separate contexts by at most <callers> functionsin the call chain. See Avoiding cycles.
--separ at e- cal | er s<nunber >=<f uncti on>

Separate nunber callersfor f unct i on. See Avoiding cycles.
--separate-recs=<level > [default: 2]

Separate function recursions by at most | evel levels. See Avoiding cycles.
- - separ at e- r ecs<nunber >=<f uncti on>

Separate nuber recursionsfor f unct i on. See Avoiding cycles.
- - ski p-pl t=<no| yes> [default: yes]

Ignore calls to/from PLT sections.
--skip-direct-rec=<no| yes> [defaul t: yes]

Ignore direct recursions.
- - f n- ski p=<functi on>

Ignore calls to/from a given function. E.g. if you have a call chain A > B > C, and you specify function B
to beignored, you will only see A > C.

112

Callgrind: a call-graph generating cache and branch prediction profiler

This is very convenient to skip functions handling callback behaviour. For example, with the signal/slot
mechanism in the Qt graphics library, you only want to see the function emitting a signal to call the slots
connected to that signal. First, determine the real call chain to see the functions needed to be skipped, then
use this option.

6.3.5. Simulation options

--cache-si me<yes| no> [defaul t: no]

Specify if you want to do full cache simulation. By default, only instruction read accesses will be counted
("Ir). With cache simulation, further event counters are enabled: Cache misses on instruction reads
("Imr"/*ILmr"), data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"), data write accesses
("Dw") and related cache misses ("D1mw"/*DLmw"). For more information, see Cachegrind: a cache and
branch-prediction profiler.

--branch-si me<yes| no> [defaul t: no]

Specify if you want to do branch prediction simulation. Further event counters are enabled: Number of
executed conditional branchesand related predictor misses ("Bc"/"Bem™), executed indirect jumpsand related
misses of the jump address predictor ("Bi"/"Bim™).

6.3.6. Cache simulation options
--si nmul at e-wb=<yes| no> [defaul t: no]

Specify whether write-back behavior should be simulated, allowing to distinguish LL caches misseswith and
without write backs. The cache model of Cachegrind/Callgrind does not specify write-through vs. write-back
behavior, and thisalso is not relevant for the number of generated miss counts. However, with explicit write-
back simulation it can be decided whether a miss triggers not only the loading of a new cache line, but also if
awrite back of adirty cache line had to take place before. The new dirty miss events are ILdmr, DLdmr, and
DLdmw, for misses because of instruction read, data read, and data write, respectively. Asthey produce two
memory transactions, they should account for a doubled time estimation in relation to a normal miss.

--si mul at e- hwpr ef =<yes| no> [defaul t: no]

Specify whether simulation of a hardware prefetcher should be added which is able to detect stream access
in the second level cache by comparing accesses to separate to each page. As the simulation can not decide
about any timing issues of prefetching, it is assumed that any hardware prefetch triggered succeeds before a
real accessisdone. Thus, this gives a best-case scenario by covering all possible stream accesses.

--cacheuse=<yes| no> [defaul t: no]

Specify whether cache line use should be collected. For every cache line, from loading to it being evicted,
the number of accesses as well as the number of actually used bytes is determined. This behavior is related
to the code which triggered loading of the cache line. In contrast to miss counters, which shows the position
where the symptoms of bad cache behavior (i.e. latencies) happens, the use counters try to pinpoint at the
reason (i.e. the code with the bad access behavior). The new counters are defined in a way such that worse
behavior results in higher cost. AcCostl and AcCost2 are counters showing bad temporal locality for L1
and LL caches, respectively. Thisis done by summing up reciprocal values of the numbers of accesses of
each cache line, multiplied by 1000 (as only integer costs are allowed). E.g. for a given source line with 5
read accesses, avalue of 5000 AcCost means that for every access, a new cache line was loaded and directly
evicted afterwards without further accesses. Similarly, SpLoss1/2 shows bad spatial locality for L1 and LL
caches, respectively. It givesthe spatial 1oss count of byteswhich were loaded into cache but never accessed.
It pinpoints at code accessing data in away such that cache space is wasted. This hints at bad layout of data
structures in memory. Assuming a cache line size of 64 bytesand 100 L1 misses for a given source line, the
loading of 6400 bytes into L1 was triggered. If SpLossl shows a value of 3200 for this line, this means that
half of the loaded data was never used, or using a better data layout, only half of the cache space would have
been needed. Please note that for cache line use counters, it currently is not possible to provide meaningful
inclusive costs. Therefore, inclusive cost of these counters should be ignored.

113

Callgrind: a call-graph generating cache and branch prediction profiler

--11=<si ze>, <associativity> <line size>

Specify the size, associativity and line size of the level 1 instruction cache.
- - Dl=<si ze>, <associ ativity>, <l ine size>

Specify the size, associativity and line size of the level 1 data cache.
--LL=<si ze>, <associativity>, <line size>

Specify the size, associativity and line size of the last-level cache.

6.4. Callgrind Monitor Commands

The Callgrind tool provides monitor commands handled by the Valgrind gdbserver (see Monitor command
handling by the Valgrind gdbserver). Valgrind python code provides GDB front end commands giving an
easier usage of the callgrind monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch a callgrind monitor command via its GDB front end command, instead of prefixing the
command with "monitor”, you must use the GDB cal | gri nd command (or the shorter aliases cg). Using the
callgrind GDB front end command provide a more flexible usage, such as auto-completion of the command by
GDB. InGDB, youcanusehel p cal | gri nd to get help about the callgrind front end monitor commands and
you can use apr opos cal | gri nd to get al the commands mentionning the word "callgrind" in their name
or on-line help.

e dunp [<dunp_hi nt >] requeststo dump the profile data.
e Zer 0 requests to zero the profile data counters.

e instrumentation [on|off] requests to set (if parameter on/off is given) or get the current
instrumentation state.

» st at us requeststo print out some status information.

6.5. Callgrind specific client requests

Callgrind provides the following specific client requestsin cal | gri nd. h. See that file for the exact details of
their arguments.

CALLGRI ND_DUMP_STATS

Force generation of a profile dump at specified position in code, for the current thread only. Written counters
will be reset to zero.

CALLGRI ND_DUMP_STATS_AT(stri ng)

Same as CALLGRI ND_DUMP_STATS, but allows to specify a string to be able to distinguish profile dumps.
CALLGRI ND_ZERO STATS

Reset the profile counters for the current thread to zero.
CALLGRI ND_TOGGLE_COLLECT

Toggle the collection state. This allows to ignore events with regard to profile counters. See also options - -
collect-atstart and--toggle-collect.

CALLGRI ND_START_| NSTRUMENTATI ON

Start full Callgrind instrumentation if not already enabled. When cache simulation is done, thiswill flush the
simulated cache and lead to an artificial cache warmup phase afterwards with cache misses which would not
have happened in reality. Seealso option--i nstr-atstart.

114

Callgrind: a call-graph generating cache and branch prediction profiler

CALLGRI ND_STOP_I NSTRUMENTATI ON
Stop full Callgrind instrumentation if not already disabled. This flushes Valgrinds translation cache,
and does no additional instrumentation afterwards: it effectivly will run at the same speed as Nulgrind,
i.e. a minima slowdown. Use this to speed up the Callgrind run for uninteresting code parts. Use

CALLGRI ND_START _| NSTRUVENTATI ON to enable instrumentation again. See also option - -i nst r -
atstart.

6.6. callgrind_annotate Command-line
Options
-h --help
Show summary of options.
--version
Show version of callgrind_annotate.
--show=A, B, C [default: all]
Only show figures for events A,B,C.
--threshol d=<0--100> [default: 99%
Percentage of counts (of primary sort event) we are interested in.

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functions is
bigger or equal to the given threshold percentage.

--sort=A,B,C
Sort columns by events A,B,C [event column order].

Optionally, each event is followed by a : and a threshold, to specify different thresholds depending on the
event.

callgrind_annotate stops printing functions when the sum of the cost percentage of the printed functions for
all the eventsis bigger or equal to the given event threshold percentages.

When one or more thresholds are given viathis option, the value of - - t hr eshol d isignored.
--show per cs=<no| yes> [defaul t: no]

When enabled, a percentage is printed next to all event counts. This helps gauge the relative importance of
each function and line.

--aut o=<yes| no> [defaul t: yes]

Annotate all source files containing functions that helped reach the event count threshold.
--context=N [default: 8]

Print N lines of context before and after annotated lines.
--inclusive=<yes|no> [default: no]

Add subroutine costs to functions calls.

115

Callgrind: a call-graph generating cache and branch prediction profiler

--tree=<none| cal l er|cal I i ng| both> [defaul t: none]

6.

Print for each function their callers, the called functions or both.
--include=<dir>

Add di r tothelist of directoriesto search for source files.

7. callgrind_control Command-line Options

By default, callgrind_control actson all programsrun by the current user under Callgrind. It is possibleto limit the
actions to specified Callgrind runs by providing alist of pids or program names as argument. The default action
isto give some brief information about the applications being run under Callgrind.

-h

--help

Show a short description, usage, and summary of options.

--version

Show version of callgrind_control.

--long

Show &l so the working directory, in addition to the brief information given by default.
--stat

Show statistics information about active Callgrind runs.

- - back

Show stack/back traces of each thread in active Callgrind runs. For each active function in the stack trace,
also the number of invocations since program start (or last dump) is shown. This option can be combined with
-eto show inclusive cost of active functions.

[A B, ...] (default:al)

Show the current per-thread, exclusive cost values of event counters. If no explicit event names are given,
figuresfor all event types which are collected in the given Callgrind run are shown. Otherwise, only figures
for event types A, B, ... are shown. If this option is combined with -b, inclusive cost for the functions of each
active stack frame is provided, too.

- -dunp[=<desc>] (default: no description)

-Z

-k

Request the dumping of profile information. Optionally, a description can be specified which is written into
the dump as part of the information giving the reason which triggered the dump action. This can be used to
distinguish multiple dumps.

--zero
Zero all event counters.
--kill

Force a Callgrind run to be terminated.

--instr=<on|of f>

Switch instrumentation mode on or off. If a Callgrind run has instrumentation disabled, no simulation is done
and no events are counted. Thisis useful to skip uninteresting program parts, as there is much less slowdown
(same as with the Valgrind tool "none"). See also the Callgrind option--i nstr-atstart.

116

Callgrind: a call-graph generating cache and branch prediction profiler

--vgdb- prefi x=<prefi x>

Specify the vgdb prefix to use by callgrind_control. callgrind_control internally uses vgdb to find and control
the active Callgrind runs. If the - - vgdb- pr ef i X option was used for launching valgrind, then the same
option must be given to callgrind_control.

117

/. Helgrind: athread error detector

To usethistool, you must specify - - t ool =hel gri nd on the Valgrind command line.

7.1. Overview

HelgrindisaValgrind tool for detecting synchronisation errorsin C, C++ and Fortran programsthat use the POSI X
pthreads threading primitives.

The main abstractions in POSIX pthreads are: a set of threads sharing a common address space, thread creation,
thread joining, thread exit, mutexes (locks), condition variables (inter-thread event notifications), reader-writer
locks, spinlocks, semaphores and barriers.

Helgrind can detect three classes of errors, which are discussed in detail in the next three sections:
1. Misuses of the POSIX pthreads API.

2. Potential deadlocks arising from lock ordering problems.

3. Dataraces -- accessing memory without adequate locking or synchronisation.

Problems like these often result in unreproducible, timing-dependent crashes, deadlocks and other misbehaviour,
and can be difficult to find by other means.

Helgrind isaware of all the pthread abstractions and tracks their effects as accurately asit can. On x86 and amd64
platforms, it understands and partially handles implicit locking arising from the use of the LOCK instruction
prefix. On PowerPC/POWER and ARM platforms, it partially handles implicit locking arising from load-linked
and store-conditional instruction pairs.

Helgrind works best when your application uses only the POSI X pthreads API. However, if you want to use custom
threading primitives, you can describe their behaviour to Helgrind using the ANNOTATE_* macros defined in
hel gri nd. h.

Helgrind also provides Execution Trees memory profiling using the command line option - - xt r ee- nenory
and the monitor command xt nenory.

Following those is a section containing hints and tips on how to get the best out of Helgrind.
Then thereis a summary of command-line options.

Finally, thereisabrief summary of areasin which Helgrind could be improved.

7.2. Detected errors: Misuses of the POSIX
pthreads API

Helgrind intercepts calls to many POSIX pthreads functions, and is therefore able to report on various common
problems. Although these are unglamourous errors, their presence can lead to undefined program behaviour and
hard-to-find bugs later on. The detected errors are:

* unlocking an invalid mutex

« unlocking a not-locked mutex

* unlocking amutex held by a different thread
* destroying an invalid or alocked mutex

« recursively locking a non-recursive mutex

« deallocation of memory that contains alocked mutex

118

Helgrind: athread error detector

 passing mutex arguments to functions expecting reader-writer lock arguments, and vice versa

» when aPOSIX pthread function fails with an error code that must be handled

» when athread exits whilst still holding locked locks

» cadlingpt hr ead_cond_wai t with anot-locked mutex, aninvalid mutex, or onelocked by adifferent thread
* inconsistent bindings between condition variables and their associated mutexes

* invalid or duplicate initialisation of a pthread barrier

« initialisation of a pthread barrier on which threads are still waiting

« destruction of a pthread barrier object which was never initialised, or on which threads are still waiting

» waiting on an uninitialised pthread barrier

« for al of the pthreads functions that Helgrind intercepts, an error is reported, along with a stack trace, if the
system threading library routine returns an error code, even if Helgrind itself detected no error

Checks pertaining to the validity of mutexes are generally also performed for reader-writer locks.

Signalling or broadcasting a condition variable when the associated mutex is unlocked is not strictly an error.
The resulting thread scheduling may be unpredictable if the mutex is not held. The option - - check- cond-

si gnal - mut ex=yes| no turns on checking for this situation. This kind of error is categorised as 'dubious’.
The check isnot turned on by default because some standard C and C++ libraries use condition signals/broadcasts
with the associated mutex unlocked.

Various kinds of this-can't-possibly-happen events are also reported. These usually indicate bugs in the system
threading library.

Reported errors always contain a primary stack trace indicating where the error was detected. They may also
contain auxiliary stack traces giving additional information. In particular, most errors relating to mutexes will also
tell you where that mutex first came to Helgrind's attention (the "was first observed at" part), soyou
have a chance of figuring out which mutex it is referring to. For example:

Thread #1 unl ocked a not-|ocked | ock at Ox7FEFFFA90
at 0x4C2408D: pt hread_nutex_unl ock (hg_intercepts.c:492)
by 0x40073A: nearly_main (tc09 bad_unl ock. c: 27)
by 0x40079B: main (tc09_bad unl ock. c: 50)
Lock at Ox7FEFFFA90 was first observed
at 0x4C25D01: pthread_nutex_init (hg_intercepts.c: 326)
by 0x40071F: nearly_main (tc09 bad_unl ock. c: 23)
by 0x40079B: main (tc09_bad unl ock. c: 50)

Helgrind has a way of summarising thread identities, as you see here with the text "Thr ead #1". Thisis so
that it can speak about threads and sets of threads without overwhelming you with details. See below for more
information on interpreting error messages.

7.3. Detected errors: Inconsistent Lock
Orderings

In this section, and in general, to "acquire" alock simply means to lock that lock, and to "release” alock means
to unlock it.

Helgrind monitors the order in which threads acquire locks. This allows it to detect potential deadlocks which
could arise from the formation of cycles of locks. Detecting such inconsistencies is useful because, whilst actual
deadlocks are fairly obvious, potential deadlocks may never be discovered during testing and could later lead to
hard-to-diagnose in-service failures.

119

Helgrind: athread error detector

The simplest example of such aproblem is asfollows.

 Imagine some shared resource R, which, for whatever reason, is guarded by two locks, L1 and L2, which must
both be held when R is accessed.

 Suppose athread acquires L1, then L2, and proceeds to access R. The implication of thisisthat all threadsin
the program must acquire the two locksin the order first L1 then L2. Not doing so risks deadlock.

» Thedeadlock could happen if two threads -- call them T1 and T2 -- both want to access R. Suppose T1 acquires
L1 first, and T2 acquires L2 first. Then T1 triesto acquire L2, and T2 tries to acquire L1, but those locks are
both already held. So T1 and T2 become deadlocked.

Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When athread
acquires a new lock, the graph is updated, and then checked to see if it now contains a cycle. The presence of a
cycle indicates a potential deadlock involving the locks in the cycle.

In general, Helgrind will choose two locks involved in the cycle and show you how their acquisition ordering has
become inconsistent. It does this by showing the program points that first defined the ordering, and the program
points which later violated it. Here is a simple example involving just two locks:

Thread #1: | ock order "Ox7FFO006D0 before Ox7FFO006A0" vi ol at ed

(bserved (incorrect) order is: acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread _nutex | ock (hg_intercepts.c:494)
by 0x400825: nmain (tcl3 | aogl. c: 23)

followed by a later acquisition of |ock at Ox7FFO006D0
at 0x4C2BC62: pthread _nutex | ock (hg_intercepts.c:494)
by 0x400853: namin (tcl3 | aogl. c: 24)

Requi red order was established by acquisition of |ock at 0x7FF0006D0
at 0x4C2BC62: pthread _nutex | ock (hg_intercepts.c:494)
by 0x40076D: nmain (tcl3 | aogl.c:17)

followed by a later acquisition of |ock at Ox7FFO006A0
at 0x4C2BC62: pthread _nutex | ock (hg_intercepts.c:494)
by 0x40079B: nain (tcl3 | aogl.c: 18)

When there are more than two locks in the cycle, the error is equally serious. However, at present Helgrind does
not show the locksinvolved, sometimes because that information is not available, but also so asto avoid flooding
you with information. For example, a naive implementation of the famous Dining Philosophers problem involves
acycleof fivelocks(seehel gri nd/t ests/tcl4_l aog_di nphi |l s. c). Inthiscase Helgrind has detected
that all 5 philosophers could simultaneously pick up their left fork and then deadlock whilst waiting to pick up
their right forks.

Thread #6: | ock order "0x80499A0 before 0x8049A00" vi ol at ed

observed (incorrect) order is: acquisition of |ock at 0x8049A00
at 0x40085BC. pthread nmutex | ock (hg_intercepts.c:495)
by 0x80485B4: dine (tcl4 |aog dinphils.c:18)
by 0x400BDA4: nythread w apper (hg_intercepts.c:219)
by 0x39B924: start_thread (pthread create.c:297)
by 0x2F107D: clone (clone. S: 130)

followed by a later acquisition of |ock at 0x80499A0
at 0x40085BC. pthread nmutex | ock (hg_intercepts.c:495)
by 0x80485CD: dine (tcl4 |aog dinphils.c:19)
by 0x400BDA4: nythread w apper (hg_intercepts.c:219)

120

Helgrind: athread error detector

by 0x39B924: start_thread (pthread_create.c:297)
by 0x2F107D: cl one (cl one.S: 130)

7.4. Detected errors: Data Races

A datarace happens, or could happen, when two threads access a shared memory location without using suitable
locks or other synchronisation to ensure single-threaded access. Such missing locking can cause obscure timing
dependent bugs. Ensuring programs are race-free is one of the central difficulties of threaded programming.

Reliably detecting racesisadifficult problem, and most of Helgrind's internals are devoted to dealing with it. We
begin with asimple example.

7.4.1. A Simple Data Race

About the simplest possible example of araceis as follows. In this program, it is impossible to know what the
valueof var isat the end of the program. Isit2 ?20r 1 ?

#i ncl ude <pt hread. h>
int var = O;

voi d* child_fn (void* arg) {
var++; /* Unprotected relative to parent */ /* this is line 6 */
return NULL;

}

int min (void) {
pthread_t child;
pt hread_create(&child, NULL, child_fn, NULL);
var++; /* Unprotected relative to child */ /* this is line 13 */
pt hread_j oi n(child, NULL);
return O;

}

The problem is there is nothing to stop var being updated simultaneously by both threads. A correct program
would protect var with alock of type pt hr ead_nut ex_t , which is acquired before each access and released
afterwards. Helgrind's output for this programis:

Thread #1 is the progranmis root thread

Thread #2 was created
at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)
by 0x4E333A4: do_clone (in /1ib64/1ibpthread-2. 8. so0)
by O0x4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. so)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)
by 0x400605: nain (sinple race.c:12)

Possi bl e data race during read of size 4 at 0x601038 by thread #1
Locks hel d: none
at 0x400606: mmin (sinple_race.c:13)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none

at 0x4005DC. child fn (sinple_race.c:6)

by O0x4C29AFF. nythread w apper (hg_intercepts.c:194)

by O0x4E3403F:. start _thread (in /1ib64/1ibpthread-2. 8. so)

121

Helgrind: athread error detector

by 0x511CO0CC: clone (in /1ib64/I1ibc-2.8.s0)

Locati on 0x601038 is O bytes inside global var "var"
decl ared at sinple_race.c:3

Thisisquitealot of detail for an apparently simple error. The last clause is the main error message. It says there
isarace asaresult of aread of size 4 (bytes), at 0x601038, which is the address of var , happening in function
mai n at line 13 in the program.

Two important parts of the message are:

» Helgrind shows two stack traces for the error, not one. By definition, a race involves two different threads
accessing the same location in such away that the result depends on the rel ative speeds of the two threads.

The first stack trace follows the text "Possi bl e data race during read of size 4 ..."and
the second trace follows thetext "Thi s conflicts with a previous wite of size 4 ..."
Helgrind is usually able to show both accesses involved in a race. At least one of these will be a write (since
two concurrent, unsynchronised reads are harmless), and they will of course be from different threads.

By examining your program at the two locations, you should be able to get at least some idea of what the root
cause of the problem is. For each location, Helgrind shows the set of locks held at the time of the access. This
often makes it clear which thread, if any, failed to take a required lock. In this example neither thread holds
alock during the access.

* For races which occur on global or stack variables, Helgrind tries to identify the name and defining point of
the variable. Hence the text "Locat i on 0x601038 is 0 bytes inside global var "var"
decl ared at sinple_race.c: 3"

Showing names of stack and global variables carries no run-time overhead once Helgrind has your program
up and running. However, it does require Helgrind to spend considerable extra time and memory at program
startup to read the relevant debug info. Hence this facility is disabled by default. To enableit, you need to give
the- - r ead- var - i nf o=yes option to Helgrind.

The following section explains Helgrind's race detection algorithm in more detail.

7.4.2. Helgrind's Race Detection Algorithm

Most programmersthink about threaded programming in terms of the basic functionality provided by thethreading
library (POSIX Pthreads): thread creation, thread joining, locks, condition variables, semaphores and barriers.

The effect of using these functionsisto impose constraints upon the order in which memory accesses can happen.
This implied ordering is generally known as the "happens-before relation”. Once you understand the happens-
before relation, it is easy to see how Helgrind finds races in your code. Fortunately, the happens-before relation
isitself easy to understand, and is by itself a useful tool for reasoning about the behaviour of paralel programs.
We now introduce it using a simple example.

Consider first the following buggy program:

Parent t hread: Chil d thread:
int var;

/!l create child thread

pt hread create(...)

var = 20; var = 10;
exit

[/ wait for child

pthread join(...)
printf("%\n", var);

122

Helgrind: athread error detector

The parent thread creates a child. Both then write different valuesto some variablevar , and the parent then waits
for the child to exit.

What isthevalueof var at the end of the program, 10 or 20? We don't know. The program is considered buggy (it
has arace) because thefinal value of var depends on therelative rates of progress of the parent and child threads.
If the parent is fast and the child is slow, then the child's assignment may happen later, so the final value will be
10; and vice versaif the child is faster than the parent.

Therelativerates of progress of parent vschild isnot something the programmer can control, and will often change
from run to run. It depends on factors such astheload on the machine, what elseisrunning, the kernel's scheduling
strategy, and many other factors.

The obvious fix is to use alock to protect var . It is however instructive to consider a somewhat more abstract
solution, which is to send a message from one thread to the other:

Parent thread: Chil d thread:
int var;

/1 create child thread

pthread create(...)

var = 20;

/1 send nessage to child
/1 wait for nmessage to arrive
var = 10;
exit

/1 wait for child
pthread join(...)
printf("%l\n", var);

Now the program reliably prints 10", regardless of the speed of the threads. Why? Because the child's assignment
cannot happen until after it receives the message. And the message is not sent until after the parent's assignment
is done.

The message transmission creates a "happens-before" dependency between the two assignments: var = 20;
must now happen-beforevar = 10; . And so thereisno longer araceon var .

Note that it's not significant that the parent sends a message to the child. Sending a message from the child (after
its assignment) to the parent (before its assignment) would also fix the problem, causing the program to reliably
print "20".

Helgrind's algorithm is (conceptually) very simple. It monitors all accesses to memory locations. If alocation --
inthisexample, var , is accessed by two different threads, Helgrind checksto seeif the two accesses are ordered
by the happens-before relation. If so, that's fine; if not, it reports arace.

It isimportant to understand that the happens-before relation creates only a partial ordering, not a total ordering.
An example of atotal ordering is comparison of humbers: for any two numbers x and y, either x is less than,
equal to, or greater thany. A partial ordering is like atotal ordering, but it can also express the concept that two
elements are neither equal, less or greater, but merely unordered with respect to each other.

In the fixed example above, we say that var = 20; "happens-before” var = 10; . Butintheorigina version,
they are unordered: we cannot say that either happens-before the other.

What does it mean to say that two accesses from different threads are ordered by the happens-before relation? It
means that there is some chain of inter-thread synchronisation operations which cause those accesses to happen in
aparticular order, irrespective of the actual rates of progress of the individual threads. Thisisarequired property
for areliable threaded program, which iswhy Helgrind checks for it.

The happens-before relations created by standard threading primitives are as follows:

123

Helgrind: athread error detector

When a mutex is unlocked by thread T1 and later (or immediately) locked by thread T2, then the memory
accessesin T1 prior to the unlock must happen-before those in T2 after it acquires the lock.

The same idea applies to reader-writer locks, although with some complication so asto allow correct handling
of reads vswrites.

When a condition variable (CV) is signalled on by thread T1 and some other thread T2 isthereby released from
await on the same CV, then the memory accessesin T1 prior to the signalling must happen-before those in T2
after it returns from the wait. If no thread was waiting on the CV then there is no effect.

If instead T1 broadcastson aCV, then all of the waiting threads, rather than just one of them, acquire a happens-
before dependency on the broadcasting thread at the point it did the broadcast.

A thread T2 that continues after completing sem_wait on a semaphore that thread T1 posts on, acquires a
happens-before dependence on the posting thread, a bit like dependencies caused mutex unlock-lock pairs.
However, since a semaphore can be posted on many times, it is unspecified from which of the post calls the
wait call getsits happens-before dependency.

For a group of threads T1 .. Tn which arrive at a barrier and then move on, each thread after the call has a
happens-after dependency from all threads before the barrier.

A newly-created child thread acquires an initial happens-after dependency on the point where its parent created
it. That is, all memory accesses performed by the parent prior to creating the child are regarded as happening-
before all the accesses of the child.

Similarly, when an exiting thread is reaped via a call to pt hr ead_j oi n, once the cal returns, the reaping
thread acquires a happens-after dependency relative to all memory accesses made by the exiting thread.

In summary: Helgrind intercepts the above listed events, and builds a directed acyclic graph represented the
collective happens-before dependencies. It also monitors all memory accesses.

If alocation is accessed by two different threads, but Helgrind cannot find any path through the happens-before
graph from one access to the other, then it reports a race.

There are a couple of caveats:

Helgrind doesn't check for aracein the case where both accesses are reads. That would be silly, since concurrent
reads are harmless.

Two accesses are considered to be ordered by the happens-before dependency even through arbitrarily
long chains of synchronisation events. For example, if T1 accesses some location L, and then
pt hr ead_cond_si gnal s T2, which later pt hr ead_cond_si gnal s T3, which then accessesL, then a
suitable happens-before dependency exists between the first and second accesses, even though it involves two
different inter-thread synchronisation events.

7.4.3. Interpreting Race Error Messages

Helgrind's race detection algorithm collects a lot of information, and tries to present it in a helpful way when a
race is detected. Here's an example:

Thread #2 was created

at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)

by 0x4E333A4: do_clone (in /1ib64/1ibpthread-2. 8. s0)

by O0x4E33A30: pthread create@asl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. s0)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)

by 0x4008F2: main (tc2l pthonce. c: 86)

Thread #3 was created

at Ox511CO08E: clone (in /lib64/1ibc-2.8.s0)
by 0x4E333A4: do_clone (in /1ib64/1ibpthread-2. 8. so0)

124

Helgrind: athread error detector

by Ox4E33A30: pthread create@dsl| BC 2.2.5 (in /1ib64/1ibpthread-2. 8. so)
by 0x4C299D4: pthread create@ (hg_intercepts.c:214)
by 0x4008F2: main (tc2l1_pthonce. c: 86)

Possi bl e data race during read of size 4 at 0x601070 by thread #3
Locks hel d: none

at 0x40087A: child (tc2l1_pthonce.c: 74)

by Ox4C29AFF: nyt hread_wr apper (hg_intercepts.c:194)

by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

by 0x511CO0CC: clone (in /1ib64/1ibc-2.8.s0)

This conflicts with a previous wite of size 4 by thread #2
Locks hel d: none
at 0x400883: child (tc2l1_pthonce.c: 74)
by Ox4C29AFF: nyt hread_wr apper (hg_intercepts.c:194)
by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)
by 0x511C0CC. clone (in /lib64/1ibc-2.8.s0)

Locati on 0x601070 is O bytes inside |ocal var "unprotected2”
declared at tc2l1 pthonce.c:51, in frame #0 of thread 3

Helgrind first announces the creation points of any threads referenced in the error message. This is so it can
speak concisely about threads without repeatedly printing their creation point call stacks. Each thread isonly ever
announced once, the first time it appearsin any Helgrind error message.

Themain error message beginsat thetext "Possi bl e dat a race duri ng read". Atthestartisinformation
you would expect to see -- address and size of the racing access, whether aread or a write, and the call stack at
the point it was detected.

A second call stack is presented starting at the text "Thi s conflicts with a previous wite".
This shows a previous access which also accessed the stated address, and which is believed to be racing against
the access in the first call stack. Note that this second call stack is limited to a maximum of - - hi st ory-
backt r ace- si ze entrieswith adefault value of 8 to limit the memory usage.

Finally, Helgrind may attempt to give a description of the raced-on addressin source level terms. In this example,
itidentifiesit as alocal variable, shows its name, declaration point, and in which frame (of the first call stack) it
lives. Note that this information is only shown when - - r ead- var - i nf o=yes is specified on the command
line. That's because reading the DWARF3 debug information in enough detail to capture variabletype and location
information makes Helgrind much slower at startup, and also requires considerable amounts of memory, for large
programs.

Once you have your two call stacks, how do you find the root cause of the race?

The first thing to do is examine the source locations referred to by each call stack. They should both show an
access to the same location, or variable.

Now figure out how how that location should have been made thread-safe:

 Perhaps the location was intended to be protected by a mutex? If so, you need to lock and unlock the mutex
at both access points, even if one of the accesses is reported to be a read. Did you perhaps forget the locking
at one or other of the accesses? To help you do this, Helgrind shows the set of locks held by each threads at
the time they accessed the raced-on location.

 Alternatively, perhapsyou intended to use asome other schemeto makeit safe, such assignalling on acondition
variable. In all such cases, try to find a synchronisation event (or a chain thereof) which separates the earlier-
observed access (as shown in the second call stack) from the later-observed access (as shown in the first call
stack). In other words, try to find evidence that the earlier access "happens-before” the later access. See the
previous subsection for an explanation of the happens-before relation.

The fact that Helgrind isreporting arace meansit did not observe any happens-before relation between the two
accesses. If Helgrind isworking correctly, it should also be the case that you also cannot find any such relation,

125

Helgrind: athread error detector

even on detailed inspection of the source code. Hopefully, though, your inspection of the code will show where
the missing synchronisation operation(s) should have been.

7.5. Hints and Tips for Effective Use of
Helgrind

Helgrind can be very helpful in finding and resolving threading-related problems. Like all sophisticated tools, it
is most effective when you understand how to play to its strengths.

Helgrind will be less effective when you merely throw an existing threaded program at it and try to make sense
of any reported errors. It will be more effective if you design threaded programs from the start in away that helps
Helgrind verify correctness. The same is true for finding memory errors with Memcheck, but applies more here,
because thread checking is a harder problem. Consequently it is much easier to write a correct program for which
Helgrind falsely reports (threading) errorsthan it isto write acorrect program for which Memcheck falsely reports
(memory) errors.

With that in mind, here are some tips, listed most important first, for getting reliable results and avoiding false
errors. The first two are critical. Any violations of them will swamp you with huge numbers of false data-race
errors.

1. Make sure your application, and al the libraries it uses, use the POSIX threading primitives. Helgrind needs
to be able to see all events pertaining to thread creation, exit, locking and other synchronisation events. To do
so it intercepts many POSIX pthreads functions.

Do not roll your own threading primitives (mutexes, etc) from combinations of the Linux futex syscall, atomic
counters, etc. These throw Helgrind's internal what's-going-on models way off course and will give bogus
results.

Also, do not reimplement existing POSI X abstractionsusing other POSI X abstractions. For example, don't build
your own semaphore routines or reader-writer locks from POSIX mutexes and condition variables. Instead use
POSIX reader-writer locks and semaphores directly, since Helgrind supports them directly.

Helgrind directly supportsthe following POSI X threading abstractions. mutexes, reader-writer locks, condition
variables (but see below), semaphores and barriers. Currently spinlocks are not supported, although they could
bein future.

At the time of writing, the following popular Linux packages are known to implement their own threading
primitives:

» Qtversion4.X. Qt 3.X isharmlessinthat it only uses POSIX pthreads primitives. Unfortunately Qt 4.X has
its own implementation of mutexes (QMutex) and thread reaping. Helgrind 3.4.x contains direct support for
Qt 4.X threading, which is experimental but is believed to work fairly well. A side effect of supporting Qt
4 directly is that Helgrind can be used to debug KDE4 applications. As thisis an experimental feature, we
would particularly appreciate feedback from folks who have used Helgrind to successfully debug Qt 4 and/
or KDE4 applications.

* Runtime support library for GNU OpenMP (part of GCC), at least for GCC versions 4.2 and 4.3. The GNU
OpenMP runtimelibrary (I i bgonp. so) constructsits own synchronisation primitives using combinations
of atomic memory instructions and the futex syscall, which causes total chaos since in Helgrind since it
cannot "see" those.

Fortunately, this can be solved using a configuration-time option (for GCC). Rebuild GCC from source, and
configureusing - - di sabl e- | i nux- f ut ex. This makes libgomp.so use the standard POSI X threading
primitives instead. Note that this was tested using GCC 4.2.3 and has hot been re-tested using more recent
GCC versions. We would appreciate hearing about any successes or failures with more recent versions.

If you must implement your own threading primitives, there are a set of client request macrosinhel gri nd. h
to help you describe your primitives to Helgrind. Y ou should be able to mark up mutexes, condition variables,
etc, without difficulty.

126

Helgrind: athread error detector

It is aso possible to mark up the effects of thread-safe reference
counting using the ANNOTATE_HAPPENS BEFORE, ANNOTATE_HAPPENS AFTER and
ANNOTATE_HAPPENS BEFORE FORGET_ALL, macros. Thread-safe reference counting using an
atomically incremented/decremented refcount variable causes Helgrind problems because a one-to-zero
transition of the reference count means the accessing thread has exclusive ownership of the associated resource
(normally, a C++ object) and can therefore accessit (normally, to run its destructor) without locking. Helgrind
doesn't understand this, and markup is essential to avoid false positives.

Here are recommended guidelines for marking up thread safe reference counting in C++. You only need to
mark up your release methods -- the ones which decrement the reference count. Given aclass like this:

cl ass Myd ass {
unsi gned i nt nRef Count;

void Release (void) {
unsi gned int newCount = atom c_decrenent (&rRef Count) ;
if (newCount == 0) {
delete this;

}
}

the release method should be marked up as follows:

void Release (void) {

unsi gned i nt newCount = atom c_decrenent (&rRef Count) ;

if (newCount == 0) {
ANNCOTATE_HAPPENS_AFTER(&rRef Count) ;
ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(&rRef Count) ;
delete this;

} else {
ANNOCTATE_HAPPENS_BEFORE(&nRef Count) ;

}
}

There are anumber of complex, mostly-theoretical objections to this scheme. From a theoretical standpoint it
appears to be impossible to devise a markup scheme which is completely correct in the sense of guaranteeing
to remove all false races. The proposed scheme however works well in practice.

. Avoid memory recycling. If you can't avoid it, you must use tell Helgrind what is going on via the
VALGRI ND_HG CLEAN_MEMORY client request (in hel gri nd. h).

Helgrind is aware of standard heap memory allocation and deallocation that occurs viamal | oc/f r ee/new
del et e and from entry and exit of stack frames. In particular, when memory is deallocated via f r ee,
del et e, or function exit, Helgrind considersthat memory clean, sowhenitiseventually reallocated, itshistory
isirrelevant.

However, it is common practice to implement memory recycling schemes. In these, memory to be freed is not
handed to f r ee/del et e, but instead put into a pool of free buffers to be handed out again as required. The
problem is that Helgrind has no way to know that such memory islogically no longer in use, and its history is
irrelevant. Hence you must make that explicit, using the VALGRI ND_HG CLEAN_MEMORY client request to
specify the relevant address ranges. It's easiest to put these requests into the pool manager code, and use them
either when memory is returned to the pool, or is alocated from it.

. Avoid POSIX condition variables. If you can, use POSIX semaphores (sem t , sem post, sem wai t) to
do inter-thread event signalling. Semaphores with an initial value of zero are particularly useful for this.

127

Helgrind: athread error detector

Helgrind only partially correctly handles POSIX condition variables. This is because Helgrind can see
inter-thread dependencies between a pt hread _cond_wait cal and a pt hread_cond_si gnal /
pt hr ead_cond_br oadcast call only if the waiting thread actually gets to the rendezvous first (so that it
actually calls pt hread_cond_wai t). It can't see dependencies between the threads if the signaller arrives
first. In the latter case, POSIX guidelines imply that the associated boolean condition still provides an inter-
thread synchronisation event, but one which isinvisible to Helgrind.

The result of Helgrind missing some inter-thread synchronisation eventsis to cause it to report fal se positives.

The root cause of this synchronisation lossage is particularly hard to understand, so an example is helpful.
It was discussed at length by Arndt Muehlenfeld ("Runtime Race Detection in Multi-Threaded Programs’,
Dissertation, TU Graz, Austria). The canonical POSIX-recommended usage scheme for condition variablesis
asfollows:

b is a Bool ean condition, which is Fal se nobst of the tine
cv is a condition variable
mnK is its associated nutex

Signal l er: Wi ter:

| ock(nx) I ock(nx)

b = True while (b == Fal se)
si gnal (cv) wai t (cv, nx)

unl ock(nx) unl ock(nx)

Assumeb isFalse most of thetime. If the waiter arrives at the rendezvousfirst, it entersitswhile-loop, waitsfor
the signaller to signal, and eventually proceeds. Helgrind sees the signal, notes the dependency, and all iswell.

If thesignaller arrivesfirst, b isset to true, and the signal disappearsinto nowhere. When the waiter later arrives,
it does not enter itswhile-loop and simply carries on. But even in this case, the waiter code following the while-
loop cannot execute until the signaller setsb to True. Hence thereis still the same inter-thread dependency, but
thistimeit is through an arbitrary in-memory condition, and Helgrind cannot see it.

By comparison, Helgrind's detection of inter-thread dependencies caused by semaphore operationsis believed
to be exactly correct.

Asfar as| know, a solution to this problem that does not require source-level annotation of condition-variable
wait loops is beyond the current state of the art.

4. Make sure you are using a supported Linux distribution. At present, Helgrind only properly supports glibc-2.3
or later. Thisin turn means we only support glibc's NPTL threading implementation. The old LinuxThreads
implementation is not supported.

5. If your application is using thread local variables, helgrind might report fal se positive race conditions on these
variables, despite being very probably race free. On Linux, you can use - - si m hi nt s=deact i vat e-
pt hr ead- st ack- cache- vi a- hack to avoid such false positive error messages (see --sim-hints).

6. Round up all finished threads using pt hr ead_j oi n. Avoid detaching threads: don't create threads in the
detached state, and don't call pt hr ead_det ach on existing threads.

Using pt hr ead_j oi n to round up finished threads provides a clear synchronisation point that both Helgrind
and programmers can see. If you don't call pt hr ead_j oi n on athread, Helgrind has no way to know when
it finishes, relative to any significant synchronisation pointsfor other threadsin the program. So it assumesthat
the thread lingers indefinitely and can potentialy interfere indefinitely with the memory state of the program.
It has every right to assume that -- after all, it might really be the case that, for scheduling reasons, the exiting
thread did run very slowly in the last stages of itslife.

7. Perform thread debugging (with Helgrind) and memory debugging (with Memcheck) together.

128

Helgrind: athread error detector

Helgrind tracks the state of memory in detail, and memory management bugs in the application are liable to
cause confusion. In extreme cases, applications which do many invalid reads and writes (particularly to freed
memory) have been known to crash Helgrind. So, ideally, you should make your application Memcheck-clean
before using Helgrind.

It may be impossible to make your application Memcheck-clean unless you first remove threading bugs. In
particular, it may be difficult to remove all reads and writes to freed memory in multithreaded C++ destructor
seguences at program termination. So, ideally, you should make your application Helgrind-clean before using
Memcheck.

Sincethis circularity is obviously unresolvable, at |east bear in mind that Memcheck and Helgrind are to some
extent complementary, and you may need to use them together.

8. POSIX requires that implementations of standard I/O (printf ,fprintf,fwite,fread,etc) arethread
safe. Unfortunately GNU libc implements this by using internal locking primitives that Helgrind is unable to
intercept. Consequently Helgrind generates many fal se race reports when you use these functions.

Helgrind attempts to hide these errors using the standard Valgrind error-suppression mechanism. So, at least
for simpletest cases, you don't see any. Nevertheless, some may dlip through. Just something to be aware of.

9. Helgrind's error checks do not work properly inside the system threading library itself (I i bpt hr ead. so),
and it usually observeslarge numbers of (false) errorsin there. Valgrind's suppression system then filters these
out, so you should not see them.

If you see any race errors reported where | i bpt hread. so or | d. so is the object associated with the
innermost stack frame, please file a bug report at http://www.valgrind.org/.

7.6. Helgrind Command-line Options

The following end-user options are available:
--free-is-wite=no|yes [default: no]

When enabled (not the default), Helgrind treats freeing of heap memory as if the memory was written
immediately before the free. This exposes races where memory is referenced by one thread, and freed by
another, but there is no observable synchronisation event to ensure that the reference happens before the free.

Thisfunctionality isnewinValgrind 3.7.0, and isregarded as experimental. It isnot enabled by default because
its interaction with custom memory alocatorsis not well understood at present. User feedback is welcomed.

--track-1 ockorders=no|yes [default: yes]

When enabled (the default), Helgrind performs lock order consistency checking. For some buggy programs,
the large number of lock order errors reported can become annoying, particularly if you're only interested in
race errors. You may therefore find it helpful to disable lock order checking.

--history-Ievel =none| approx| full [default: full]

--history-Ievel =ful | (thedefault) causes Helgrind collects enough information about "old" accesses
that it can producetwo stack tracesin aracereport -- both the stack tracefor the current access, and thetracefor
the older, conflicting access. To limit memory usage, "old" accesses stack traces are limited to a maximum of
--hi story-backtrace-si ze entries(default 8) or to- - num cal | er s valueif thisvalueissmaller.

Callecting such information is expensive in both speed and memory, particularly for programs that do many
inter-thread synchronisation events (locks, unlocks, etc). Without such information, it is more difficult to
track down the root causes of races. Nonetheless, you may not need it in situations where you just want to
check for the presence or absence of races, for example, when doing regression testing of a previously race-
free program.

--hi story- 1| evel =none isthe opposite extreme. It causes Helgrind not to collect any information about
previous accesses. This can be dramatically faster than - - hi st ory-1 evel =ful | .

129

http://www.valgrind.org/

Helgrind: athread error detector

--hi story-1| evel =appr ox provides a compromise between these two extremes. It causes Helgrind
to show a full trace for the later access, and approximate information regarding the earlier access. This
approximate information consists of two stacks, and the earlier access is guaranteed to have occurred
somewhere between program points denoted by the two stacks. This is not as useful as showing the exact
stack for the previous access (as- - hi st ory- 1 evel =f ul | does), but it is better than nothing, and it is
amost asfast as- - hi st ory-1 evel =none.

--hi story-backtrace-si ze=<nunber > [defaul t: 8]

When --history-1level =full is sdected, - - hi story-backtrace-si ze=nunber indicates
how many entries to record in "old" accesses stack traces.

--del ta-stacktrace=no|yes [default: yes on |inux and64/x86]
Thisflag only hasany effect at - - hi story-1 evel =ful | .

- - del t a- st ackt r ace configurestheway Helgrind capturesthe stacktracesfor theoption- - hi st or y-
| evel =ful | . Such a stacktrace is typically needed each time a new piece of memory isread or written in
abasic block of instructions.

--del t a- st ackt race=no causes Helgrind to compute a full history stacktrace from the unwind info
each time a stacktrace is needed.

--del ta-stacktrace=yes indicates to Helgrind to derive a new stacktrace from the previous
stacktrace, aslong asthere was no call instruction, no return instruction, or any other instruction changing the
call stack since the previous stacktrace was captured. If no such instruction was executed, the new stacktrace
can be derived from the previous stacktrace by just changing the top frame to the current program counter.
This option can speed up Helgrind by 25% when using - - hi st ory- | evel =ful | .

The following aspects have to be considered when using - - del t a- st ackt race=yes :

 In some cases (for example in a function prologue), the valgrind unwinder might not properly unwind the
stack, due to some limitations and/or due to wrong unwind info. When using --delta-stacktrace=yes, the
wrong stack trace captured in the function prologue will be kept till the next call or return.

» Ontheother hand, --delta-stacktrace=yes sometimes helpsto obtain acorrect stacktrace, for example when
the unwind info allows a correct stacktrace to be done in the beginning of the sequence, but not later on
in the instruction sequence.

» Determining which instructions are changing the callstack is partially based on platform dependent
heuristics, which have to be tuned/validated specifically for the platform. Also, unwinding in a function
prologue must be good enough to alow using --delta-stacktrace=yes. Currently, the option --delta-
stacktrace=yes has been reasonably validated only on linux x86 32 bits and linux amd64 64 bits. For more
details about how to validate --delta-stacktrace=yes, see debug option --hg-sanity-flags and the function
check cached rcec ok inlibhb_core.c.

--conflict-cache-size=N [default: 1000000]
Thisflag only hasany effect at - - hi story-1 evel =ful | .

Information about "old" conflicting accessesis stored in acache of limited size, with LRU-style management.
Thisis necessary because it isn't practical to store a stack trace for every single memory access made by the
program. Historical information on not recently accessed locations is periodically discarded, to free up space
in the cache.

This option controls the size of the cache, in terms of the number of different memory addresses for which
conflicting access information is stored. If you find that Helgrind is showing race errors with only one stack
instead of the expected two stacks, try increasing this value.

The minimum valueis 10,000 and the maximum is 30,000,000 (thirty timesthe default value). Increasing the
value by 1 increases Helgrind's memory requirement by very roughly 100 bytes, so the maximum value will
easily eat up three extra gigabytes or so of memory.

130

Helgrind: athread error detector

--check-stack-refs=no| yes [default: yes]

By default Helgrind checks all data memory accesses made by your program. This flag enables you to skip
checking for accesses to thread stacks (local variables). This can improve performance, but comes at the cost
of missing races on stack-allocated data.

i gnor e-t hread-creati on=<yes|no> [defaul t: no]

Controls whether all activities during thread creation should be ignored. By default enabled only on Solaris.
Solaris provides higher throughput, parallelism and scalability than other operating systems, at the cost of
more fine-grained locking activity. This means for example that when a thread is created under glibc, just
one big lock is used for all thread setup. Solaris libc uses several fine-grained locks and the creator thread
resumes its activities as soon as possible, leaving for example stack and TLS setup sequence to the created
thread. This situation confuses Helgrind as it assumes there is some false ordering in place between creator
and created thread; and therefore many types of race conditions in the application would not be reported. To
prevent such false ordering, this command line option is set to yes by default on Solaris. All activity (loads,
stores, client requests) is therefore ignored during:

 pthread_create() call in the creator thread
+ thread creation phase (stack and TL S setup) in the created thread

Also new memory allocated during thread creation is untracked, that is race reporting is suppressed there.
DRD does the same thing implicitly. This is necessary because Solaris libc caches many objects and reuses
them for different threads and that confuses Helgrind.

7.7. Helgrind Monitor Commands

The Helgrind tool provides monitor commands handled by Valgrind's built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver). Vagrind python code provides GDB front end commands giving an
easier usage of the helgrind monitor commands (see GDB front end commands for Valgrind gdbserver monitor
commands). To launch an helgrind monitor command via its GDB front end command, instead of prefixing
the command with "monitor”, you must use the GDB hel gri nd command (or the shorter aliases hg). Using
the helgrind GDB front end command provide a more flexible usage, such as evaluation of address and length
arguments by GDB. In GDB, you can use hel p hel gri nd to get help about the helgrind front end monitor
commands and you can use apr opos hel gri nd to get all the commands mentionning the word "helgrind"
in their name or on-line help.

« info | ocks [l ock_addr] showsthelist of locks and their status. If | ock_addr isgiven, only shows
the lock located at this address.

In the following example, helgrind knows about one lock. This lock is located at the guest address ga
0x8049a20. The lock kind isr dwr indicating a reader-writer lock. Other possible lock kinds are nonRec
(simple mutex, non recursive) and mbRec (simple mutex, possibly recursive). The lock kind is then followed
by the list of threads helding the lock. In the below example, R1: t hread #6 tid 3 indicates that the
helgrind thread #6 has acquired (once, as the counter following the letter R is one) the lock in read mode. The
helgrind thread nr is incremented for each started thread. The presence of 'tid 3' indicates that the thread #6 is
has not exited yet and isthe valgrind tid 3. If athread has terminated, then thisisindicated with 'tid (exited)'".

(gdb) rmonitor info |ocks
Lock ga 0x8049a20 {

ki nd r dwr
{ Rl:thread #6 tid 3 }
}
(gdb)

If you give the option - - r ead- var - i nf o=yes, then more information will be provided about the lock
location, such as the global variable or the heap block that contains the lock:

131

Helgrind: athread error detector

Lock ga 0x8049a20 {
Locati on 0x8049a20 is O bytes inside global var "s_rw ock”
declared at rw ock_race.c: 17
ki nd r dwr
{ Rl:thread #3 tid 3 }

}

The GDB equivalent helgrind front end command hel gri nd i nfo | ocks [ADDR] accept any address
expression for itsfirst ADDR argument.

accesshi story <addr> [<l en>] showsthe access history recorded for <len> (default 1) bytes starting
at <addr>. For each recorded accessthat overlapswith the givenrange, accesshi st or y showsthe operation
type (read or write), the address and size read or written, the helgrind thread nr/valgrind tid number that did
the operation and the locks held by the thread at the time of the operation. The oldest access is shown first, the
most recent access is shown |ast.

In the following example, we see first a recorded write of 4 bytes by thread #7 that has modified the given 2
bytes range. The second recorded write is the most recent recorded write : thread #9 modified the same 2 bytes
as part of a4 bytes write operation. The list of locks held by each thread at the time of the write operation are
also shown.

(gdb) nonitor accesshistory 0x8049D8A 2
wite of size 4 at 0x8049D88 by thread #7 tid 3
==6319== Locks hel d: 2, at address 0x8049D8C (and 1 that can't be shown)

==6319== at 0x804865F: child_fnl (Il ocked vs_unl ocked2. c: 29)
==6319== by O0x400AE61: nyt hread_wr apper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S: 130)

wite of size 4 at 0x8049D88 by thread #9 tid 2
==6319== Locks hel d: 2, at addresses 0x8049DA4 0x8049DD4

==6319== at 0x804877B: child_fn2 (Il ocked _vs_unl ocked2. c: 45)
==6319== by O0x400AE61: nyt hread_wr apper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: cl one (clone.S: 130)

The GDB equivalent helgrind front end command hel gri nd accesshi story ADDR [LEN] accept any
address expression for itsfirst ADDR argument. The second optional argument is any integer expression. Note
that these 2 arguments must be separated by a space, like in the following example:

(gdb) hg accesshistory &mx si zeof (nx)
read of size 4 at Ox1130A8 by thread #2 tid (exited)
==302== Locks hel d: none

==302== at O0x1094AC. chil d8 (tc19_shadowrem c: 37)

==302== by Ox10AODF: steer (tcl9 shadowrem c: 288)

==302== by 0x48448A3: nyt hread_wr apper (hg_intercepts.c: 406)
==302== by 0x4879EA6: start_thread (pthread_create.c:477)
==302== by 0x4990A2E: cl one (cl one. S: 95)

xtrmenory [<filename> default xtmenory. kcg. %. %] requests Helgrind tool to produce an
xtree heap memory report. See Execution Trees for a detailed explanation about execution trees.

132

Helgrind: athread error detector

7.8. Helgrind Client Requests

The following client requests are defined in hel gri nd. h. See that file for exact details of their arguments.
* VALGRI ND_HG_CLEAN MEMORY

This makes Helgrind forget everything it knows about a specified memory range. Thisis particularly useful for
memory allocators that wish to recycle memory.

« ANNOTATE_HAPPENS_BEFORE
« ANNOTATE_HAPPENS_ AFTER

« ANNOTATE_NEW MEMORY

- ANNOTATE_RW.OCK_CREATE

« ANNOTATE_RW.OCK_DESTROY
« ANNOTATE_RW.OCK_ACQUI RED
« ANNOTATE_RW.OCK_RELEASED

These are used to describe to Helgrind, the behaviour of custom (non-POSIX) synchronisation primitives, which
it otherwise has no way to understand. See commentsin hel gri nd. h for further documentation.

7.9. A To-Do List for Helgrind

Thefollowingisalist of loose ends which should be tidied up some time.
 For lock order errors, print the complete lock cycle, rather than only doing for size-2 cycles as at present.

* The conflicting access mechanism sometimes mysteriously fails to show the conflicting access' stack, even
when provided with unbounded storage for conflicting accessinfo. This should be investigated.

e Document races caused by GCC's thread-unsafe code generation for speculative stores. In the interim
see http://gcc.gnu.org/ m/gcc/2007-10/ nsg00266. ht mi and http://1km.org/
| km / 2007/ 10/ 24/ 673.

» Don't update the lock-order graph, and don't check for errors, when a"try"-style lock operation happens (e.g.
pt hr ead_mnut ex_t ryl ock). Such callsdo not add any real restrictions to the locking order, since they can
awaysfail to acquire thelock, resulting in the caller going off and doing Plan B (presumably it will have aPlan
B). Doing such checks could generate false lock-order errors and confuse users.

» Performance can be very poor. Slowdowns on the order of 100:1 are not unusual. There is limited scope for
performance improvements.

133

8. DRD: athread error detector

To usethistool, you must specify - - t ool =dr d on the Valgrind command line.

8.1. Overview

DRD isaValgrind tool for detecting errorsin multithreaded C and C++ programs. Thetool worksfor any program
that uses the POSIX threading primitives or that uses threading concepts built on top of the POSIX threading
primitives.

8.1.1. Multithreaded Programming Paradigms

There are two possible reasons for using multithreading in a program:

» Tomodel concurrent activities. Assigning one thread to each activity can be agreat ssmplification compared to
multiplexing the states of multiple activitiesin asingle thread. Thisiswhy most server software and embedded
software is multithreaded.

* To use multiple CPU cores simultaneously for speeding up computations. Thisiswhy many High Performance
Computing (HPC) applications are multithreaded.

Multithreaded programs can use one or more of the following programming paradigms. Which paradigm is
appropriate depends e.g. on the application type. Some examples of multithreaded programming paradigms are:

» Locking. Data that is shared over threads is protected from concurrent accesses via locking. E.g. the POSIX
threads library, the Qt library and the Boost.Thread library support this paradigm directly.

» Message passing. No data is shared between threads, but threads exchange data by passing messages to each
other. Examples of implementations of the message passing paradigm are MPI and CORBA.

» Automatic parallelization. A compiler convertsasequential program into amultithreaded program. The original
program may or may not contain parallelization hints. One example of such paral€lization hintsisthe OpenMP
standard. In this standard a set of directives are defined which tell a compiler how to parallelize a C, C++ or
Fortran program. OpenMP is well suited for computational intensive applications. As an example, an open
sourceimage processing software packageis using OpenM P to maximize performance on systemswith multiple
CPU cores. GCC supports the OpenMP standard from version 4.2.0 on.

 Software Transactional Memory (STM). Any data that is shared between threads is updated via transactions.
After each transaction it is verified whether there were any conflicting transactions. If there were conflicts, the
transaction is aborted, otherwise it is committed. Thisis a so-called optimistic approach. There is a prototype
of the Intel C++ Compiler available that supports STM. Research about the addition of STM support to GCC
is ongoing.

DRD supports any combination of multithreaded programming paradigms as long as the implementation of these
paradigmsisbased on the POSI X threads primitives. DRD however does not support programsthat use e.g. Linux’
futexes directly. Attempts to analyze such programs with DRD will cause DRD to report many false positives.

8.1.2. POSIX Threads Programming Model

POSIX threads, aso known as Pthreads, is the most widely available threading library on Unix systems.
The POSIX threads programming model is based on the following abstractions:

* A shared address space. All threads running within the same process share the same address space. All data,
whether shared or not, isidentified by its address.

» Regular load and store operations, which allow to read values from or to write values to the memory shared by
al threads running in the same process.

134

DRD: athread error detector

» Atomic store and load-modify-store operations. While these are not mentioned in the POSIX threads standard,
most microprocessors support atomic memory operations.

 Threads. Each thread represents a concurrent activity.

e Synchronization objects and operations on these synchronization objects. The following types of
synchronization objects have been defined in the POSIX threads standard: mutexes, condition variables,
semaphores, reader-writer synchronization objects, barriers and spinlocks.

Which source code statements generate which memory accesses depends on the memory model of the programming
language being used. Thereisnot yet a definitive memory model for the C and C++ languages. For adraft memory
model, see also the document WG21/N2338: Concurrency memory model compiler conseguences.

For more information about POSIX threads, see also the Single UNIX Specification version 3, also known as
|EEE Std 1003.1.

8.1.3. Multithreaded Programming Problems

Depending on which multithreading paradigm is being used in a program, one or more of the following problems
can occur:

» Dataraces. One or more threads access the same memory location without sufficient locking. Most but not al
data races are programming errors and are the cause of subtle and hard-to-find bugs.

 Lock contention. One thread blocks the progress of one or more other threads by holding alock too long.

 Improper use of the POSIX threads API. Most implementations of the POSIX threads APl have been optimized
for runtime speed. Such implementations will not complain on certain errors, e.g. when a mutex is being
unlocked by another thread than the thread that obtained alock on the mutex.

» Deadlock. A deadlock occurs when two or more threads wait for each other indefinitely.

» Fasesharing. If threadsthat run on different processor cores access different variableslocated in the same cache
line frequently, thiswill slow down the involved threads a lot due to frequent exchange of cache lines.

Although the likelihood of the occurrence of data races can be reduced through adisciplined programming style, a
tool for automatic detection of dataracesisanecessity when developing multithreaded software. DRD can detect
these, aswell aslock contention and improper use of the POSIX threads API.

8.1.4. Data Race Detection

The result of load and store operations performed by a multithreaded program depends on the order in which
memory operations are performed. This order is determined by:

1. All memory operations performed by the same thread are performed in program order, that is, the order
determined by the program source code and the results of previous load operations.

2. Synchronization operations determine certain ordering constraints on memory operations performed by
different threads. These ordering constraints are called the synchronization order.

The combination of program order and synchronization order is called the happens-before relationship. This
concept was first defined by S. Adve et al in the paper Detecting data races on weak memory systems, ACM
SIGARCH Computer Architecture News, v.19 n.3, p.234-243, May 1991.

Two memory operations conflict if both operations are performed by different threads, refer to the same memory
location and at least one of them is a store operation.

A multithreaded program is data-race free if al conflicting memory accesses are ordered by synchronization
operations.

135

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html
http://www.opengroup.org/onlinepubs/000095399/idx/threads.html

DRD: athread error detector

A well known way to ensure that a multithreaded program is data-race free isto ensure that alocking disciplineis
followed. It is e.g. possible to associate a mutex with each shared data item, and to hold alock on the associated
mutex while the shared data is accessed.

All programsthat follow alocking discipline are data-race free, but not all data-race free programsfollow alocking
discipline. There exist multithreaded programs where access to shared data is arbitrated via condition variables,
semaphores or barriers. As an example, acertain class of HPC applications consists of a sequence of computation
steps separated in time by barriers, and where these barriers are the only means of synchronization. Although
there are many conflicting memory accesses in such applications and athough such applications do not make use
mutexes, most of these applications do not contain data races.

There exist two different approaches for verifying the correctness of multithreaded programs at runtime. The
approach of the so-called Eraser algorithm is to verify whether al shared memory accesses follow a consistent
locking strategy. And the happens-before data race detectors verify directly whether all interthread memory
accesses are ordered by synchronization operations. While the last approach is more complex to implement, and
while it is more sensitive to OS scheduling, it is a general approach that works for all classes of multithreaded
programs. An important advantage of happens-before data race detectors is that these do not report any false
positives.

DRD is based on the happens-before algorithm.

8.2. Using DRD
8.2.1. DRD Command-line Options

The following command-line options are available for controlling the behavior of the DRD tool itself:
--check- st ack-var=<yes| no> [default: no]

Controls whether DRD detects data races on stack variables. Verifying stack variables is disabled by default
because most programs do not share stack variables over threads.

--exclusive-threshol d=<n> [defaul t: off]

Print an error messageif any mutex or writer lock has been held longer than the time specified in milliseconds.
This option enables the detection of lock contention.

--join-list-vol=<n> [default: 10]

Dataracesthat occur between a statement at the end of one thread and another thread can be missed if memory
access information is discarded immediately after athread has been joined. This option allows one to specify
for how many joined threads memory access information should be retained.

--first-race-onl y=<yes| no> [default: no]

Whether to report only the first data race that has been detected on a memory location or all data races that
have been detected on a memory location.

--free-is-wite=<yes| no> [default: no]

Whether to report races between accessing memory and freeing memory. Enabling this option may cause
DRD to run dlightly slower. Notes:

 Don't enable this option when wusing custom memory alocators that use the
VG _USERREQ MALLCOCLI KE_BLOCK and VG_USERREQ _FREELI KE_BLOCK because that would
result in false positives.

» Don't enable this option when using reference-counted objects because that will result in false
positives, even when that code has been annotated properly with ANNOTATE HAPPENS BEFORE

136

DRD: athread error detector

and ANNOTATE HAPPENS AFTER. See eg. the output of the following command for
an example: val grind --tool =drd --free-is-wite=yes drd/ tests/
annot ate_snart _pointer.

--report-signal -unl ocked=<yes| no> [defaul t: yes]

Whether to report calls to pt hr ead_cond_si gnal and pt hr ead_cond_br oadcast where the
mutex associated with the signal through pt hr ead_cond_wai t or pt hread_cond_ti ned_wai tis
not locked at the time the signal is sent. Sending a signal without holding alock on the associated mutex isa
common programming error which can cause subtle race conditions and unpredictable behavior. There exist
some uncommon synchronization patterns however where it is safe to send a signal without holding a lock
on the associated mutex.

- -segnent - mer gi ng=<yes| no> [default: yes]

Controls segment merging. Segment merging isan algorithm to limit memory usage of the data race detection
algorithm. Disabling segment merging may improve the accuracy of the so-called 'other segments' displayed
in race reports but can also trigger an out of memory error.

--segnent - ner gi ng-i nterval =<n> [defaul t: 10]

Perform segment merging only after the specified number of new segments have been created. This is an
advanced configuration option that allows one to choose whether to minimize DRD's memory usage by
choosing alow value or to let DRD run faster by choosing aslightly higher value. The optimal value for this
parameter depends on the program being analyzed. The default value works well for most programs.

--shared-threshol d=<n> [defaul t: off]

Print an error message if a reader lock has been held longer than the specified time (in milliseconds). This
option enables the detection of lock contention.

--show confl - seg=<yes| no> [defaul t: yes]

Show conflicting segments in race reports. Since this information can help to find the cause of a data race,
this option is enabled by default. Disabling this option makes the output of DRD more compact.

- -show st ack- usage=<yes| no> [defaul t: no]

Print stack usage at thread exit time. When a program creates alarge number of threads it becomes important
tolimit theamount of virtual memory allocated for thread stacks. This option makesit possibleto observe how
much stack memory has been used by each thread of the client program. Note: the DRD tool itself alocates
some temporary data on the client thread stack. The space necessary for thistemporary data must be allocated
by the client program when it allocates stack memory, but is not included in stack usage reported by DRD.

i gnore-thread-creati on=<yes|no> [default: no]

Controls whether al activities during thread creation should be ignored. By default enabled only on Solaris.
Solaris provides higher throughput, parallelism and scalability than other operating systems, at the cost of
more fine-grained locking activity. This meansfor example that when athread is created under glibc, just one
big lock isused for all thread setup. Solarislibc uses severa fine-grained locks and the creator thread resumes
its activities as soon as possible, leaving for example stack and TL S setup sequence to the created thread.
This situation confuses DRD as it assumes there is some false ordering in place between creator and created
thread; and therefore many types of race conditions in the application would not be reported. To prevent such
false ordering, this command line option is set to yes by default on Solaris. All activity (loads, stores, client
requests) is therefore ignored during:

 pthread_create() call in the creator thread

* thread creation phase (stack and TL S setup) in the created thread

The following options are available for monitoring the behavior of the client program:

137

DRD: athread error detector

--trace-addr=<address> [defaul t: none]
Trace all load and store activity for the specified address. This option may be specified more than once.
--ptrace- addr =<address> [default: none]

Trace all load and store activity for the specified address and keep doing that even after the memory at that
address has been freed and reall ocated.

--trace-all oc=<yes| no> [defaul t: no]
Trace all memory alocations and deallocations. May produce a huge amount of output.
--trace-barrier=<yes| no> [default: no]
Trace all barrier activity.
--trace-cond=<yes| no> [defaul t: no]
Trace al condition variable activity.
--trace-fork-joi n=<yes| no> [default: no]
Trace all thread creation and all thread termination events.
--trace- hb=<yes| no> [default: no]

Trace execution of the ANNOTATE_HAPPENS BEFORE(), ANNOTATE_HAPPENS_AFTER() and
ANNOTATE_HAPPENS DONE() client requests.

--trace- mut ex=<yes| no> [defaul t: no]
Trace all mutex activity.

--trace-rw ock=<yes| no> [default: no]
Trace all reader-writer lock activity.

--trace-semaphor e=<yes| no> [default: no]

Trace all semaphore activity.

8.2.2. Detected Errors: Data Races

DRD prints a message every time it detects a data race. Please keep the following in mind when interpreting
DRD's output:

» Every thread is assigned a thread ID by the DRD tool. A thread ID is a nhumber. Thread ID's start at one and
are never recycled.

» Theterm segment refersto aconsecutive sequence of load, store and synchronization operations, all issued by the
same thread. A segment always starts and ends at a synchronization operation. Datarace analysisis performed
between segments instead of between individual |oad and store operations because of performance reasons.

» There are always at least two memory accesses involved in a data race. Memory accesses involved in a data
race are called conflicting memory accesses. DRD prints a report for each memory access that conflicts with
apast memory access.

Below you can find an example of a message printed by DRD when it detects a data race:

$ valgrind --tool =drd --read-var-info=yes drd/tests/rw ock_race

138

DRD: athread error detector

==9466== Thread 3:
==9466== Conflicting |l oad by thread 3 at 0x006020b8 size 4

==9466== at 0x400B6C. thread_func (rw ock_race. c: 29)

==9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2. 8. so)
==9466== by 0x53250CC. clone (in /lib64/1ibc-2.8.so0)

==9466== Locati on 0x6020b8 is 0 bytes inside |local var "s_racy"
==9466== declared at rwl ock race.c:18, in frane #0 of thread 3
==9466== Ot her segment start (thread 2)

==9466== at 0x4C2847D: pthread_rw ock_rdl ock* (drd_pthread_intercepts.c:813)
==9466== by 0x400B6B: thread func (rw ock _race. c: 28)

==9466== by 0x4C291DF: vg_thread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

==9466== by 0x53250CC. clone (in /1ib64/I1ibc-2.8.s0)

==9466== O her segnment end (thread 2)

==9466== at 0x4C28B54: pthread_rw ock_unl ock* (drd_pthread_intercepts.c:912)
==9466== by 0x400B84: thread func (rw ock_race. c: 30)

==9466== by 0x4C291DF: vg_t hread_w apper (drd_pthread_intercepts.c: 186)
==9466== by Ox4E3403F: start_thread (in /1ib64/1ibpthread-2.8.so)

==9466== by 0x53250CC. clone (in /1ib64/1ibc-2.8.s0)

The above report has the following meaning:

* The number in the column on the left is the process ID of the process being analyzed by DRD.

Thefirstline ("Thread 3") tellsyou the thread 1D for the thread in which context the data race has been detected.

» Thenext linetellswhich kind of operation was performed (load or store) and by which thread. On the sameline
the start address and the number of bytes involved in the conflicting access are also displayed.

* Next, the call stack of the conflicting access is displayed. If your program has been compiled with debug
information (- g), this call stack will include file names and line numbers. The two bottommost frames
in this call stack (cl one and start _t hread) show how the NPTL starts a thread. The third frame
(vg_t hread_wr apper) is added by DRD. The fourth frame (t hr ead_f unc) is the first interesting line
because it shows the thread entry point, that is the function that has been passed as the third argument to
pt hread_creat e.

» Next, theallocation context for the conflicting addressis displayed. For dynamically alocated datathe allocation
call stack is shown. For static variables and stack variables the allocation context is only shown when the
option - - r ead- var - i nf o=yes hasbeen specified. Otherwise DRD will print Al | ocati on cont ext:
unknown.

A conflicting access involves at least two memory accesses. For one of these accesses an exact call stack is
displayed, and for the other accesses an approximate call stack is displayed, namely the start and the end of the
segments of the other accesses. This information can be interpreted as follows:

1. Start at the bottom of both call stacks, and count the number stack frames with identical function name,
file name and line number. In the above example the three bottommost frames are identical (cl one,
start _threadandvg t hread_w apper).

2. The next higher stack frame in both call stacks now tells you between in which source code region the other
memory access happened. The above output tells that the other memory access involved in the data race
happened between source code lines 28 and 30 infiler Wl ock_r ace. c.

8.2.3. Detected Errors: Lock Contention

Threads must be able to make progress without being blocked for too long by other threads. Sometimes a thread
has to wait until a mutex or reader-writer synchronization object is unlocked by another thread. This is called
lock contention.

139

DRD: athread error detector

Lock contention causes delays. Such delays should be as short as possible. The two command line options - -
excl usi ve-t hreshol d=<n>and- - shar ed- t hr eshol d=<n> makeit possible to detect excessive lock
contention by making DRD report any lock that has been held longer than the specified threshold. An example:

$ valgrind --tool =drd --exclusive-threshol d=10 drd/tests/hold_l ock -i 500

==10668== Acquired at:

==10668== at 0x4C267C8: pthread _nutex_| ock (drd_pthread_intercepts.c: 395)
==10668== by 0x400D92: main (hol d_I ock.c:51)

==10668== Lock on mutex Ox7fefffd50 was held during 503 ns (threshold: 10 ms).
==10668== at Ox4C26ADA: pt hread_nutex_unl ock (drd_pthread_intercepts.c: 441)

==10668== by 0x400DB5: main (hol d_I ock. c: 55)

Thehol d_| ock test program holds alock aslong as specified by the - i (interval) argument. The DRD output
reportsthat the lock acquired at line 51 in sourcefilehol d_| ock. ¢ and released at line 55 was held during 503
ms, while athreshold of 10 mswas specified to DRD.

8.2.4. Detected Errors: Misuse of the POSIX threads
API

DRD is able to detect and report the following misuses of the POSI X threads API:

» Passing the address of one type of synchronization object (e.g. a mutex) to a POSIX API cal that expects a
pointer to another type of synchronization object (e.g. a condition variable).

» Attemptsto unlock a mutex that has not been locked.

» Attemptsto unlock a mutex that was locked by another thread.

» Attemptsto lock amutex of type PTHREAD MUTEX NORMAL or aspinlock recursively.

* Destruction or deallocation of alocked mutex.

» Sending asignal to acondition variablewhilenolock isheld on the mutex associated with the condition variable.

» Cdling pt hr ead_cond_wai t on a mutex that is not locked, that is locked by another thread or that has
been locked recursively.

» Associating two different mutexes with a condition variable through pt hread_cond_wai t .

* Destruction or deallocation of a condition variable that is being waited upon.

« Destruction or deallocation of alocked reader-writer synchronization object.

 Attemptsto unlock areader-writer synchronization object that was not locked by the calling thread.

» Attemptsto recursively lock areader-writer synchronization object exclusively.

» Attemptsto passthe address of auser-defined reader-writer synchronization object to aPOSI X threadsfunction.

» Attemptsto passthe address of aPOSIX reader-writer synchronization object to one of the annotationsfor user-
defined reader-writer synchronization objects.

» Reinitiaization of amutex, condition variable, reader-writer lock, semaphore or barrier.
 Destruction or deallocation of a semaphore or barrier that is being waited upon.

» Missing synchronization between barrier wait and barrier destruction.

140

DRD: athread error detector

Exiting a thread without first unlocking the spinlocks, mutexes or reader-writer synchronization objects that
were locked by that thread.

Passing aninvalid thread ID to pt hr ead_j oi n or pt hr ead_cancel .

8.2.5. Client Requests

Just as for other Valgrind tools it is possible to let a client program interact with the DRD tool through client
requests. In addition to the client requests several macros have been defined that alow to use the client requests
in aconvenient way.

Theinterface between client programs and the DRD tool isdefined in the header file<val gri nd/ drd. h>.The
available macros and client requests are:

The macro DRD GET_VALGRIND THREADID and the corresponding client request
VG _USERREQ DRD GET_VALGRI ND_THREAD_| D. Query the thread ID that has been assigned by the
Valgrind core to the thread executing this client request. Valgrind's thread ID's start at one and are recycled
in case athread stops.

The macro DRD GET_DRD THREADI D and the corresponding client request
VG _USERREQ DRD GET_DRD_THREAD | D. Query the thread ID that has been assigned by DRD to the
thread executing this client request. These are the thread ID's reported by DRD in data race reports and in trace
messages. DRD'sthread ID's start at one and are never recycled.

The macros DRD_| GNORE_VAR(x), ANNOTATE TRACE MEMORY(&) and the corresponding client
request VG_USERREQ DRD START _SUPPRESSI ON. Some applications contain intentional races. There
exist e.g. applicationswhere the same valueisassigned to ashared variable from two different threads. It may be
more convenient to suppress such racesthan to solvethese. Thisclient request allows oneto suppress such races.

The macro DRD_STOP_I GNORI NG _VAR(x) and the corresponding client reguest
VG_USERREQ _DRD FI NI SH_SUPPRESSI ON. Tell DRD to no longer ignore data races for the address
range that was suppressed either via the macro DRD | GNORE_VAR(x) or via the client request
VG _USERREQ DRD START_SUPPRESSI ON.

The macro DRD_TRACE_VAR(x) . Trace al load and store activity for the address range starting at &x and
occupying si zeof (x) bytes. When DRD reports a data race on a specified variable, and it's not immediately
clear which source code statements triggered the conflicting accesses, it can be very helpful to trace all activity
on the offending memory location.

ThemacroDRD_STOP_TRACI NG_VAR(x) . Stop tracing load and store activity for the address range starting
at & and occupying si zeof (x) bytes.

Themacro ANNOTATE_TRACE MEMORY(&x) . Traceall load and store activity that touches at least the single
byte at the address &x.

The client request VG_USERREQ _DRD_START_TRACE_ADDR, which allowsoneto trace all load and store
activity for the specified address range.

Theclient request VG_USERREQ DRD STOP_TRACE_ADDR. Do no longer trace load and store activity for
the specified address range.

The macro ANNOTATE_HAPPENS BEFORE(addr) tells DRD to insert a mark. Insert this macro just after
an access to the variable at the specified address has been performed.

The macro ANNOTATE_HAPPENS AFTER(addr) tells DRD that the next access to the variable at
the specified address should be considered to have happened after the access just before the latest
ANNOTATE_HAPPENS BEFORE(addr) annotation that references the same variable. The purpose of these
two macros is to tell DRD about the order of inter-thread memory accesses implemented via atomic memory
operations. Seealsodr d/ t est s/ annot at e_smart _poi nt er. cpp for an example.

141

DRD: athread error detector

The macro ANNOTATE RALOCK _CREATE(rw ock) tells DRD that the object at address rwl ock is a
reader-writer synchronization object thatisnotapt hr ead_rw ock_t synchronization object. Seealsodr d/
test s/ annot at e_rw ock. c for an example.

The macro ANNOTATE RW.OCK_DESTROY(rw ock) tells DRD that the reader-writer synchronization
object at addressr wl ock has been destroyed.

Themacro ANNOTATE_WRI TERLOCK _ACQUI RED(rwl ock) tellsDRD that awriter lock hasbeen acquired
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE _READERLOCK_ACQUI RED(r Wl ock) tellsDRD that areader |ock hasbeen acquired
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE_RW.OCK_ACQUI RED(r W ock, is_w) tellsDRD that awriter lock (wheni s_w !
= 0) or that areader lock (wheni s_w == 0) has been acquired on the reader-writer synchronization object
at addressr wl ock.

Themacro ANNOTATE_WRI TERLOCK _RELEASED(r W ock) tellsDRD that awriter lock has been released
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE READERLOCK RELEASED(rw ock) tellsDRD that areader lock has been released
on the reader-writer synchronization object at addressr W ock.

Themacro ANNOTATE_RW.OCK_RELEASED(r W ock, is_w) tellsDRD that awriter lock (wheni s_w !
= 0) or that areader lock (wheni s_w == 0) has been released on the reader-writer synchronization object
at addressr wl ock.

The macro ANNOTATE_BARRI ER I NIl T(barrier, count, reinitialization_allowed) tels
DRD that anew barrier object at the addressbar r i er hasbeen initialized, that count threads participate in
each barrier and also whether or not barrier reinitialization without intervening destruction should be reported
asanerror. Seealsodrd/ t est s/ annot at e_barri er. c for an example.

The macro ANNOTATE_BARRI ER DESTROY(barri er) tells DRD that a barrier object is about to be
destroyed.

The macro ANNOTATE_BARRI ER_WAI T_BEFCORE(barri er) tells DRD that waiting for a barrier will
start.

The macro ANNOTATE _BARRI ER WAl T_AFTER(barri er) tells DRD that waiting for a barrier has
finished.

Themacro ANNOTATE_BENI GN_RACE_SI ZED(addr, si ze, descr) tellsDRD that any racesdetected
on the specified address are benign and hence should not be reported. Thedescr argument isignored but can
be used to document why data races on addr are benign.

The macro ANNOTATE_BENI GN_RACE_STATI C(var, descr) tellsDRD that any races detected on the
specified static variable are benign and hence should not be reported. Thedescr argument isignored but can
be used to document why data races on var are benign. Note: this macro can only be used in C++ programs
and not in C programs.

The macro ANNOTATE | GNORE_READS BEQ N tells DRD to ignore al memory loads performed by the
current thread.

The macro ANNOTATE | GNORE_READS END tells DRD to stop ignoring the memory loads performed by
the current thread.

The macro ANNOTATE_| GNORE_WRI TES BEQ Ntells DRD to ignore all memory stores performed by the
current thread.

The macro ANNOTATE | GNORE_VWRI TES_ENDtells DRD to stop ignoring the memory stores performed by
the current thread.

142

DRD: athread error detector

e The macro ANNOTATE | GNORE_READS _AND WRI TES BEG Ntells DRD to ignore all memory accesses
performed by the current thread.

* The macro ANNOTATE_| GNORE_READS AND WRI TES END tells DRD to stop ignoring the memory
accesses performed by the current thread.

» Themacro ANNOTATE_NEW MEMORY(addr, si ze) tellsDRD that the specified memory range has been
alocated by a custom memory allocator in the client program and that the client program will start using this
memory range.

» The macro ANNOTATE_THREAD NAME(nane) tells DRD to associate the specified name with the current
thread and to include this name in the error messages printed by DRD.

* The macros VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLOCK from the Valgrind
core are implemented; they are described in The Client Request mechanism.

Note: if you compiled Valgrind yourself, the header file <val gri nd/ dr d. h> will have been installed in the
directory / usr /i ncl ude by the command make i nstall . If you obtained Valgrind by installing it as a
package however, you will probably haveto install another package with anamelikeval gri nd- devel before
Valgrind's header files are available.

8.2.6. Debugging C++11 Programs

If you want to use the C++11 class std::thread you will need to do the following to annotate the std::shared ptr<>
objects used in the implementation of that class:

» Add the following code at the start of a common header or at the start of each source file, before any C++
header files are included:

#i ncl ude <val gri nd/drd. h>
#def i ne _CGLI BCXX_SYNCHRONI ZATI ON_HAPPENS BEFORE(addr) ANNOTATE_HAPPENS BEFCRE(addr)
#def i ne _CGLI BCXX_SYNCHRONI ZATI ON_HAPPENS AFTER(addr) ANNOTATE_HAPPENS AFTER(addr)

» Download the gcc source code and from source file libstdc++-v3/src/c++11/thread.cc copy the implementation
of the execute_native_ thread routine() and std:.:thread:: Mstart_thread()
functions into a source file that is linked with your application. Make sure that aso in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS *() macros are defined properly.

For more information, see aso The GNU C++ Library Manual, Debugging Support (http://gcc.gnu.org/
onlinedocg/libstdc++/manual/debug.html).

8.2.7. Debugging GNOME Programs

GNOME applications use the threading primitives provided by thegl i b and gt hr ead libraries. These libraries
arebuilt on top of POSIX threads, and hence are directly supported by DRD. Please keep in mind that you haveto
cal g_thread_i nit before creating any threads, or DRD will report several data races on glib functions. See
also the GLib Reference Manual for moreinformation about g_t hread_i ni t.

One of the many facilities provided by the gl i b library is a block alocator, called g_sl i ce. You have
to disable this block alocator when using DRD by adding the following to the shell environment variables:
G _SLI CE=al ways- mal | oc. Seealsothe GLib Reference Manual for more information.

8.2.8. Debugging Boost.Thread Programs

The Boost.Thread library isthe threading library included with the cross-platform Boost Libraries. Thisthreading
library is an early implementation of the upcoming C++0x threading library.

Applications that use the Boost. Thread library should run fine under DRD.

143

http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html
http://library.gnome.org/devel/glib/stable/glib-Threads.html
http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html

DRD: athread error detector

More information about Boost.Thread can be found here;
» Anthony Williams, Boost.Thread Library Documentation, Boost website, 2007.

» Anthony Williams, What's New in Boost Threads?, Recent changes to the Boost Thread library, Dr. Dobbs
Magazine, October 2008.

8.2.9. Debugging OpenMP Programs

OpenMP stands for Open Multi-Processing. The OpenMP standard consists of a set of compiler directives for
C, C++ and Fortran programs that allows a compiler to transform a sequential program into a parallel program.
OpenMP is well suited for HPC applications and allows one to work at a higher level compared to direct use of
the POSIX threads API. While OpenMP ensures that the POSIX API is used correctly, OpenMP programs can
still contain dataraces. So it definitely makes sense to verify OpenMP programs with a thread checking tool.

DRD supports OpenM P shared-memory programs generated by GCC. GCC supports OpenM P since version 4.2.0.
GCC's runtime support for OpenMP programs is provided by a library called | i bgonp. The synchronization
primitivesimplemented in thislibrary use Linux’ futex system call directly, unlessthe library has been configured
with the - - di sabl e-1i nux- f ut ex option. DRD only supports libgomp libraries that have been configured
with this option and in which symbol information is present. For most Linux distributions this means that you will
have to recompile GCC. See also the script dr d/ scri pt s/ downl oad- and- bui | d- gcc in the Valgrind
source tree for an example of how to compile GCC. Y ou will also have to make sure that the newly compiled
I i bgonp. so library isloaded when OpenMP programs are started. This is possible by adding aline similar to
the following to your shell startup script:

export LD LI BRARY_PATH=~/gcc-4.4.0/1ib64: ~/gcc-4.4.0/1ib:
Asan example, the test OpenMP test program dr d/ t est s/ onp_mat i nv triggers a data race when the option
-r has been specified on the command line. The data race is triggered by the following code:

#pragma onp parallel for private(j)
for (j =0; j <rows; j++)

{
if (i '=1])
{
const elemt factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -=a[i * cols + k] * factor;
}
}
}

The above code is racy because the variable k has not been declared private. DRD will print the following error
message for the above code:

$ valgrind --tool =drd --check-stack-var=yes --read-var-info=yes drd/tests/onmp_nmatinv 3

Conflicting store by thread 1/1 at Ox7fefffbc4 size 4
at 0x4014A0: gj.onp_fn.0 (onp_matinv. c: 203)
by 0x401211: gj (onp_matinv.c:159)
by 0x40166A: invert matrix (onp_natinv.c: 238)
by 0x4019B4: nmin (onp_matinv. c: 316)
Location Ox7fefffbc4 is O bytes inside |ocal var "k"
declared at onp_matinv.c: 160, in frane #0 of thread 1

144

http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html
http://www.ddj.com/cpp/211600441

DRD: athread error detector

In the above output the function name gj . onp_f n. 0 has been generated by GCC from the function name gj .
The allocation context information shows that the data race has been caused by modifying the variable k.

Note: for GCC versions before 4.4.0, no allocation context information is shown. With these GCC versions the
most usable information in the above output is the source file name and the line number where the data race has
been detected (onp_nati nv. c: 203).

For more information about OpenMP, see also openmp.org.

8.2.10. DRD and Custom Memory Allocators

DRD tracks all memory allocation events that happen via the standard memory alocation and deallocation
functions (mal | oc, free, newand del et e), viaentry and exit of stack frames or that have been annotated
with Valgrind's memory pool client requests. DRD uses memory allocation and deallocation information for two
purposes:

» To know where the scope ends of POSIX objects that have not been destroyed explicitly. It ise.g. not required
by the POSIX threads standard to call pt hr ead_nut ex_dest r oy before freeing the memory in which a
mutex object resides.

* To know where the scope of variables ends. If e.g. heap memory has been used by one thread, that thread frees
that memory, and another thread allocates and starts using that memory, no data races must be reported for
that memory.

It isessential for correct operation of DRD that the tool knows about memory allocation and deall ocation events.
When analyzing a client program with DRD that uses a custom memory allocator, either instrument the custom
memory allocator with the VALGRI ND_MALLOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLOCK macros
or disable the custom memory allocator.

Asan example, the GNU libstdc++ library can be configured to use standard memory allocation functionsinstead
of memory pools by setting the environment variable GLI BCXX_FORCE_NEW For more information, see also
the libstdc++ manual.

8.2.11. DRD Versus Memcheck

Itisessential for correct operation of DRD that there are no memory errors such as dangling pointersin the client
program. Which meansthat it isagood i deato make surethat your program is Memcheck-clean before you analyze
it with DRD. It is possible however that some of the Memcheck reports are caused by data races. In this case it
makes sense to run DRD before Memcheck.

Sowhichtool should berunfirst?In case both DRD and Memcheck complain about aprogram, apossible approach
isto run both tools alternatingly and to fix as many errors as possible after each run of each tool until none of the
two tools prints any more error messages.

8.2.12. Resource Requirements

The regquirements of DRD with regard to heap and stack memory and the effect on the execution time of client
programs are as follows:

* When running a program under DRD with default DRD options, between 1.1 and 3.6 times more memory
will be needed compared to a native run of the client program. More memory will be needed if loading debug
information has been enabled (- - r ead- var - i nf o=yes).

» DRD alocates some of itstemporary data structures on the stack of the client program threads. This amount of
dataislimited to 1 - 2 KB. Make sure that thread stacks are sufficiently large.

» Most applications will run between 20 and 50 times slower under DRD than a native single-threaded run. The
slowdown will be most noticeable for applications which perform frequent mutex lock / unlock operations.

145

http://openmp.org/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html

DRD: athread error detector

8.2.13. Hints and Tips for Effective Use of DRD

The following information may be helpful when using DRD:

» Make surethat debug information is present in the executable being analyzed, such that DRD can print function
name and line number information in stack traces. Most compilers can be told to include debug information
via compiler option - g.

» Compile with option - OL instead of - 0. This will reduce the amount of generated code, may reduce the
amount of debug info and will speed up DRD's processing of the client program. For more information, see
also Getting started.

 |If DRD reports any errorson librariesthat are part of your Linux distribution likee.g. | i bc. soorl i bst dc
++. s0, installing the debug packages for these libraries will make the output of DRD alot more detailed.

* When using C++, do not send output from more than one thread to st d: : cout . Doing so would not only
generate multiple data race reports, it could also result in output from several threads getting mixed up. Either
usepri nt f or do thefollowing:

1. Deriveaclassfrom st d: : ost r eanbuf and let that class send output line by lineto st dout . This will
avoid that individual lines of text produced by different threads get mixed up.

2. Createoneinstanceof st d: : ost r eamfor each thread. This makes stream formatting settings thread-local.
Passa per-thread instance of the classderived fromst d: : ost r eanbuf totheconstructor of eachinstance.

3. Let each thread send its output to its own instance of st d: : ost r eaminstead of st d: : cout .

8.3. Using the POSIX Threads API Effectively
8.3.1. Mutex types

The Single UNIX Specification version two defines the following four mutex types (see also the documentation
of pt hread_nut exattr_settype):

» normal, which means that no error checking is performed, and that the mutex is non-recursive.
« error checking, which means that the mutex is non-recursive and that error checking is performed.
* recursive, which means that a mutex may be locked recursively.

* default, which means that error checking behavior is undefined, and that the behavior for recursive locking is
aso undefined. Or: portable code must neither trigger error conditions through the Pthreads API nor attempt
to lock amutex of default type recursively.

In complex applications it is not always clear from beforehand which mutex will be locked recursively and
which mutex will not be locked recursively. Attempts lock a non-recursive mutex recursively will result in race
conditions that are very hard to find without a thread checking tool. So either use the error checking mutex type
and consistently check the return value of Pthread APl mutex calls, or use the recursive mutex type.

8.3.2. Condition variables

A condition variable allows one thread to wake up one or more other threads. Condition variables are often used
to notify one or more threads about state changes of shared data. Unfortunately it is very easy to introduce race
conditions by using condition variables as the only means of state information propagation. A better approach is
to let threads poll for changes of a state variable that is protected by amutex, and to use condition variables only as
athread wakeup mechanism. See also the sourcefiledr d/ t est s/ noni t or _exanpl e. cpp for an example
of how to implement this concept in C++. The monitor concept used in this example is a well known and very
useful concept -- see also Wikipedia for more information about the monitor concept.

146

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html
http://en.wikipedia.org/wiki/Monitor_(synchronization)

DRD: athread error detector

8.3.3. pthread _cond_timedwait and timeouts

Historically the function pt hread_cond_ti medwait only alowed the specification of an absolute
timeout, that is a timeout independent of the time when this function was caled. However, amost
every cal to this function expresses a relative timeout. This typically happens by passing the sum of
cl ock_getti me(CLOCK _REALTI ME) andarelativetimeout asthethird argument. Thisapproachisincorrect
since forward or backward clock adjustments by e.g. ntpd will affect the timeout. A more reliable approach is
asfollows:

* When initializing a condition variable through pt hread cond_init, specify that the timeout of
pt hread_cond_ti nedwai t will usetheclock CLOCK MONOTONI Cinstead of CLOCK_REALTI ME. You
candothisviapt hread_condattr_setclock(..., CLOCK MONOTON C).

» When calling pt hr ead_cond_t i medwai t , pass the sum of cl ock_get ti me(CLOCK_MONOTONI C)
and arelative timeout as the third argument.

Seedsodrd/tests/ nonitor_exanpl e. cpp for an example.

8.4. Limitations

DRD currently has the following limitations:

* DRD, just like Memcheck, will refuse to start on Linux distributions where al symbol information has been
removed from | d. so. This is e.g. the case for the PPC editions of openSUSE and Gentoo. You will have
to install the glibc debuginfo package on these platforms before you can use DRD. See also openSUSE bug
396197 and Gentoo bug 214065.

» With gcc 4.4.3 and before, DRD may report data races on the C++ classst d: : st ri ng in a multithreaded
program. Thisisaknow | i bst dc++ issue -- see also GCC bug 40518 for more information.

« If you compile the DRD source code yourself, you need GCC 3.0 or later. GCC 2.95 is not supported.

» Of the two POSIX threads implementations for Linux, only the NPTL (Native POSIX Thread Library) is
supported. The older LinuxThreads library is not supported.

8.5. Feedback

If you have any comments, suggestions, feedback or bug reports about DRD, feel free to either post a message on
the Valgrind users mailing list or to file a bug report. See aso http://www.valgrind.org/ for more information.

147

http://bugzilla.novell.com/show_bug.cgi?id=396197
http://bugs.gentoo.org/214065
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518
http://www.valgrind.org/

9. Massif: a heap profiler

To usethistool, you must specify - - t ool =massi f onthe Valgrind command line.

9.1. Overview

Massif is a heap profiler. It measures how much heap memory your program uses. This includes both the useful
space, and the extra bytes allocated for book-keeping and alignment purposes. It can also measure the size of your
program's stack(s), although it does not do so by default.

Heap profiling can help you reduce the amount of memory your program uses. On modern machines with virtual
memory, this provides the following benefits:

* It can speed up your program -- a smaller program will interact better with your machine's caches and avoid
paging.

« If your program uses lots of memory, it will reduce the chance that it exhausts your machine's swap space.

Also, there are certain space leaks that aren't detected by traditional |eak-checkers, such as Memcheck's. That's
because the memory isn't ever actually lost -- a pointer remains to it -- but it's not in use. Programs that have
leakslikethis can unnecessarily increase the amount of memory they are using over time. Massif can help identify
these leaks.

Importantly, Massif tells you not only how much heap memory your program is using, it also gives very detailed
information that indicates which parts of your program are responsible for allocating the heap memory.

Massif aso provides Execution Trees memory profiling using the command line option - - xt r ee- menor y and
the monitor command xt nenory.

9.2. Using Massif and ms_print

First off, as for the other Valgrind tools, you should compile with debugging info (the - g option). It shouldn't
matter much what optimisation level you compile your program with, asthisisunlikely to affect the heap memory
usage.

Then, you need to run Massif itself to gather the profiling information, and then run ms_print to present it in a
readable way.

9.2.1. An Example Program

An example will make things clear. Consider the following C program (annotated with line numbers) which
allocates a number of different blocks on the heap.

1 #i ncl ude <stdlib. h>
2

3 void g(voi d)

4 {

5 mal | oc(4000) ;
6 }

7

8 void f(void)

9 {
10 mal | oc(2000) ;
11 a();
12 }
13
14 i nt mai n(voi d)

148

Massif: a heap profiler

15 {

16 int i;

17 int* a[10];

18

19 for (i =0; i < 10; i++) {
20 a[i] = mall oc(1000);

21 }

22

23 f();

24

25 9();

26

27 for (i =0; i < 10; i++) {
28 free(a[i]);

29 }

30

31 return O;

32 }

9.2.2. Running Massif

To gather heap profiling information about the program pr og, type:

val grind --tool =nassif prog

The program will execute (dlowly). Upon completion, no summary statisticsare printed to Valgrind's commentary;
all of Massif'sprofiling dataiswrittento afile. By default, thisfileiscalledmassi f . out . <pi d>, where<pi d>
isthe process ID, although this filename can be changed with the - - massi f - out - fi | e option.

9.2.3. Running ms_print

To see the information gathered by Massif in an easy-to-read form, use ms_print. If the output file's name is
massi f. out . 12345, type:

ns_print massif.out. 12345

ms_print will produce (a) agraph showing the memory consumption over the program’'s execution, and (b) detailed
information about the responsible allocation sites at various points in the program, including the point of peak
memory allocation. The use of a separate script for presenting the results is deliberate: it separates the data
gathering from its presentation, and means that new methods of presenting the data can be added in the future.

9.2.4. The Output Preamble

After running this program under Massif, the first part of ms_print's output contains a preamble which just states
how the program, Massif and ms_print were each invoked:

Conmmand: exampl e
Massi f argunents: (none)
ns_print argunents: nmassif.out. 12797

9.2.5. The Output Graph

The next part is the graph that shows how memory consumption occurred as the program executed:

149

Massif: a heap profiler

KB
19. 637

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

Why is most of the graph empty, with only a couple of bars at the very end? By default, Massif uses "instructions
executed" asthe unit of time. For very short-run programs such as the example, most of the executed instructions
involve the loading and dynamic linking of the program. The execution of mai n (and thus the heap allocations)
only occur at the very end. For a short-running program like this, we can use the - - t i me- uni t =B option to
specify that we want the time unit to instead be the number of bytes all ocated/deallocated on the heap and stack(s).

If we re-run the program under Massif with this option, and then re-run ms_print, we get this more useful graph:

19. 637 HH#

HHHFHFHFHHFHHHF O H R

150

YPOROO000®

HHR I HEHFHEHFEHFHHF TR

Massif: a heap profiler

Nunber of snapshots: 25
Det ai | ed snapshots: [9, 14 (peak), 24]

Thesize of thegraph can be changed withms_print's- - x and - - y options. Each vertical bar representsasnapshot,
i.e. ameasurement of the memory usage at a certain point in time. If the next snapshot is more than one column
away, ahorizontal line of charactersisdrawn from the top of the snapshot to just before the next snapshot column.
The text at the bottom show that 25 snapshots were taken for this program, which is one per heap allocation/
deallocation, plus a couple of extras. Massif starts by taking snapshots for every heap allocation/deallocation, but
as a program runs for longer, it takes snapshots less frequently. It also discards older snapshots as the program
goes on; when it reaches the maximum number of snapshots (100 by default, although changeable with the - -
nmax- snapshot s option) half of them are deleted. This meansthat areasonable number of snapshots are always
maintai ned.

Most snapshots are hormal, and only basic information is recorded for them. Normal snapshots are represented
in the graph by bars consisting of ":' characters.

Some snapshots are detailed. Information about where allocations happened are recorded for these snapshots, as
we will see shortly. Detailed snapshots are represented in the graph by bars consisting of ‘@' characters. The text
at the bottom show that 3 detailed snapshots were taken for this program (snapshots 9, 14 and 24). By defaullt,
every 10th snapshot is detailed, although this can be changed viathe - - det ai | ed- f r eq option.

Finaly, there is at most one peak snapshot. The peak snapshot is a detailed snapshot, and records the point
where memory consumption was greatest. The peak snapshot is represented in the graph by abar consisting of '#
characters. The text at the bottom shows that snapshot 14 was the peak.

Massif's determination of when the peak occurred can be wrong, for two reasons.

 Peak snapshots are only ever taken after a deallocation happens. This avoids lots of unnecessary peak snapshot
recordings (imagine what happens if your program allocates a lot of heap blocks in succession, hitting a new
peak every time). But it means that if your program never deallocates any blocks, no peak will be recorded. It
also meansthat if your program does deall ocate blocks but later allocates to a higher peak without subsequently
deallocating, the reported peak will be too low.

» Even with this behaviour, recording the peak accurately is slow. So by default Massif records a peak whose
size iswithin 1% of the size of the true peak. This inaccuracy in the peak measurement can be changed with
the - - peak- i naccur acy option.

The following graph is from an execution of Konqueror, the KDE web browser. It shows what graphs for larger
programs look like.

3. 9527 #
| @
| . @
| @ : :: @o¥:
| @:: :@o::
| @ :: : Qo :
| @@ @I : : : @O :
| 1@ QoD @O
| D@ Qoo Qo
| @ I @:@D:: :@a::
| @@ :@:Ca:: : Qo ::
| : O @ @:QCoo:: :@o:
| ;@ Dol oY @ @:Coo:: :@at
| L@@ LIl @ @ @ oo c@at
| @ :: @@ LIl @ @ @ oo c@at
| @ :: @@ LIl @ @ @ oo c@at
| @ ::@::::: i@ @@ O @@@:: :@o
| @@ . a: LIl @ @ @ oo c@at

15

=

Massif: a heap profiler

| OO @D I (0] Q@O :@:@@:: :@of:::

| (@3] Q@ ::Q@: I (0] Q@O :@:@@:: :@of:::
(O R L I I >M

0 626. 4

Nunber of snapshots: 63
Detail ed snapshots: [3, 4, 10, 11, 15, 16, 29, 33, 34, 36, 39, 41,
42, 43, 44, 49, 50, 51, 53, 55, 56, 57 (peak)]

Note that the larger size units are KB, MB, GB, etc. Asis typica for memory measurements, these are based
on amultiplier of 1024, rather than the standard SI multiplier of 1000. Strictly speaking, they should be written
KiB, MiB, GiB, etc.

9.2.6. The Snapshot Details

Returning to our example, the graph is followed by the detailed information for each snapshot. The first nine
snapshots are normal, so only a small amount of information is recorded for each one;

n ti me(B) total (B) usef ul - heap(B) extra-heap(B) st acks(B)
0 0 0 0 0 0
1 1,008 1,008 1, 000 8 0
2 2,016 2,016 2,000 16 0
3 3,024 3,024 3, 000 24 0
4 4,032 4,032 4, 000 32 0
5 5, 040 5, 040 5, 000 40 0
6 6, 048 6, 048 6, 000 48 0
7 7, 056 7, 056 7, 000 56 0
8 8, 064 8, 064 8, 000 64 0

Each normal snapshot records several things.

o Itsnumber.

» Thetimeit wastaken. In this case, the time unit is bytes, duetotheuse of - - t i me- uni t =B.
» Thetotal memory consumption at that point.

* The number of useful heap bytes allocated at that point. This reflects the number of bytes asked for by the
program.

» The number of extra heap bytes allocated at that point. This reflects the number of bytes allocated in excess of
what the program asked for. There are two sources of extra heap bytes.

First, every heap block has administrative bytes associated with it. The exact number of administrative bytes
depends on the details of the alocator. By default Massif assumes 8 bytes per block, as can be seen from the
example, but this number can be changed viathe - - heap- admi n option.

Second, allocators often round up the number of bytes asked for to a larger number, usually 8 or 16. Thisis
required to ensure that elements within the block are suitably aligned. If N bytes are asked for, Massif rounds
N up to the nearest multiple of the value specified by the- - al i gnnment option.

* The size of the stack(s). By default, stack profiling is off asit slows Massif down greatly. Therefore, the stack
column is zero in the example. Stack profiling can be turned on with the - - st acks=yes option.

The next snapshot is detailed. Aswell asthe basic counts, it gives an allocation tree which indicates exactly which
pieces of code were responsible for allocating heap memory:

152

Massif: a heap profiler

9 9,072 9,072 9, 000 72 0
99. 21% (9, 000B) (heap allocation functions) malloc/newnew], --alloc-fns, etc.
->99.21% (9, 000B) 0x804841A: nmin (exanple. c: 20)

The allocation tree can be read from the top down. The first line indicates al heap allocation functions such as
mal | oc and C++ new. All heap allocations go through these functions, and so all 9,000 useful bytes (which
i$99.21% of al alocated bytes) go through them. But how were nal | oc and new called? At this point, every
allocation so far has been due to line 20 inside mai n, hence the second line in the tree. The - > indicates that
main (line 20) called mal | oc.

L et's see what the subsequent output shows happened next:

n ti me(B) t ot al (B) usef ul - heap(B) extra-heap(B) st acks(B)
10 10, 080 10, 080 10, 000 80 0
11 12, 088 12,088 12, 000 88 0
12 16, 096 16, 096 16, 000 96 0
13 20, 104 20, 104 20, 000 104 0
14 20, 104 20, 104 20, 000 104 0

99. 48% (20, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc

->49. 74% (10, 000B) 0x804841A: nmi n (exanpl e.c: 20)
I

->39. 79% (8, 000B) 0x80483C2: g (exanple.c:5)

| ->19.90% (4,000B) O0x80483E2: f (exanple.c:11)

| | ->19.90% (4, 000B) 0x8048431: main (exanple.c:23)
||

| ->19.90% (4, 000B) 0x8048436: mmin (exanple.c: 25)

I

>09. 95% (2, 000B) 0x80483DA: f (exanple.c: 10)
->09. 95% (2, 000B) 0x8048431: nmmin (exanple.c: 23)

The first four snapshots are similar to the previous ones. But then the global allocation peak is reached, and
a detailed snapshot (number 14) is taken. Its allocation tree shows that 20,000B of useful heap memory has
been allocated, and the lines and arrows indicate that this is from three different code locations: line 20, which
is responsible for 10,000B (49.74%); line 5, which is responsible for 8,000B (39.79%); and line 10, which is
responsible for 2,000B (9.95%).

We can then drill down further in the allocation tree. For example, of the 8,000B asked for by line 5, half of it was
dueto acall fromline 11, and half was dueto acall from line 25.

In short, Massif collates the stack trace of every single allocation point in the program into a single tree, which
gives acomplete picture at a particular point in time of how and why all heap memory was allocated.

Note that the tree entries correspond not to functions, but to individual code locations. For example, if function A
calsmal | oc, and function B calls A twice, once on line 10 and once on line 11, then the two calls will result in
two distinct stack tracesin thetree. In contrast, if B calls A repeatedly from line 15 (e.g. due to aloop), then each
of those callswill be represented by the same stack tracein the tree.

Note al so that each tree entry with children in the example satisfies an invariant: the entry's sizeisequal to the sum
of its children's sizes. For example, the first entry has size 20,000B, and its children have sizes 10,000B, 8,000B,
and 2,000B. In general, this invariant almost always holds. However, in rare circumstances stack traces can be
malformed, in which case a stack trace can be a sub-trace of another stack trace. This means that some entriesin
the tree may not satisfy the invariant -- the entry's size will be greater than the sum of its children's sizes. This
is not a big problem, but could make the results confusing. Massif can sometimes detect when this happens; if
it does, it issues awarning:

Warni ng: Mal formed stack trace detected. In Massif's output,

153

Massif: a heap profiler

the size of an entry's child entries may not sum up
to the entry's size as they normally do.

However, Massif does not detect and warn about every such occurrence. Fortunately, malformed stack traces are
rarein practice.

Returning now to ms_print's output, the final part is similar:

n ti me(B) total (B) usef ul - heap(B) extra-heap(B) st acks(B)
15 21,112 19, 096 19, 000 96 0
16 22,120 18, 088 18, 000 88 0
17 23,128 17, 080 17, 000 80 0
18 24,136 16, 072 16, 000 72 0
19 25, 144 15, 064 15, 000 64 0
20 26, 152 14, 056 14, 000 56 0
21 27, 160 13, 048 13, 000 48 0
22 28, 168 12, 040 12, 000 40 0
23 29,176 11, 032 11, 000 32 0
24 30, 184 10, 024 10, 000 24 0

99. 76% (10, 000B) (heap allocation functions) malloc/new new], --alloc-fns, etc

->79.81% (8, 000B) 0x80483C2: g (exanple.c:5)
| ->39.90% (4,000B) 0x80483E2: f (exanple.c:11)
| ->39.90% (4,000B) 0x8048431: mmin (exanple.c:23)

|
->39. 90% (4, 000B) 0x8048436: nmi n (exanple. c: 25)

|
|
|
|
->19. 95% (2, 000B) 0x80483DA: f (exanple.c:10)

| ->19.95% (2,000B) 0x8048431: main (exanple.c:23)
|

>00. 00% (0B) in 1+ places, all below ms _print's threshold (01.00%

The final detailed snapshot shows how the heap looked at termination. The 00.00% entry represents the code
locations for which memory was allocated and then freed (line 20 in this case, the memory for which was freed
on line 28). However, no code location details are given for this entry; by default, Massif only records the details
for code locations responsible for more than 1% of useful memory bytes, and ms_print likewise only prints the
detailsfor code locations responsible for more than 1%. The entriesthat do not meet thisthreshold are aggregated.
This avoids filling up the output with large numbers of unimportant entries. The thresholds can be changed with
the- -t hr eshol d option that both Massif and ms_print support.

9.2.7. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

If the output file format string (controlled by - - massi f - out - f i |) doesnot contain %, then the outputsfrom
the parent and child will be intermingled in a single output file, which will aimost certainly make it unreadable
by ms_print.

9.2.8. Measuring All Memory in a Process

It isworth emphasising that by default Massif measures only heap memory, i.e. memory allocated with mal | oc,
cal I oc,real | oc,nmenal i gn,new, new], andafew other, similar functions. (Andit can optionally measure
stack memory, of course.) Thismeansit does not directly measure memory allocated with lower-level system calls
such as mmap, nt emap, and br k.

Heap allocation functions such asmal | oc are built on top of these system calls. For example, when needed, an
allocator will typically call mmap to allocate alarge chunk of memory, and then hand over pieces of that memory

154

Massif: a heap profiler

chunk to the client program in responseto callstomal | oc et a. Massif directly measures only these higher-level
mal | oc et al calls, not the lower-level system calls.

Furthermore, a client program may use these lower-level system calls directly to alocate memory. By default,
Massif does not measure these. Nor does it measure the size of code, data and BSS segments. Therefore, the
numbers reported by Massif may be significantly smaller than those reported by tools such ast op that measure
aprogram's total size in memory.

However, if you wish to measure all the memory used by your program, you can use the - - pages- as-
heap=yes. When this option is enabled, Massif's normal heap block profiling is replaced by lower-level page
profiling. Every page alocated via nmrap and similar system callsis treated as a distinct block. This means that
code, dataand BSS segments are all measured, asthey are just memory pages. Even the stack is measured, sinceit
isultimately allocated (and extended when necessary) via mmap; for thisreason - - st acks=yes isnot allowed
in conjunction with - - pages- as- heap=yes.

After - - pages- as- heap=yes isused, ms _print's output is mostly unchanged. One difference is that the start
of each detailed snapshot says:

(page all ocation syscalls) mmp/ nremap/ brk, --alloc-fns, etc.
instead of the usual:
(heap allocation functions) malloc/new new], --alloc-fns, etc.

The stack traces in the output may be more difficult to read, and interpreting them may require some detailed
understanding of the lower levels of aprogram like the memory allocators. But for some programs having the full
information about memory usage can be very useful.

9.2.9. Acting on Massif's Information

Massif'sinformation is generaly fairly easy to act upon. The obvious place to start looking is the peak snapshot.

It can also be useful to look at the overall shape of the graph, to see if memory usage climbs and falls as you
expect; spikesin the graph might be worth investigating.

The detailed snapshots can get quite large. It is worth viewing them in a very wide window. It's also a good idea

to view them with atext editor. That makes it easy to scroll up and down while keeping the cursor in a particular
column, which makes following the allocation chains easier.

9.3. Using massif-visualizer

massif-visualizer is agraphical viewer for Massif data that is often easier to use than ms_print. massif-visualizer
is not shipped within Valgrind, but is available in various places online.

9.4. Massif Command-line Options

M assif-specific command-line options are:

- -heap=<yes| no> [defaul t: yes]
Specifies whether heap profiling should be done.

- - heap- adm n=<si ze> [defaul t: 8]

If heap profiling is enabled, gives the number of administrative bytes per block to use. This should be
an estimate of the average, since it may vary. For example, the allocator used by glibc on Linux requires

155

https://github.com/KDE/massif-visualizer

Massif: a heap profiler

somewhere between 4 to 15 bytes per block, depending on various factors. That allocator also requires admin
space for freed blocks, but Massif cannot account for this.

--stacks=<yes| no> [defaul t: no]

Specifies whether stack profiling should be done. This option slows Massif down greatly, and so is off by
default. Note that Massif assumes that the main stack has size zero at start-up. This is not true, but doing
otherwise accurately is difficult. Furthermore, starting at zero better indicates the size of the part of the main
stack that a user program actually has control over.

If yougiveatleast4- v verbosity arguments, then massif producesatracefor each stack increase and decrease.
The stack increase trace contains the |P address that increased the stack. Note that to get fully precise IP
address, you must specify the options - px- def aul t =unwi ndr egs- at - mem access --px-file-
backed=unwi ndr egs- at - mrent access.

- - pages- as- heap=<yes| no> [defaul t: no]

TellsMassif to profile memory at the page level rather than at the malloc'd block level. See above for details.

- - dept h=<nunber > [defaul t: 30]

Maximum depth of the allocation trees recorded for detailed snapshots. Increasing it will make Massif run
somewhat more slowly, use more memory, and produce bigger output files.

--al |l oc-f n=<nane>

Functions specified with this option will be treated as though they were a heap allocation function such as
mal | oc. Thisisuseful for functions that are wrappersto nmal | oc or new, which can fill up the alocation
trees with uninteresting information. This option can be specified multiple times on the command line, to
name multiple functions.

Note that the named function will only be treated this way if it isthe top entry in astack trace, or just below
another function treated this way. For example, if you have a function mal | oc1 that wraps nal | oc, and
mal | oc2 that wrapsmmal | ocl, just specifying - - al | oc- f n=mal | oc2 will have no effect. Y ou need to
specify - - al | oc-f n=nal | oc1 aswell. Thisis alittle inconvenient, but the reason is that checking for
allocation functionsisslow, and it savesalot of timeif Massif can stop looking through the stack trace entries
as soon asit finds one that doesn't match rather than having to continue through all the entries.

Note that C++ names are demangled. Note also that overloaded C++ names must be written in full. Single
guotes may be necessary to prevent the shell from breaking them up. For example:
--all oc-fn="operator newunsi gned, std::nothrowt const&)'

Arguments of typesi ze_t needto bereplaced withunsi gned | ong on 64bit platformsand unsi gned
on 32bit platforms.

- -al | oc- f nwill work with inline functions. Inline function names are not mangled, which meansthat you
only need to provide the function name and not the argument list.

--al | oc-f n does not support wildcards.

gnor e- f n=<nane>

Any direct heap alocation (i.e. acall tomal | oc, new, etc, or acall to afunction named by an- - al | oc-
f n option) that occursin afunction specified by this option will beignored. Thisis mostly useful for testing

purposes. This option can be specified multiple times on the command line, to name multiple functions.

Anyr eal | oc of anignored block will also beignored, evenif ther eal | oc call doesnot occurinanignored
function. This avoids the possibility of negative heap sizesif ignored blocks are shrunk withr eal | oc.

156

Massif: a heap profiler

Therules for writing C++ function names are the same asfor - - al | oc- f n above.
--threshol d=<m n> [defaul t: 1.0]

The significance threshold for heap allocations, as a percentage of total memory size. Allocation tree entries
that account for less than thiswill be aggregated. Note that this should be specified in tandem with ms_print's
option of the same name.

- - peak-inaccuracy=<m n> [default: 1.0]

Massif does not necessarily record the actual global memory allocation peak; by default it records apeak only
when the global memory allocation size exceeds the previous peak by at least 1.0%. Thisis because there can
bemany local allocation peaksalong the way, and doing adetail ed snapshot for every onewould be expensive
and wasteful, as al but one of them will be later discarded. This inaccuracy can be changed (even to 0.0%)
viathis option, but Massif will run drastically slower as the number approaches zero.

--time-unit=<i|ns| B> [default: i]

The time unit used for the profiling. There are three possibilities: instructions executed (i), which is good
for most cases; real (wallclock) time (ms, i.e. milliseconds), which is sometimes useful; and bytes allocated/
deallocated on the heap and/or stack (B), which isuseful for very short-run programs, and for testing purposes,
because it is the most reproducible across different machines.

--detail ed-freq=<n> [defaul t: 10]
Frequency of detailed snapshots. With - - det ai | ed- f r eq=1, every snapshot is detailed.
- - max- snapshot s=<n> [defaul t: 100]

The maximum number of snapshots recorded. If set to N, for all programs except very short-running ones,
the final number of snapshots will be between N/2 and N.

--massif-out-file=<file> [default: nassif.out. %]

Writethe profiledatatof i | e rather than to the default output file, massi f . out . <pi d>. The %p and %g
format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the coreoption- -1 og-fil e.

9.5. Massif Monitor Commands

The Massif tool provides monitor commands handled by the VValgrind gdbserver (see Monitor command handling
by the VValgrind gdbserver). Valgrind python code provides GDB front end commands giving an easier usage of the
massif monitor commands (see GDB front end commands for Valgrind gdbserver monitor commands). To launch
amassif monitor command viaits GDB front end command, instead of prefixing the command with "monitor",
you must usethe GDB rmassi f command (or the shorter aliases ns). Using the massif GDB front end command
provide a more flexible usage, such as auto-completion of the command by GDB. In GDB, you can use hel p
massi f to get help about the massif front end monitor commands and you can use apr opos massi f to get
all the commands mentionning the word "massif" in their name or on-line help.

* snapshot [<fil ename>] requests to take a snapshot and save it in the given <filename> (default
massif.vgdb.out).

e detail ed _snapshot [<filenane>] requests to take a detailed snapshot and save it in the given
<filename> (default massif.vgdb.out).

e all _snapshots [<fil enane>] requeststotakeall captured snapshots so far and save them inthe given
<filename> (default massif.vgdb.out).

« xtnenory [<fil enane> default xtnenory. kcg. %. %] requestsMassif tool to produce an xtree
heap memory report. See Execution Trees for a detailed explanation about execution trees.

157

Massif: a heap profiler

9.6. Massif Client Requests

Massif does not have a massif.h file, but it does implement two of the core client requests:
VALGRI ND_MALLQOCLI KE_BLOCK and VALGRI ND_FREELI KE_BLQOCK; they are described in The Client
Request mechanism.

9.7. ms_print Command-line Options

ms_print's options are:
-h --help
Show the help message.
--version
Show the version number.
--threshol d=<m n> [defaul t: 1.0]
Same as Massif's- - t hr eshol d option, but applied after profiling rather than during.
--Xx=<4..1000> [default: 72]
Width of the graph, in columns.
--y=<4..1000> [defaul t: 20]

Height of the graph, in rows.

9.8. Massif's Output File Format

Massif's file format is plain text (i.e. not binary) and deliberately easy to read for both humans and machines.
Nonetheless, the exact format is not described here. This is because the format is currently very Massif-specific.
In the future we hope to make the format more general, and thus suitable for possible use with other tools. Once
this has been done, the format will be documented here.

158

10. DHAT: a dynamic heap analysis
tool

To usethistool, you must specify - - t ool =dhat on the Valgrind command line.

10.1. Overview

DHAT isprimarily atool for examining how programs use their heap allocations.

It tracks the allocated blocks, and inspects every memory access to find which block, if any, it isto. It presents,
on a program point basis, information about these blocks such as sizes, lifetimes, numbers of reads and writes,
and read and write patterns.

Using thisinformation it is possible to identify program points with the following characteristics:

 potential process-lifetime leaks: blocks allocated by the point just accumulate, and are freed only at the end
of therun.

* excessive turnover: points which chew through alot of heap, even if it is not held onto for very long
 excessively transient: points which allocate very short lived blocks

 useless or underused allocations: blocks which are alocated but not completely filled in, or are filled in but
not subsequently read.

 blockswith inefficient layout -- areas never accessed, or with hot fields scattered throughout the block.

Aswith the Massif heap profiler, DHAT measures program progress by counting instructions, and so presents all
ageltime related figures as instruction counts. This sounds a little odd at first, but it makes runs repeatable in a
way which is not possible if CPU timeis used.

DHAT & so has support for copy profiling and ad hoc profiling. These are described below.

10.2. Using DHAT

First off, as for normal Valgrind use, you probably want to compile with debugging info (the - g option). But by
contrast with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your
program asit will be normally run.

Second, you need to run your program under DHAT to gather the profiling information. Y ou might need to reduce
the- - num cal | er s value to get reasonably-sized output files, especialy if you are profiling alarge program;
sometrial and error might be needed to find a good value.

Finally, you need to use DHAT's viewer (in aweb browser) to get a detailed presentation of that information.

10.2.1. Running DHAT

To run DHAT on aprogram pr og, run:

val grind --tool =dhat prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

159

DHAT: adynamic heap analysis tool

==11514== Tot al : 823,849, 731 bytes in 3,929, 133 bl ocks
==11514== At t-gmax: 133,485,082 bytes in 436,521 bl ocks
==11514== At t-end: 258,002 bytes in 2,129 bl ocks
==11514== Reads: 2,807, 182, 810 bytes

==11514== Wi tes: 1, 149, 617, 086 bytes

Thefirst line shows how many heap blocks and bytes were allocated over the entire execution.

The second line shows how many heap blocks and bytes were dlive at t - gmax, i.e. the time when the heap size
reached its global maximum (as measured in bytes).

The third line shows how many heap blocks and bytes were dive a t - end, i.e. the end of execution. In other
words, how many blocks and bytes were not explicitly freed.

The fourth and fifth lines show how many bytes within heap blocks were read and written during the entire
execution.

These lines are moderately interesting at best. More useful information can be seen with DHAT's viewer.

10.2.2. Output File

As well as printing summary information, DHAT also writes more detailed profiling information to afile. By
default thisfile is named dhat . out . <pi d> (where <pi d> is the program's process ID), but its name can be
changed withthe - - dhat - out - fi | e option. Thisfileis JSON, and intended to be viewed by DHAT's viewer,
which is described in the next section.

Thedefault . <pi d> suffix on the output file name servestwo purposes. Firstly, it meansyou don't haveto rename
old log files that you don't want to overwrite. Secondly, and more importantly, it allows correct profiling with the
--trace-chil dren=yes option of programs that spawn child processes.

The output file can be big, many megabytes for large applications built with full debugging information.

10.3. DHAT's Viewer

DHAT's viewer can be run in a web browser by loading the file dh_vi ew. ht m . Use the "Load" button to
choose a DHAT output file to view.

If loading takesalong time, it might be worth re-running DHAT withasmaller - - num cal | er s valueto reduce
the stack depths, because this can significantly reduce the size of DHAT's output files.

10.3.1. The Output Header

Thefirst part of the output shows the mode, program command and process ID. For example:

I nvocation {
Mode: heap
Conmmand: /hone/ nj n/ moz/rust 0/ bui |l d/ x86_64- unknown- | i nux- gnu/ st age2/ bi n/rustc --crate-
PI D 18816

}

The second part of the output showsthet - gnmax andt - end values again. For example:

Ti mes {
t-gmax: 8,138,210,673 instrs (86.92% of program durati on)
t-end: 9,362,544,994 instrs

160

DHAT: adynamic heap analysis tool

10.3.2. The PP Tree

The third part of the output is the largest and most interesting part, showing the program point (PP) tree.

10.3.2.1. Structure

The following image shows a screenshot of part of a PP tree. The font is very small because this screenshot is
intended to demonstrate the high-level structure of the tree rather than the detailswithin thetext. (It isalso slightly
out-of-date, and doesn't quite match the current output produced by DHAT's viewer.)

Like any tree, it has a root node, leaf nodes, and non-leaf nodes. The structure of the tree is shown by the lines
connecting nodes. Child nodes are beneath their parent and indented one level.

The sub-trees beneath anon-leaf node can be collapsed or expanded by clicking on the node. It is useful to collapse
sub-trees that you aren't interested in.

Coloursare meaningful, and areintended to ease tree navigation, but the information they represent is also present
within the text. (This means that colour-blind users are not denied any information.)

Each leaf node is coloured green. Each non-leaf node is coloured blue and has a down arrow (#) next to it when
its sub-tree is expanded. Each non-leaf node is coloured yellow and has a left arrow (#) next to it when its sub-
treeis collapsed.

The shade of green, blue or yellow used for a node indicate its significance. Darker shades represent greater
significance (in terms of bytes or blocks).

Note that the entire output is text, even the arrows and lines connecting nodes. This means you can copy and paste
any part of the output easily into an email, bug report, etc.

10.3.2.2. The Root Node

The root node looks like this:

PP 1/1 (25 children) {
Tot al : 1, 355, 253,987 bytes (100% 67,454.81/Mnstr) in 5,943,417 bl ocks (100% 29
At t-gmax: 423,930,307 bytes (100% in 1,575,682 blocks (100%, avg size 269.05 bytes
At t-end: 258,002 bytes (100% in 2,129 blocks (100%, avg size 121.18 bytes

Reads: 5, 478, 606, 988 bytes (100% 272,685.7/Mnstr), 4.04/byte
Wites: 2,040, 294, 800 bytes (100% 101,551.22/Mnstr), 1.51/byte
Al l ocated at {

#0: [root]
}

}

The root node covers the entire execution. The information is a superset of the information shown when DHAT
ran, adding details such as allocation rates, average block sizes, block lifetimes, and read and write ratios. The
next example will explain these in more detail.

10.3.2.3. Interior Nodes

PP nodes further down the tree show information about a subset of allocations. For example:

PP 1.1/25 (2 children) {
Tot al : 54,533,440 bytes (4.02% 2,714.28/Mnstr) in 458,839 blocks (7.72% 22.84/
At t-gmax: O bytes (0% in O blocks (0%, avg size 0 bytes
At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes

161

DHAT: adynamic heap analysis tool

Reads: 15,993,012 bytes (0.29% 796.02/Mnstr), 0.29/byte
Wites: 20,974,752 bytes (1.03% 1,043.97/Mnstr), 0.38/byte
Al l ocated at {

#1: O0x95CACC9: alloc (alloc.rs:72)

#2: O0x95CACC9: alloc (alloc.rs:148)

#3: Ox95CACC9: reserve_internal <syntax::tokenstream : TokenStream all oc::all oc::d ob:
#4: 0x95CACCIO: reserve<syntax::tokenstream : TokenStreamalloc::alloc::d obal> (raw.

#5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreans (vec.rs: 460)
#6: O0x95CACCI9: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
#7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

#8: Ox95CACC9: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Stringl

}
}

The first line indicates the node's position in the tree. The 1. 1 is a unique identifier for the node and also says
that it isthefirst child node 1 (which istheroot). The/ 25 saysthat it isone of 25 children, i.e. it has 24 siblings.
The(2 chil dr en) saysthat this node node has two children of its own.

Allocations are aggregated by their allocation stack trace. The Al | ocat ed at section showsthe allocation stack
trace that is shared by al the blocks covered by this node.

The Tot al line shows that this node accounts for 4.02% of all bytes allocated during execution, and 7.72% of
all blocks. These percentages are useful for comparing the significance of different nodes within a single profile;
a PP that accounts for 10% of bytes allocated is likely to be more interesting than one that accounts for 2%.

The Tot al line also shows allocation rates, measured in bytes and blocks per million instructions. These rates
are useful for comparing the significance of nodes across profiles made with different workloads.

Finaly, the Tot al line shows the average size and lifetimes of these blocks.

The At t - gmax line says shows that no blocks from this PP were alive when the global heap peak occurred. In
other words, these blocks do not contribute at all to the global heap peak.

The At t - end line shows that no blocks were from this PP were alive at shutdown. In other words, all those
blocks were explicitly freed before termination.

TheReads andW i t es linesshow how many byteswere read within this PP's blocks, the fraction thisrepresents
of al heap reads, and the read rate. Finally, it shows the read ratio, which is the number of reads per byte. In this
case the number is 0.29, which is quite low -- if no byte was read twice, then only 29% of the allocated bytes,
which means that at least 71% of the bytes were never read! This suggests that the blocks are being underutilized
and might be worth optimizing.

The Wi t es linesis similar to the Reads line. In this case, at most 38% of the bytes are ever written, and at
least 62% of the bytes were never written.

The Reads and Wi t es measurements suggest that the blocks are being under-utilised and might be worth

optimizing. Having said that, thiskind of under-utilisation is common in data structures that grow, such asvectors
and hash tables, and isn't always fixable.

10.3.2.4. Leaf Nodes

Thisisaleaf node:

PP 1.1.1.1/2 {

Tot al : 31, 460, 928 bytes (2.32% 1,565.9/Mnstr) in 262,171 bl ocks (4.41%

Max: 16, 779, 136 bytes in 65,543 bl ocks, avg size 256 hytes
At t-gmax: O bytes (0% in O blocks (0%, avg size O bytes

At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes
Reads: 5,964, 704 bytes (0.11% 296.88/Mnstr), 0.19/byte

162

DHAT: adynamic heap analysis tool

Wites: 10, 487,200 bytes (0.51% 521.98/Mnstr), 0.33/byte
Al l ocated at {

N1: Ox95CACC9: alloc (alloc.rs:72)

N2: Ox95CACC9: alloc (alloc.rs:148)

N3: O0x95CACCIO: reserve_internal <syntax::tokenstream : TokenStream all oc::all oc::d ob:
N4: Ox95CACCYO: reserve<syntax::tokenstream : TokenStreamalloc::alloc::d obal> (raw

N5: Ox95CACCIO: reserve<syntax::tokenstream: TokenStreanms (vec.rs: 460)
N6: Ox95CACCIO: push<synt ax::tokenstream : TokenStrean> (vec.rs: 989)
NT7: Ox95CACC9: parse_token_trees until _cl ose _delim (tokentrees.rs: 27)

N8: Ox95CACCIO: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Stringl

N9: 0Ox95CAC39: parse_token_trees until _cl ose _delim (tokentrees.rs: 26)

N10: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Strin

#11: Ox95CAC39: parse_token trees until_close_delim (tokentrees.rs: 26)

}
}

Thel. 1. 1. 1/ 2 indicates that this node is a great-grandchild of the root; is the first grandchild of the node in
the previous example; and has no children.

#12: Ox95CAC39: syntax::parse::|lexer::tokentrees::<inpl syntax::parse::lexer::Strin

Leaf nodes contain an additional Max line, indicating the peak memory use for the blocks covered by this PP.
(This peak may have occurred at atime other thant - gnax.) In this case, 31,460,298 bytes were allocated from
this PP, but the maximum size alive at once was 16,779,136 bytes.

Stack frames that begin with a” rather than a# are copied from ancestor nodes. (In this example, the first 8
frames are identical to those from the node in the previous example.) These frames could be found by tracing back
through ancestor nodes, but that can be annoying, which is why they are duplicated. This a'so means that each
node makes complete sense on its own.

10.3.2.5. Access Counts

If all blocks covered by a PP node have the same size, an additional Accesses field will be present. It indicates
how the reads and writes within these blocks were distributed. For example:

Tot al : 8,388,672 bytes (0.62% 417.53/Mnstr) in 262,146 bl ocks (4.41%

13. 05/ M nst.

At t-gnmax: 8,388,672 bytes (1.98% in 262,146 bl ocks (16.64%, avg size 32 bytes

At t-end: O bytes (0% in O blocks (0%, avg size 0 bytes
Reads: 9,109,682 bytes (0.17% 453.41/Mnstr), 1.09/byte
Wites: 7,340,088 bytes (0.36% 365.34/Mnstr), 0.88/byte
Accesses: {

[O] 65547 7 8 4 65529 # # # 16 # # # 12 # # # # # # # # # # # 65542 # # # - -

}

Every block covered by this PP was 32 bytes. Within all of those blocks, byte 0 was accessed (read or written)
65,547 times, byte 1 was accessed 7 times, byte 2 was accessed 8 times, and so on.

The ditto symbol (#) means "same access count as the previous byte".
A dash (-) means "zero". (It isused instead of O because it makes unaccessed regions more easily identifiable.)
Theinfinity symbol (#, not present in this example) means "exceeded the maximum tracked count".

Block layout can often be inferred from counts. For example, these blocks probably have four separate byte-sized
fields, followed by afour-byte field, and so on.

The size of the blocks that measure and display access countsis limited to 1024 bytes. This is done to limit the
performance overhead and also to keep the size of the generated output reasonable. However, it is possible to
override thislimit using client requests. The use-case for thisisto first run DHAT normally, and then identify any
large blocks that you would like to further investigate with access count histograms. The client request is declared

163

DHAT: adynamic heap analysis tool

indhat / dhat . h andis called DHAT _HI STOGRAM MEMORY. The macro should be placed immediately after
the call to the allocator, and use the pointer returned by the allocator.

/1 LargeStruct bigger than 1024 bytes
struct LargeStruct* |Is = mall oc(sizeof (struct LargeStruct));
DHAT_HI STOGRAM_MEMORY(| s) ;

The memory that can be profiled in this way with user requests has a further upper limit of 25kbytes. Be aware
that the access counts will al be set to zero. This means that the access counts will not include any reads or
writes performed during initialisation. An example where thiswill happen are uses of C++ newwith user-defined
constructors.

Access counts can be useful for identifying data alignment holes or other layout inefficiencies.

10.3.2.6. Aggregate Nodes

The PPtreeisvery large and many nodes represent tiny numbers of blocks and bytes. Therefore, DHAT's viewer
aggregates insignificant nodes like this:

PP 1.14.2/2 {
Tot al : 5,175 bl ocks (0.09% 0.26/ M nstr)
Al l ocated at {
[5 insignificant]
}
}

Much of the detail is stripped away, leaving only basic measurements, along with an indication of how many nodes
were aggregated together (5 in this case).

10.3.3. The Output Footer

Below the PP treeis alinelike this:

PP significance threshold: total >= 59,434.17 bl ocks (1%

It shows the function used to determine if a PP node is significant. All nodes that don't satisfy this function
are aggregated. It is occasionally useful if you don't understand why a PP node has been aggregated. The exact
threshold depends on the sort metric (see below).

Finally, the bottom of the page shows alegend that explains some of the terms, abbreviations and symbols used
in the output.

10.3.4. Sort Metrics

Theorder in which sub-trees are sorted can be changed viathe " Sort metric" drop-down menu at thetop of DHAT's
viewer. Different sort metrics can be useful for finding different things. Some sort metrics also incorporate some
filtering, so that only nodes meeting a particular criteria are shown.

Total (bytes)

The total number of bytes allocated during the execution. Highly useful for evaluating heap churn, though
not quite as useful as"Total (blocks)".

Total (blocks)

Thetotal number of blocks allocated during the execution. Highly useful for evaluating heap churn; reducing
the number of callsto the allocator can significantly speed up a program. This isthe default sort metric.

164

DHAT: adynamic heap analysis tool

Total (blocks), tiny

Like "Tota (blocks)", but shows only very small blocks. Moderately useful, because such blocks are often
easy to avoid allocating.

Total (blocks), short-lived

Like "Tota (blocks)", but shows only very short-lived blocks. Moderately useful, because such blocks are
often easy to avoid allocating.

Total (bytes), zero reads or zero writes

Like "Total (bytes)", but shows only blocks that are never read or never written to (or both). Highly useful,
because such blocks indicate poor use of memory and are often easy to avoid allocating. For example,
sometimes a block is allocated and written to but then only read if a condition C istrue; in that case, it may
be possible to delay creating the block until condition C istrue. Alternatively, sometimes blocks are created
and never used; such blocks aretrivial to remove.

Total (blocks), zero reads or zero writes
Like "Total (bytes), zero reads or zero writes" but for blocks. Highly useful.
Total (bytes), low-access

Like "Total (bytes)", but shows only blocks that have low numbers of reads or low numbers of writes (or
both). Moderately useful, because such blocks indicate poor use of memory.

Total (blocks), low-access
Like "Total (bytes), low-access', but for blocks.
At t-gmax (bytes)

This shows the breakdown of memory at the point of peak heap memory usage. Highly useful for reducing
peak memory usage.

At t-end (bytes)

This shows the breakdown of memory at program termination. Highly useful for identifying process-lifetime
lesks.

Reads (bytes)
The number of bytes read within heap blocks. Occasionally useful.
Reads (bytes), high-access

Like "Reads (bytes)", but only shows blocks with high read ratios. Occasionally useful for identifying hot
areas of memory.

Writes (bytes)
Like "Reads (bytes)", but for writes. Occasionally useful.
Writes (bytes), high-access
Like "Reads (bytes), high-access', but for writes. Occasionally useful.
The values within a node that represent the chosen sort metric are shown in bold, so they stand out.

Hereispart of aPP nodefound with "Total (blocks), tiny", showing blockswith an average size of only 8.67 bytes:

165

DHAT: adynamic heap analysis tool

Tot al : 3,407, 848 bytes (0.25% 169.62/Mnstr) in 393,214 bl ocks (6.62% 19.57/M nst|

Here is part of a PP node found with "Total (blocks), short-lived”, showing blocks with an average lifetime of
only 181.75 instructions:

Tot al : 23,068,584 bytes (1.7% 1,148.19/Mnstr) in 262,143 bl ocks (4.41% 13.05/ M n

Here is an example of a PP identified with "Total (blocks), zero reads or zero writes', showing blocks that are
allocated but never touched:

Tot al : 7,339,920 bytes (0.54% 365.33/Mnstr) in 262,140 bl ocks (4.41% 13.05/ M nst|
Max: 3,669, 960 bytes in 131,070 bl ocks, avg size 28 hytes

At t-gmax: 3,336,400 bytes (0.79% in 119, 157 bl ocks (7.56%, avg size 28 bytes

At t-end: O bytes (0% in O blocks (0%, avg size O bytes

Reads: 0 bytes (0% O/Mnstr), 0/byte

Wites: 0 bytes (0% O/Mnstr), 0/byte

All the blocks identified by these PPs are good candidates for optimization.

10.4. Treatment of realloc

real | oc isatricky function and there are several different waysthat DHAT could handle it.

Imagineanal | oc(100) call followed by ar eal | oc(200) call. This combination is considered to add two
tothetotal block count, and 300 bytesto the total bytes count. (An alternative would be to only add oneto the total
block count, and 200 bytes to the total bytes count, asif asingle mal | oc(200) call had occurred. While this
would be defensible from a semantic point of view, it is silly from an operational point of view, because making
two calls to allocator functions is more expensive than one call, and DHAT is a profiler that aims to help with
runtime costs.)

Furthermore, the implicit copying of the 100 bytes is added to the reads and writes counts. Without this, the read
and write counts would be under-measured and misleading.

However, DHAT only increases the current heap size by 100 bytes for this combination, and does not change the
current block count. (As opposed to increasing the current heap size by 200 bytes and then decreasing it by 100
bytes.) Asaresult, it can only increase the global heap peak (if indeed, this resultsin a new peak) by 100 bytes.

Finally, the program point assigned to the block allocated by the mal | oc(100) call is retained once the block
isreallocated. Which means that all 300 bytes are attributed to that program point, and no separate program point
iscreated for ther eal | oc(200) call. This may be surprising, but it has one large benefit.

Imagine some code that starts with an empty buffer, and then gradually adds data to that buffer from numerous
different pointsin the code, reallocating the buffer each timeit getsfull. (E.g. code generation in acompiler might
work this way.) With the described approach, the first heap block and all subsequent heap blocks are attributed
to the same program point. While thisis something of alie -- the first program point isn't actually responsible for
the other allocations -- it is arguably better than having the program points spread around in a distribution that
unpredictably depends on whenever the reall ocations were triggered.

10.5. Copy profiling

If DHAT isinvoked with - - rode=copy, instead of profiling heap operations (allocations and deall ocations), it
profiles copy operations, such asmentpy, menmove, st r cpy, and bcopy. Thisis sometimes useful.
Here is an example PP node from this mode:

PP 1.1.2/5 (4 children) {

166

DHAT: adynamic heap analysis tool

Tot al : 1,210, 925 bytes (10.03% 4,358.66/Mnstr) in 112,717 bl ocks (35.2%
Copi ed at {

N1: 0x4842524: memmove (vg_replace_strmem c: 1289)

#2: Ox1FOAOD: copy_nonover| appi ng<u8> (intrinsics.rs:1858)

#3: Ox1FOAOD: copy_fromslice<u8> (nod.rs:2524)

#4: Ox1FOAOD: spec_extend<u8> (vec.rs: 2227)

#5: Ox1FOAOD: extend_fromslice<u8> (vec.rs:1619)

#6: Ox1FOAOD: push_str (string.rs:821)

#7: Ox1FOAOD: write_str (string.rs:2418)

#8: Ox1FOAOD: <&mut Was core::fnt::Wite> :wite_str (nod.rs:195)

}
}

It is very similar to the PP nodes for heap profiling, but with less information, because copy profiling doesn't
involve any tracking of memory regions with lifetimes.

10.6. Ad hoc profiling

If DHAT isinvoked with - - nbde=ad- hoc, instead of profiling heap operations (allocations and deallocations),
it profiles callsto the DHAT _AD HOC EVENT client request, which isdeclared indhat / dhat . h.

Hereis an example PP node from this mode:

PP 1.1.1.1/2 {
Tot al : 30 units (17.65% 115.97/Mnstr) in 1 events (14.29% 3.87/Mnstr),
Cccurred at {
N1: 0x109407: g (ad-hoc.c:4)
N2: 0x109425: f (ad-hoc.c:8)
#3: 0x109497: main (ad-hoc.c: 14)

}
}

Thiskind of profiling is useful when you know a code path is hot but you want to know more about it.

For example, you might want to know which callsites of a hot function account for most of the calls. You could
put a DHAT_AD_HOC_EVENT(1) ; cal at the start of that function.

Alternatively, you might want to know the typical length of a vector in a hot location. You could put a
DHAT_AD HOC EVENT(| en); call at the appropriate location, when | en isthe length of the vector.

10.7. DHAT Command-line Options

DHAT-specific command-line options are:
--dhat-out-file=<file>

Write the profile datato f i | e rather than to the default output file, dhat . out . <pi d>. The % and %g
format specifiers can be used to embed the process ID and/or the contents of an environment variable in the
name, asisthe case for the core option- - | og-fi l e.

- - node=<heap| copy| ad- hoc> [defaul t: heap]
The profiling mode: heap profiling, copy profiling, or ad hoc profiling.

Notethat stacks by default have 12 frames. This may be morethan necessary, inwhich casethe- - num cal | er s
flag can be used to reduce the number, which may make DHAT run dlightly faster.

167

405. 72,

avg si

11. Lackey: an example tool

To use thistool, you must specify - - t ool =I ackey on the Valgrind command line.

11.1. Overview

Lackey isasimpleValgrind tool that doesvariouskinds of basic program measurement. It addsquitealot of simple
instrumentation to the program'’s code. It is primarily intended to be of use as an example tool, and consequently
emphasises clarity of implementation over performance.

11.2. Lackey Command-line Options

Lackey-specific command-line options are:
- - basi c-count s=<no| yes> [defaul t: yes]

When enabled, Lackey prints the following statistics and information about the execution of the client
program:

1. Thenumber of callsto thefunction specified by the- - f nnane option (thedefaultismai n). If theprogram
has had its symbols stripped, the count will always be zero.

2. The number of conditional branches encountered and the number and proportion of those taken.

3. The number of superblocks entered and completed by the program. Note that due to optimisations done
by the JIT, thisisnot at al an accurate value.

4. The number of guest (x86, amd64, ppc, etc.) instructions and IR statements executed. IR is Vagrind's
RISC-like intermediate representation viawhich all instrumentation is done.

5. Ratios between some of these counts.
6. The exit code of the client program.
--det ai | ed- count s=<no| yes> [default: no]

When enabled, Lackey prints atable containing counts of loads, stores and ALU operations, differentiated by
their IR types. The IR types are identified by their IR name ("11", "18", ... "1128", "F32", "F64", and "V 128").

--trace- mem=<no| yes> [defaul t: no]

When enabled, Lackey prints the size and address of almost every memory access made by the program. See
the comments at the top of thefilel ackey/ | k_mai n. c for details about the output format, how it works,
and inaccuracies in the address trace. Note that this option produces immense amounts of output.

--trace-superbl ocks=<no| yes> [defaul t: no]

When enabled, Lackey prints out the address of every superblock (a single entry, multiple exit, linear chunk
of code) executed by the program. Thisis primarily of interest to Valgrind developers. See the comments at
the top of thefilel ackey/ | k_mai n. ¢ for details about the output format. Note that this option produces
large amounts of outpult.

- -fnname=<nane> [defaul t: main]

Changes the function for which calls are counted when - - basi c- count s=yes is specified.

168

12. Nulgrind: the minimal Valgrind
tool

To usethistool, you must specify - - t ool =none on the Valgrind command line.

12.1. Overview

Nulgrind isthe simplest possible VValgrind tool. It performs no instrumentation or analysis of a program, just runs
it normally. It ismainly of use for Valgrind's developers for debugging and regression testing.

Nonetheless you can run programs with Nulgrind. They will run roughly 5 times more slowly than normal, for no
useful effect. Notethat you need to usethe option - - t ool =none torunNulgrind(ie. not- - t ool =nul gri nd).

169

13. BBV: an experimental basic block
vector generation tool

To usethistool, you must specify - - t ool =exp- bbv on the Vagrind command line.

13.1. Overview

A basic block isalinear section of code with one entry point and one exit point. A basic block vector (BBV) isa
list of all basic blocks entered during program execution, and a count of how many times each basic block was run.

BBV isatool that generatesbasic block vectorsfor usewith the SimPoint analysistool. The SimPoint methodol ogy
enables speeding up architectural simulations by only running asmall portion of a program and then extrapolating
total behavior from this small portion. Most programs exhibit phase-based behavior, which means that at various
times during execution a program will encounter intervals of time where the code behaves similarly to a previous
interval. If you can detect these intervals and group them together, an approximation of the total program behavior
can be obtained by only simulating a bare minimum number of intervals, and then scaling the results.

In computer architecture research, running a benchmark on a cycle-accurate simulator can cause slowdowns on
the order of 1000 times, making it take days, weeks, or even longer to run full benchmarks. By utilizing SimPoint
this can be reduced significantly, usually by 90-95%, while still retaining reasonable accuracy.

A more complete introduction to how SimPoint works can be found in the paper "Automatically Characterizing
Large Scale Program Behavior" by T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

13.2. Using Basic Block Vectors to create
SimPoints

To quickly create abasic block vector file, you will call Valgrind like this:
val grind --tool =exp-bbv /bin/ls

In this case we are running on / bi n/ | s, but this can be any program. By default afile caled bb. out . PI D
will be created, where PID isreplaced by the process ID of the running process. Thisfile contains the basic block
vector. For long-running programsthisfile can be quite large, so it might be wise to compressit with gzip or some
other compression program.

To create actual SimPoint results, you will need the SimPoint utility, available from the SimPoint webpage.
Assuming you have downloaded SimPoint 3.2 and compiled it, create SimPoint results with a command like the
following:

./ Si mPoi nt . 3. 2/ bi n/ si npoi nt -i nput Vect ors&i pped \
-l oadFVFi | e bb. out.1234.gz \
-k 5 -saveSi npoints results.sinpts \
- saveSi npoi nt Wi ghts resul ts. wei ghts

where bb.out.1234.gz is your compressed basic block vector file generated by BBV.

The SimPoint utility does random linear projection using 15-dimensions, then does k-mean clustering to calculate
which intervals are of interest. In this example we specify 5 intervals with the -k 5 option.

Theoutputsfromthe SimPointrunarether esul t s. si npt s andr esul t s. wei ght s files. Thefirst holdsthe
5 most relevant interval s of the program. The seconds hol dsthe weight to scale each interval by when extrapolating
full-program behavior. The intervals and the weights can be used in conjunction with a simulator that supports

170

http://www.cse.ucsd.edu/~calder/simpoint/
http://www.cse.ucsd.edu/~calder/simpoint/

BBV: an experimental basic block vector generation tool

fast-forwarding; you fast-forward to the interval of interest, collect stats for the desired interval length, then use
statistics gathered in conjunction with the weights to calculate your results.

13.3. BBY Command-line Options

BBV -specific command-line options are:
--bb-out-fil e=<nanme> [defaul t: bb. out. %p]

This option selects the name of the basic block vector file. The % and %g format specifiers can be used to
embed the process ID and/or the contents of an environment variable in the name, asis the case for the core
option--log-file.

--pc-out-file=<name> [default: pc.out. %]

This option selects the name of the PC file. This file holds program counter addresses and function name
info for the various basic blocks. This can be used in conjunction with the basic block vector file to fast-
forward via function names instead of just instruction counts. The % and % format specifiers can be used
to embed the process ID and/or the contents of an environment variable in the name, as is the case for the
coreoption- -1 og-file.

nt erval - si ze=<nunber> [default: 100000000]

This option selectsthe size of theinterval to use. The default is 100 million instructions, which isacommonly
used value. Other sizes can be used; smaller intervals can help programs with finer-grained phases. However
smaller interval size can lead to accuracy issues due to warm-up effects (When fast-forwarding the various
architectural featureswill beun-initialized, and it will take some number of instructions beforethey "warm up"
tothestateafull simulation would be at without the fast-forwarding. Largeinterval sizestend to mitigatethis.)

nstr-count-only [default: no]

This option tells the tool to only display instruction count totals, and to not generate the actual basic block
vector file. Thisisuseful for debugging, and for gathering instruction count info without generating the large
basic block vector files.

13.4. Basic Block Vector File Format

The Basic Block Vector is dumped at fixed intervals. Thisis commonly done every 100 million instructions; the
--interval - si ze option can be used to change this.

The output file looks like this:

T:45:1024 :189: 99343
T:11: 78573 :15:1353 :56:1
T:18:45 :12: 135353 :56: 78 314: 4324263

Each new interval startswith aT. Thisisfollowed on the same line by a series of basic block and frequency pairs,
one for each basic block that was entered during the interval. The format for each block/frequency pair isacolon,
followed by a number that uniquely identifies the basic block, another colon, and then the frequency (which is
the number of times the block was entered, multiplied by the number of instructions in the block). The pairs are
separated from each other by a space.

The frequency count is multiplied by the number of instructions that are in the basic block, in order to weigh the
count so that instructions in small basic blocks aren't counted as more important than instructions in large basic
blocks.

The SimPoint program only processes lines that start with a "T". All other lines are ignored. Traditionally
commentsareindicated by startingalinewitha"#" character. Some other BBV generation tools, such as PinPoints,

171

BBV: an experimental basic block vector generation tool

generate lines beginning with letters other than "T" to indicate more information about the program being run. We
do not generate these, as the SimPoint utility ignores them.

13.5. Implementation

Vagrind provides al of the information necessary to create BBV files. In the current implementation, all
instructions are instrumented. This is slower (by approximately a factor of two) than a method that instruments
at the basic block level, but there are some complications (especially with rep prefix detection) that make that
method more difficult.

Valgrind actually provides instrumentation at a superblock level. A superblock has one entry point but unlike
basic blocks can have multiple exit points. Once a branch occurs into the middle of ablock, it is split into a new
basic block. Because Valgrind cannot produce "true" basic blocks, the generated BBV vectors will be different
than those generated by other tools. In practice this does not seem to affect the accuracy of the SimPoint results.
Wedo internally forcethe - - vex- guest - chase=no option to Valgrind which forces amore basic-block-like
behavior.

When asuperblock isrun for thefirst time, it isinstrumented with our BBV routine. A block info (bblnfo) structure
is allocated which holds the various information and statistics for the block. A unique block ID is assigned to the
block, and then the structure is placed into an ordered set. Then each nativeinstruction in the block isinstrumented
to call an instruction counting routine with a pointer to the block info structure as an argument.

At run-time, our instruction counting routines are called once per native instruction. The relevant block info
structure is accessed and the block count and total instruction count is updated. If the total instruction count
overflows theinterval size then we walk the ordered set, writing out the statistics for any block that was accessed
in theinterval, then resetting the block countersto zero.

On the x86 and amd64 architectures the counting code has extra code to handle rep-prefixed string instructions.
This is because actual hardware counts a rep-prefixed instruction as one instruction, while a naive Vagrind
implementation would count it as many (possibly hundreds, thousands or even millions) of instructions. We handle
rep-prefixed instructions specially, in order to make the results match those obtained with hardware performance
counters.

BBV aso counts the fldcw instruction. This instruction is used on x86 machines in various ways; it is most
commonly found when converting floating point valuesinto integers. On Pentium 4 systemstheretired instruction
performance counter counts this instruction as two instructions (all other known processors only count it as one).
This can affect results when using SimPoint on Pentium 4 systems. We provide the fldcw count so that users can
evaluate whether it will impact their results enough to avoid using Pentium 4 machines for their experiments. It
would be possible to add an option to this tool that mimics the double-counting so that the generated BBV files
would be usable for experiments using hardware performance counters on Pentium 4 systems.

13.6. Threaded Executable Support

BBV supports threaded programs. When a program has multiple threads, an additional basic block vector fileis
created for each thread (each additional fileisthe specified filename with the thread number appended at the end).

There is no official method of using SimPoint with threaded workloads. The most common method is to run
SimPoaint on each thread's results independently, and use some method of deterministic execution to try to match
the original workload. This should be possible with the current BBV.

13.7. Validation

BBV has been tested on x86, and64, and ppc32 platforms. An earlier version of BBV was tested in detail
using hardware performance counters, thiswork is described in a paper from the HiPEAC'08 conference, "Using
Dynamic Binary Instrumentation to Generate Multi-Platform SimPoints: Methodology and Accuracy" by V.M.
Weaver and SA. McKee.

172

BBV: an experimental basic block vector generation tool

13.8. Performance

Using this program slows down execution by roughly afactor of 40 over native execution. This varies depending
on the machine used and the benchmark being run. On the SPEC CPU 2000 benchmarks running on a 3.4GHz

Pentium D processor, the slowdown ranges from 24x (mcf) to 340x (vortex.2).

173

Valgrind FAQ

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Valgrind FAQ

Table of Contents

Valgrind Frequently ASKEd QUESLIONSuuuiieiiieiieii ettt ettt e e e e e e e e e 1

clxxv

Valgrind Frequently Asked Questions

Valgrind Frequently Asked Questions

B 2 7o (o 1 o 1
1.1. How do you pronounce "Valgrind™?ceeuiori e e e e e e e e eans 1
1.2. Where does the name "Valgrind" come from?c.ooviiiiiiii i e 1
2. Compiling, installing and CONFIQUITNGvuvnieie e e e e e e ean s 2
2.1. When building Valgrind, 'make' dies partway with an assertion failure, something like this: 2
2.2. When building Valgrind, 'make’ fails With this:cccoiiiiiii e 2
3. Valgrind aborts UNEXPECIEAIYcveeiiii et e e e e 2
3.1. Programs run OK on Valgrind, but at exit produce a bunch of errors involving
__libc_freeres and then die with a segmentation fault.cccoooiiiiiiiii i, 2
3.2. My (buggy) program dies lHKe this:iiiiiiiiii e e e e e e 2
3.3. My program dies, printing a message like thisaong theway:ccoovviiiiiiiiin i, 2
3.4. | tried running a Java program (or another program that uses a just-in-time compiler) under
Vagrind but something went wrong. Does Valgrind handle such programs?cccceevueneees 3
4. Valgrind behaves UNEXPECLEAIYu.iiieieii et e e e e e e et e e e e e e e ean s 3
4.1. My program uses the C++ STL and string classes. Valgrind reports 'still reachable’ memory
leaks involving these classes at the exit of the program, but there should be none. 3
4.2. The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them? 3
4.3. The stack traces given by Memcheck (or another tool) seem to have the wrong function namein
them. What's happening?cooniii e e e e e e e e e et e e aee 4
4.4. My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening? 5
4.5. Memcheck doesn't report any errors and | know my program has errors.ccceeevvviveeinnerennnn. 5
4.6. Why doesn't Memcheck find the array overruns in this program?ccoovvviieiiieiii v, 5
4.7. Why does Memcheck report many "Mismatched free() / delete / delete []" errors when my code
1301 = o PSPPI 6
T o= LT o U PR 6
5.1. | tried writing a suppression but it didn't work. Can you write my suppression for me? 6
5.2. With Memcheck's memory leak detector, what's the difference between "definitely lost",
"indirectly lost", "possibly lost", "still reachable", and "suppressed”?coovveveveeiiievineninnnnns 6

5.3. Memcheck's uninitialised value errors are hard to track down, because they are often reported
some time after they are caused. Could Memcheck record atrail of operations to better link
the cause to the effect? Or maybe just eagerly report any copies of uninitialised memory

A= =S USSP 7

5.4. 1'm developing a Qt application and | get huge numbers of "Conditional jump" errors. Isthere
anything that | can do aDOUL Itiiiriii e e 7
5.5. Isit possible to attach Valgrind to a program that is already running?ccooovveviviiniiiiineeinnen, 7
6. HOW TO Get FUMEr ASSISIANCE .. .ccvviiiiiiii e et e et e et e e et e e aeanss 7
6.1. Where can | get MOre hEIP? ..oovniii e e e e e e e 7

1. Background
1.1. How do you pronounce "Valgrind"?

The"Va" asin theword "value". The "grind" is pronounced with a short 'i* -- ie. "grinned" (rhymes with
"tinned") rather than "grined" (rhymes with "find").

Don't feel bad: almost everyone getsit wrong at first.
12. Where doesthe name"Vagrind" come from?

From Nordic mythology. Originally (before release) the project was named Heimdall, after the watchman
of the Nordic gods. He could "see a hundred miles by day or night, hear the grass growing, see the wool
growing on a sheep's back", etc. Thiswould have been agreat name, but it was already taken by a security
package "Heimdal".

Keepingwiththe Nordic theme, Valgrind was chosen. Valgrind isthe name of themain entranceto Vahalla
(the Hall of the Chosen Slain in Asgard). Over this entrance there resides a wolf and over it there is the

Valgrind Frequently Asked Questions

head of aboar and on it perches ahuge eagle, whose eyes can seeto thefar regions of the nineworlds. Only
those judged worthy by the guardians are allowed to passthrough Valgrind. All others are refused entrance.

It's not short for "value grinder", although that's not a bad guess.

2. Compiling, installing and configuring

2.1. When building Valgrind, 'make' dies partway with an assertion failure, something like this:

% make: expand.c:489: allocated variabl e_append:
Assertion 'current_variable_set list->next !'= 0" failed.

It's probably a bug in 'make’. Some, but not all, instances of version 3.79.1 have this bug, see this. Try
upgrading to a more recent version of ‘'make’. Alternatively, we have heard that unsetting the CFLAGS
environment variable avoids the problem.

2.2, When building Vagrind, 'make' fails with this:

fusr/bin/ld: cannot find -lc
collect2: Id returned 1 exit status

Y ou need to install the glibc-static-devel package.

3. Valgrind aborts unexpectedly

3.1. Programsrun OK on Valgrind, but at exit produce a bunch of errorsinvolving __|i bc_freeres and
then die with a segmentation fault.

When the program exits, Valgrind runs the procedure __ | i bc_freeres in glibc. Thisis a hook for
memory debuggers, so they can ask glibc to free up any memory it has used. Doing that is needed to ensure
that Valgrind doesn't incorrectly report space leaksin glibc.

The problemisthat running __| i bc_freer es inolder glibc versions causes this crash.

Workaround for 1.1.X and later versions of Vagrind: usethe- - run-1i bc- f r eer es=no option. You
may then get space leak reports for glibc allocations (please don't report these to the glibc people, since
they are not real leaks), but at least the program runs.

3.2. My (buggy) program dies like this:

val grind: mmallocfree.c:248 (get_bszB as_is): Assertion 'bszB |lo == bszB hi' fail
or like this:
val grind: monallocfree.c: 442 (nk_i nuse_bszB): Assertion 'bszB != 0" failed.

or otherwise aborts or crashesin m_mallocfree.c.

If Memcheck (the memory checker) shows any invalid reads, invalid writes or invalid frees in your
program, the above may happen. Reason is that your program may trash Valgrind's low-level memory
manager, which then dies with the above assertion, or something similar. The cure isto fix your program
so that it doesn't do any illegal memory accesses. The above failure will hopefully go away after that.

3.3. My program dies, printing a message like this along the way:
vex x86->I R unhandl ed instruction bytes: 0x66 OxF Ox2E 0x5

One possibility isthat your program has abug and erroneously jumps to a non-code address, in which case
you'll get a SIGILL signal. Memcheck may issue a warning just before this happens, but it might not if
the jump happens to land in addressable memory.

http://www.mail-archive.com/bug-make@gnu.org/msg01658.html

Valgrind Frequently Asked Questions

3.4.

Another possihility is that Valgrind does not handle the instruction. If you are using an older Valgrind, a
newer version might handle the instruction. However, all instruction sets have some obscure, rarely used
instructions. Also, on amd64 there are an almost limitless number of combinations of redundant instruction
prefixes, many of them undocumented but accepted by CPUs. So Valgrind will still have decoding failures
from time to time. If this happens, please file a bug report.

| tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind but
something went wrong. Does Valgrind handle such programs?

Va grind can handle dynamically generated code, so long as none of the generated codeislater overwritten
by other generated code. If this happens, though, things will go wrong as VValgrind will continue running
its tranglations of the old code (thisis true on x86 and amd64, on PowerPC there are explicit cache flush
instructions which Valgrind detects and honours). Y ou should try running with - - snc- check=al | in
this case. Valgrind will run much more slowly, but should detect the use of the out-of-date code.

Alternatively, if you have the source code to the JT compiler you can insert calls to the
VALGRI ND_DI SCARD_TRANSLATI ONS client request to mark out-of-date code, saving you from using
--snc-check=al | .

Apart from this, in theory Valgrind can run any Java program just fine, even those that use JNI and are
partially implemented in other languages like C and C++. In practice, Java implementations tend to do
nasty things that most programs do not, and Va grind sometimes falls over these corner cases.

If your Javaprograms do not run under Valgrind, evenwith - - snc- check=al | , pleasefileabug report
and hopefully wel'll be able to fix the problem.

4. Valgrind behaves unexpectedly

4.1.

4.2.

My program usesthe C++ STL and string classes. Valgrind reports 'still reachable’ memory leaksinvolving
these classes at the exit of the program, but there should be none.

First of al: relax, it's probably not abug, but afeature. Many implementations of the C++ standard libraries
usetheir own memory pool alocators. Memory for quite anumber of destructed objectsis not immediately
freed and given back to the OS, but kept in the pool(s) for later re-use. The fact that the pools are not freed
at the exit of the program cause Valgrind to report this memory as still reachable. The behaviour not to
free pools at the exit could be called a bug of the library though.

Using GCC, you can force the STL to use malloc and to free memory as soon as possible by globally
disabling memory caching. Beware! Doing so will probably slow down your program, sometimes
drasticaly.

* WithGCC 2.91, 2.95, 3.0and 3.1, compileal sourceusing the STL with- D__USE_NMALLQOC. Beware!
Thiswas removed from GCC starting with version 3.3.

» With GCC 3.2.2 and later, you should export the environment variable GL1 BCPP_FORCE_NEWbefore
running your program.

e With GCC 3.4 and later, that variable has changed name to GLI BCXX_FORCE_NEW

There are other ways to disable memory pooling: using the mal | oc_al | oc template with your
objects (not portable, but should work for GCC) or even writing your own memory allocators. But all
this goes beyond the scope of this FAQ. Start by reading http://gcc.gnu.org/onlinedocs/libstdc++/fag/
index.html#4_4 leak if you absolutely want to do that. But beware: allocators belong to the more messy
parts of the STL and people went to great lengths to make the STL portable across platforms. Chances are
good that your solution will work on your platform, but not on others.

The stack traces given by Memcheck (or another tool) aren't helpful. How can | improve them?

If they're not long enough, use - - num cal | er s to make them longer.

http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak
http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak

Valgrind Frequently Asked Questions

4.3.

If they're not detailed enough, make sure you are compiling with - g to add debug information. And don't
strip symbol tables (programs should be unstripped unless you run 'strip' on them; some libraries ship
stripped).

Also, for leak reports involving shared objects, if the shared object is unloaded before the program
terminates, Valgrind will discard the debug information and the error message will befull of 2?7 entries. If
you use the option - - keep- debugi nf o=yes, then Valgrind will keep the debug information in order
to show the stack traces, at the price of increased memory. An aternate workaround is to avoid calling
dl cl ose onthese shared objects.

Also, - f oni t - f rame- poi nt er and- f st ack- check can make stack traces worse.
Some exampl e sub-traces:

» With debug information and unstripped (best):

Invalid wite of size 1
at 0x80483BF: really (mallocl.c: 20)
by 0x8048370: main (mallocl.c:9)

With no debug information, unstripped:

Invalid wite of size 1
at 0x80483BF: really (in /auto/homes/njn25/grind/ head5/ a. out)
by 0x8048370: main (in /auto/homes/njn25/grind/ head5/ a. out)

With no debug information, stripped:

Invalid wite of size 1
at 0x80483BF: (within /auto/hones/njn25/grind/ head5/ a. out)
by 0x8048370: (within /auto/hones/njn25/grind/ head5/a. out)
by 0x42015703: _ libc_start _main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. (within /auto/hones/njn25/grind/ head5/a. out)

With debug information and -fomit-frame-pointer:

Invalid wite of size 1
at 0x80483C4: really (mallocl.c: 20)
by 0x42015703: _ libc_start_main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC. ??? (start.S:81)

» A leak error message involving an unloaded shared object:

84 bytes in 1 blocks are possibly lost in loss record 488 of 713
at O0x1B9036DA: operator new(unsigned) (vg_replace_nalloc.c:132)
by Ox1DB63EEB:. 2?7
by 0x1DB4B800: ?7?7?
by O0x1D65E007: ?7?7?
by Ox8049EE6: mmi n (mai n.cpp: 24)

The stack traces given by Memcheck (or another tool) seem to have the wrong function name in them.
What's happening?

Occasionaly Valgrind stack traces get the wrong function names. This is caused by glibc using aiases
to effectively give one function two names. Most of the time Vagrind chooses a suitable name, but very

Valgrind Frequently Asked Questions

4.4,

45.

4.6.

occasionaly it getsit wrong. Exampleswe know of are printing bcnp instead of mentnp, i ndex instead
of strchr,andri ndex instead of strrchr.

My program crashes normally, but doesn't under Valgrind, or vice versa. What's happening?

When a program runs under Valgrind, its environment is slightly different to when it runs natively. For
example, the memory layout is different, and the way that threads are scheduled is different.

Most of the time this doesn't make any difference, but it can, particularly if your program is buggy.
For example, if your program crashes because it erroneously accesses memory that is unaddressable,
it's possible that this memory will not be unaddressable when run under Valgrind. Alternatively, if your
program has data races, these may not manifest under Valgrind.

Thereisn't anything you can do to change this, it's just the nature of the way Valgrind works that it cannot
exactly replicate a native execution environment. | n the case where your program crashes due to amemory
error when run natively but not when run under Valgrind, in most cases Memcheck should identify the
bad memory operation.

Memcheck doesn't report any errors and | know my program has errors.
There are two possible causes of this.

First, by default, Valgrind only tracesthe top-level process. Soif your program spawns children, they won't
betraced by Valgrind by default. Also, if your program is started by ashell script, Perl script, or something
similar, Valgrind will trace the shell, or the Perl interpreter, or equivalent.

To trace child processes, usethe- -t race- chi | dr en=yes option.

If you aretracing large trees of processes, it can be less disruptive to have the output sent over the network.
Give Valgrind the option - - | 0g- socket =127. 0. 0. 1: 12345 (if you want logging output sent to
port 12345 on| ocal host). You can use the valgrind-listener program to listen on that port:

val grind-1istener 12345
Obviously you have to start the listener process first. See the manual for more details.

Second, if your program is statically linked, most Valgrind tools will only work well if they are able to
replace certain functions, such asmal | oc, with their own versions. By default, statically linked mal | oc
functi ons arenot replaced. A key indicator of thisisif Memcheck says:

Al'l heap bl ocks were freed -- no | eaks are possible

when you know your program calls mal | oc. The workaround is to use the option - - sonarne-
synonyns=somal | oc=NONE or to avoid statically linking your program.

There will aso be no replacement if you use an aternative mal | oc | i brary such as tcmalloc,
jemaloac, ... In such a case, the option - - sonane- synonyns=sonal | oc=zzzz (where zzzz is the
soname of the alternative malloc library) will allow Vagrind to replace the functions.

Why doesn't Memcheck find the array overrunsin this program?

int static[5];
i nt mai n(voi d)
{

i nt stack[5];

static[5] = 0;

Valgrind Frequently Asked Questions

stack [5] = O;

return O;

}

Unfortunately, Memcheck doesn't do bounds checking on global or stack arrays. We'd like to, but it's just
not possible to do in areasonable way that fits with how Memcheck works. Sorry.

4.7. Why does Memcheck report many "Mismatched free() / delete/ delete []" errors when my codeis correct?
There are two possible causes of this.

First, check if you are using an optimized build of Google tcmalloc (part of Google perftools). This
library usesasingle aliasfor free/scalar delete/array delete as an unmeasurable micro-optimization. There
is smply no way for Memcheck to tell which of these was originally used. There are a few possible
workarounds.

* Build tcmalloc with "CPPFLAGS=-DTCMALLOC_NO_ALIASES' (best).
» Use adebug build of tcmalloc (debug builds turn off the alias micro-optimization).
* Do not link with tcmalloc for the builds that you use for Memcheck testing.

Second, if you are replacing operator new or operator del ete make sure that the compiler does not perform
optimizations such asinlining on callsto these functions. Such optimizations can prevent Memcheck from
correctly identifying the allocator or deallocator that is being used.

The following two code snippets show how you can do thiswith GCC and LLVM (clang).

/l GCC
voi d operator del ete(voi d*) noexcept _ attribute ((__externally visible));

/1 LLVM (cl ang)
__attribute ((__visibility ("default"))) void operator del ete(void*) noexcept;

If all elsefails, you might have to use "--show-mismatched-frees=no"

5. Miscellaneous
5.1. | tried writing asuppression but it didn't work. Can you write my suppression for me?

Yes! Usethe- - gen- suppr essi ons=yes feature to spit out suppressions automatically for you. Y ou
can then edit them if you like, eg. combining similar automatically generated suppressions using wildcards
like' ** .

If you really want to write suppressions by hand, read the manual carefully. Note particularly that C++
function names must be mangled (that is, not demangled).

5.2. With Memcheck's memory leak detector, what's the difference between "definitely lost”, "indirectly lost”,
"possibly lost", "still reachable”, and "suppressed"?

The details are in the Memcheck section of the user manual.
In short:
 "definitely lost" means your program is leaking memory -- fix those leaks!

 "indirectly lost" means your program is leaking memory in a pointer-based structure. (E.g. if the root
nodeof abinary treeis"definitely lost", al thechildrenwill be"indirectly lost".) If youfix the" definitely
lost" leaks, the "indirectly lost" leaks should go away.

Valgrind Frequently Asked Questions

53.

54.

55.

» "possibly lost" meansyour programisleaking memory, unlessyou're doing unusual thingswith pointers
that could cause them to point into the middle of an alocated block; see the user manual for some
possible causes. Use - - show possi bl y-1 ost =no if you don't want to see these reports.

» "dill reachable” means your program is probably ok -- it didn't free some memory it could have. This
is quite common and often reasonable. Don't use - - show r eachabl e=yes if you don't want to see
these reports.

» "suppressed” means that aleak error has been suppressed. There are some suppressions in the default
suppression files. Y ou can ignore suppressed errors.

Memcheck's uninitialised value errors are hard to track down, because they are often reported some time
after they are caused. Could Memcheck record atrail of operations to better link the cause to the effect?
Or maybe just eagerly report any copies of uninitialised memory values?

Prior to version 3.4.0, the answer was "we don't know how to do it without huge performance penalties’.
Asof 3.4.0, try using the - - t r ack- or i gi ns=yes option. It will run slower than usual, but will give
you extrainformation about the origin of uninitialised values.

Or if you want to do it the old fashioned way, you can use the client request
VALGRI ND_CHECK_VALUE_|I S_DEFI NED to help track these errors down -- work backwards from
the point where the uninitialised error occurs, checking suspect values until you find the cause. This
requires editing, compiling and re-running your program multiple times, which is a pain, but still easier
than debugging the problem without Memcheck's help.

As for eager reporting of copies of uninitialised memory values, this has been suggested multiple
times. Unfortunately, almost all programs legitimately copy uninitialised memory values around (because
compilers pad structs to preserve alignment) and eager checking leads to hundreds of false positives.
Therefore Memcheck does not support eager checking at thistime.

I'm developing a Qt application and | get huge numbers of "Conditional jump" errors. Is there anything
that | can do about it?

Yes, there isaworkaround. Here is an example error:

Condi tional junp or nove depends on uninitialised value(s)
at 0x1051C39B: ?7??
by Ox12657AA7: ??7?

Qt Regular Expressionsare built onthe pere2 library. pere2 uses J Tting which meansthat the errors cannot
be suppressed (no function name). However, Qt provides a mechanism to turn off the use of JITting. To
do so, use the following environment variable: export QT_ENABLE_REGEXP_JI T=0

Isit possible to attach Valgrind to a program that is already running?

No. The environment that Valgrind provides for running programs is significantly different to that for
normal programs, e.g. due to different layout of memory. Therefore Valgrind hasto have full control from
the very start.

It is possible to achieve something like this by running your program without any instrumentation (which
involves a slow-down of about 5X, less than that of most tools), and then adding instrumentation once
you get to a point of interest. Support for this must be provided by the tool, however, and Callgrind isthe
only tool that currently has such support. See the instructions on the cal | gri nd_cont r ol program
for details.

6. How To Get Further Assistance

6.1.

Where can | get more help?

Valgrind Frequently Asked Questions

Read the appropriate section(s) of the Valgrind Documentation.

Search the valgrind-users mailing list archives, using the group name
gmane. conp. debuggi ng. val gri nd.

If you think an answer in this FAQ isincomplete or inaccurate, please e-mail valgrind@valgrind.org.

If you havetried all of these things and are still stuck, you can try mailing the valgrind-users mailing list.
Note that an email has a better change of being answered usefully if it is clearly written. Also remember
that, despite the fact that most of the community are very helpful and responsive to emailed questions, you
are probably requesting help from unpaid volunteers, so you have no guarantee of receiving an answer.

http://www.valgrind.org/docs/manual/index.html
http://search.gmane.org
http://news.gmane.org/gmane.comp.debugging.valgrind
mailto:valgrind@valgrind.org
http://www.valgrind.org/support/mailing_lists.html

Valgrind Technical Documentation

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Vagrind Technical Documentation

Table of Contents

1. The Design and Implementation of Valgringdoveiiiiiiiiiiii e 1
2. Writing @ NewW Valgrind TOOIcoouuuuiiiiiii ettt ettt et e e e e e eenees 2
2% W [i oo (8 1o o EO TR P T TUP PR 2
2.2, BaSICS ittt et 2
2.2. 1. HOW tOOIS WOFK ...ttt et ettt ettt e e ettt e e e et e e e enb e eeenes 2
2.2.2. GELING the COUE ...ttt e 2
2.2.3. GELLING SEAEAee ettt e e e e e aae 2
224, WIITING TN COUE ... ittt et e e et e e e e eees 3
2.2.5, INITIAHSAIION ..ottt et ettt 3
2.2.6. INSIFUMENTBLION ... ettt ettt e ettt e e et e ettt e ettt e e e eebaeeeenbnaeeeens 4
2.2.7. FINAIISALION ...t e e aee 4
2.2.8. Other Important INfOrMELIONiiiiieiiiiii e 4

2.3, AQVENCED TOPICS .. eeettueeteit ettt ettt ettt ettt et e e ettt e e et b e et e b e et e b e et et eeeba s 5
2.3.1. DEDUGOING TIPS - teettueteett ettt ettt ettt ettt e et et e e et e e et e e e b s 5
2.3.2. SUPPIESSIONS ...ttt eteet ettt ettt e et ettt s e ettt e e et e b e e e e et et e b e et e e e s 5
2.3.3. DOCUMENTALIONceeeti ettt ettt et e et e et e e e et e e e eaaas 5
2.3.4, REQGIESSION TESESuueiiiii i ee ettt ettt ettt e et e ettt e e et e e et et e e e e e e 6
2.3.5. PrOFITING ..t 6
2.3.6. Other MaKefile HaCKErYoiiiiiiieii e 7
2.3.7. The Coreftool INTEITACEuu it 7

24, FINBl WOPAS ...t e et ettt ettt e e et e e e e et e eeeebn e eene 7
3. Callgrind Format SPECITICALIONiiiiitiee ittt et e e et e e ettt e e e e et e e eeneneeees 8
L. OVEIVIBIW .ttt ettt ettt e e e e e 8
311 BASIC SHTUCIUIE ...ttt ettt et e et e et e e e e e e nb e e ennas 8
3.1.2. SIMPIE EXAMPIE ... e e 8
313, ASSOCIALIONS ... ettt ettt ettt ettt ettt e e e et e e e e e e aee 9

3. 1.4, EXtended EXAMPIE ... 9

3. 1.5, NAME COMPIESSION ...eeetiietetii ettt ettt e et e et e et e et et e et et e et et e e e eba s 10
3.1.6. SUDPOSITION COMPIESSIONeeettieeeeti ettt ettt et et e e e et e e e e e e eneans 11
317, MISCEITANEOUSceeetieeeiii ettt e e e e e enaa s 11

B2 REFEIIICE .. ittt 12
N B € = 01 1= PP 12
3.2.2. Description Of HEBdEr LiNESuiiiiiiiiiiii et 13
3.2.3. Destription Of BOOY LINESccouuuiiiiiiiiet ittt et eeaens 15

1. The Design and Implementation of
Valgrind

A number of academic publications nicely describe many aspects of Vagrind'sdesign and implementation. Online
copies of all of them, and others, are available on the Valgrind publications page.

The following paper gives a good overview of Valgrind, and explains how it differs from other dynamic binary
instrumentation frameworks such as Pin and DynamoRI O.

e Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. Nicholas Nether cote and
Julian Sewar d. Proceedingsof ACM SIGPL AN 2007 Conferenceon Programming L anguage Design and
Implementation (PL DI 2007), San Diego, California, USA, June 2007.

The following two papers together give a comprehensive description of how most of Memcheck works. The
first paper describesin detail how Memcheck's undefined value error detection (a.k.a. V bits) works. The second
paper describes in detail how Memcheck's shadow memory isimplemented, and compares it to other alternative
approaches.

* Using Valgrind to detect undefined value errors with bit-precision. Julian Seward and Nicholas
Nether cote. Proceedings of the USENIX'05 Annual Technical Conference, Anaheim, California, USA,
April 2005.

How to Shadow Every Byte of Memory Used by a Program. Nicholas Nethercote and Julian Seward.
Proceedings of the Third International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE 2007), San Diego, California, USA, June 2007.

The following paper describes Callgrind.

* A Tool Suite for Simulation Based Analysis of Memory Access Behavior. Josef Weidendorfer, Markus
Kowarschik and Carsten Trinitis. Proceedings of the 4th International Conference on Computational
Science (ICCS 2004), Krakow, Poland, June 2004.

Thefollowing dissertation describes Valgrind in some detail (many of these details are now out-of-date) aswell as
Cachegrind, Annelid and Redux. It also covers some underlying theory about dynamic binary analysisin general
and what all these tools have in common.

* Dynamic Binary Analysis and Instrumentation. Nicholas Nethercote. PhD Dissertation, University of
Cambridge, November 2004.

http://www.valgrind.org/docs/pubs.html

2. Writing a New Valgrind Tool

So you want to write a Valgrind tool ? Here are some instructions that may help.

2.1. Introduction

The key idea behind Valgrind's architecture is the division between its core and tools.

The core provides the common low-level infrastructure to support program instrumentation, including the JT
compiler, low-level memory manager, signal handling and athread scheduler. It also provides certain servicesthat
are useful to some but not al tools, such as support for error recording, and support for replacing heap allocation
functionssuch asmal | oc.

But the core leaves certain operations undefined, which must be filled by tools. Most notably, tools define how
program code should be instrumented. They can also call certain functions to indicate to the core that they would
like to use certain services, or be notified when certain interesting events occur. But the core takes care of all
the hard work.

2.2. Basics

2.2.1. How tools work

Tools must define various functions for instrumenting programs that are called by Valgrind's core. They are then
linked against Valgrind's core to define a complete Valgrind tool which will be used when the - - t ool option
is used to select it.

2.2.2. Getting the code

To write your own tool, you'll need the Valgrind source code. Y ou'll need a clone from the git repository for the
automake/autoconf build instructions to work. See the information about how to do clone from the repository at
the Valgrind website.

2.2.3. Getting started

Vagrind usesGNU aut omake and aut oconf for the creation of Makefiles and configuration. But don't worry,
these instructions should be enough to get you started even if you know nothing about those tools.

In what follows, al filenames are relative to Valgrind's top-level directory val gri nd/ .

1. Choose aname for the tool, and atwo-letter abbreviation that can be used as a short prefix. We'll usef oobar
and f b asan example.

2. Makethree new directoriesf oobar / , f oobar/ docs/ andf oobar/tests/.
3. Create an empty filef oobar/t est s/ Makefil e. am

4. Copy none/ Makefi | e. aminto f oobar /. Edit it by replacing all occurrences of the strings " none" ,
"nl_"and"nl-" with"foobar","fb_" and"fb-" respectively.

5. Copynone/ nl _nai n. cintof oobar/ ,renamingitasf b_nai n. c. Edititby changingthedet ai | s lines
innl _pre_cl o_init tosomething appropriate for the tool. These fields are used in the startup message,
exceptforbug reports_towhichisusedif atool assertionfails. Also, replacethestring” nl _" throughout
with"fb_" again.

6. Edit Makef i | e. am adding the new directory f oobar tothe TOOLS or EXP_TQOOLS variables.

http://www.valgrind.org/downloads/repository.html

Writing aNew Valgrind Tool

7. Editconfigure. ac,addingf oobar/ Makefi | e andf oobar/ t est s/ Makefi | e tothe AC_QUTPUT
list.

8. Run:

aut ogen. sh

./configure --prefix= pwd /inst
make

make install

It should automake, configure and compile without errors, putting copies of thetool inf oobar/ andi nst/
lib/valgrind/.

9. You can test it with acommand like:

i nst/bin/val grind --tool =f oobar date

(almost any program should work; dat e isjust an example). The output should be something like this:

==738== foobar-0.0.1, a foobarring tool.

==738== Copyri ght (C 2002-2017, and GNU GPL'd, by J. Progranmer.

==738== Using Valgrind-3.14.0.d T and Li bVEX; rerun with -h for copyright info
==738== Comuand: date

Tue Nov 27 12:40:49 EST 2017

The tool does nothing except run the program uninstrumented.

These steps don't have to be followed exactly -- you can choose different names for your source files, and use a
different - - prefi x for. /confi gure.

Now that we've setup, built and tested the simplest possible tool, onto the interesting stuff...

2.2.4. Writing the code

A tool must define at least these four functions:

pre_clo_init()
post _clo_init()
i nstrunent ()
fini()

The names can be different to the above, but these are the usua names. The first one is registered
using the macro VG DETERM NE_| NTERFACE VERSI ON. The last three are registered using the
VG (basi c_tool funcs) function.

In addition, if atool wants to use some of the optional services provided by the core, it may have to define other
functions and tell the core about them.

2.2.5. Initialisation

Most of the initialisation should be done in pre_cl o_i nit. Only use post _cl o_i ni t if atool provides
command line options and must do some initialisation after option processing takes place (" ¢l 0" stands for
"command line options").

Writing aNew Valgrind Tool

First of al, various "details' need to be set for a tool, using the functions VG (det ai |l s_*). Some are al
compulsory, some aren't. Some are used when constructing the startup message, det ai | _bug_reports_to
isused if VG_(t ool _pani c) isever caled, or atool assertion fails. Others have other uses.

Second, various "needs' can be set for atool, using the functions VG _(needs_*) . They are mostly booleans,
and can be left untouched (they default to Fal se). They determine whether a tool can do various things such
as. record, report and suppress errors; process command line options; wrap system calls; record extrainformation
about heap blocks; etc.

For example, if a tool wants the cores help in recording and reporting errors, it must cal
VG (needs_t ool _errors) and provide definitions of eight functions for comparing errors, printing out
errors, reading suppressions from a suppressions file, etc. While writing these functions requires some work, it's
much less than doing error handling from scratch because the core is doing most of the work.

Third, thetool canindicatewhich eventsin coreit wantsto be notified about, using thefunctionsVG _(t rack_*) .
These include things such as heap blocks being allocated, the stack pointer changing, a mutex being locked, etc.
If atool wants to know about this, it should provide a pointer to a function, which will be called when that event
happens.

For example, if the tool want to be notified when a new heap block is alocated, it should call
VG (track_new_nmem heap) with an appropriate function pointer, and the assigned function will be called
each time this happens.

More information about "details’, "needs' and "trackable events' can be found in incl ude/
pub_tool tooliface.h.

2.2.6. Instrumentation

i nstrunent is the interesting one. It allows you to instrument VEX IR, which is Valgrind's RISC-like
intermediate language. VEX IR is described in the comments of the header file VEX/ pub/ | i bvex_ir. h.

The easiest way to instrument VEX IR isto insert callsto C functions when interesting things happen. See the tool

"Lackey" (I ackey/ | k_mai n. c) for asimple example of this, or Cachegrind (cachegri nd/ cg_mmai n. c¢)
for amore complex example.

2.2.7. Finalisation

This is where you can present the final results, such as a summary of the information collected. Any log files
should be written out at this point.

2.2.8. Other Important Information

Please note that the core/tool split infrastructure is quite complex and not brilliantly documented. Here are some
important points, but there are undoubtedly many othersthat | should note but haven't thought of .

Thefilesi ncl ude/ pub_t ool _*. h contain al the types, macros, functions, etc. that atool should (hopefully)
need, and aretheonly . h filesatool should needto#i ncl ude. They have areasonable amount of documentation
in it that should hopefully be enough to get you going.

Note that you can't use anything from the C library (there are deep reasonsfor this, trust us). Valgrind provides an
implementation of areasonable subset of the C library, details of which arein pub_t ool _I'i bc*. h.

When writing atool, in theory you shouldn't need to look at any of the code in Valgrind's core, but in practice it
might be useful sometimes to help understand something.

The i ncl ude/ pub_t ool _basi cs. h and VEX/ pub/|i bvex_basi ct ypes. h files have some basic
types that are widely used.

Writing aNew Valgrind Tool

Ultimately, the tools distributed (Memcheck, Cachegrind, Lackey, etc.) are probably the best documentation of
all, for the moment.

The VG_ macro isused heavily. Thisjust prepends alonger string in front of names to avoid potential namespace
clashes. It isdefinedini ncl ude/ pub_t ool _basi cs. h.

There are some assorted notes about various aspects of the implementation indocs/ i nt er nal s/ . Much of it
isn't that relevant to tool-writers, however.

2.3. Advanced Topics

Once atool becomes more complicated, there are some extra things you may want/need to do.

2.3.1. Debugging Tips

Writing and debugging toolsis not trivial. Here are some suggestions for solving common problems.

If you are getting segmentation faultsin C functions used by your tool, the usual GDB command:

gdb <prog> core
usually gives the location of the segmentation fault.

If you want to debug C functions used by your tool, there are instructions on how to do so in the file
READVE_DEVEL OPERS.

If you are having problems with your VEX IR instrumentation, it's likely that GDB won't be ableto help at all. In
this case, Vagrind's- -t race- f | ags option isinvaluable for observing the results of instrumentation.

If you just want to know whether a program point has been reached, using the O NK macro (in i ncl ude/
pub_t ool _|ibcprint. h)canbeeaser than using GDB.

The other debugging command line options can be useful too (runval gri nd - - hel p- debug for thelist).

2.3.2. Suppressions

If your tool reports errors and you want to suppress some common ones, you can add suppressions to the
suppression files. The relevant files are * . supp; the final suppression file is aggregated from these files by
combining the relevant . supp files depending on the versions of linux, X and glibc on a system.

Suppression types have theformt ool _name: suppr essi on_nane. Thet ool _nane here isthe name you
specify for the tool during initidisation with VG _(det ai | s_nane) .

2.3.3. Documentation

If you are feeling conscientious and want to write some documentation for your tool, please use XML asthe rest
of Valgrind does. The file docs/ READVE has more details on getting the XML toolchain to work; this can be
difficult, unfortunately.

To write the documentation, follow these steps (using f oobar asthe example tool name again):
1. Thedocsgoinf oobar/ docs/ , which you will have created when you started writing the tool.

2. Copy the XML documentation file for the tool Nulgrind fromnone/ docs/ nl - manual . xm tof oobar/
docs/, and renameittof oobar/ docs/ f b- manual . xmi .

Note: thereis atetex bug involving underscoresin filenames, so don't use

Writing aNew Valgrind Tool

. Write the documentation. There are some helpful bits and pieces on using XML markup in docs/ xm /

xm _hel p. txt.

. Include it in the User Manual by adding the relevant entry to docs/ xm / manual . xm . Copy and edit an

existing entry.

. Include it in the man page by adding the relevant entry to docs/ xm / val gri nd- manpage. xm . Copy

and edit an existing entry.

. Vaidatef oobar/ docs/ f b- manual . xm using the following command from within docs/ :

make valid

Y ou may get errors that look like this:

I xm/index.xm :5: element chapter: validity error : No declaration for
attri bute base of elenment chapter

Ignore (only) these -- they're not important.

Because the XML toolchain is fragile, it is important to ensure that f b- manual . xm won't break the
documentation set build. Note that just because an XML file happily transforms to html does not necessarily
mean the same holds true for pdf/ps.

. You can (re-)generate the HTML docs while you are writing f b- manual . xm to help you see how it's

looking. The generated filesend up indocs/ ht m / . Use the following command, within docs/ :

make htnl - docs

. When you have finished, try to generate PDF and PostScript output to check all iswell, from within docs/ :

make print-docs
Check the output . pdf and. ps filesindocs/ print/.

Note that the toolchain is even more fragile for the print docs, so don't feel too bad if you can't get it working.

2.3.4. Regression Tests

Valgrind has some support for regression tests. If you want to write regression tests for your tool:

1

2.

Thetestsgoinf oobar/t est s/, which you will have created when you started writing the tool.

Writef oobar/t est s/ Makefi |l e. am Usenentheck/ t est s/ Makef i | e. amasan example.

. Writethe tests, . vgt est test description files, . st dout . exp and . st derr. exp expected output files.

(Notethat Valgrind'soutput goesto stderr.) Some detail son writing and running tests are given in the comments
at the top of thetesting scriptt est s/ vg_regt est .

. Writealfilter for stderr resultsf oobar/test s/ filter _stderr.ltcancaltheexistingfiltersint est s/ .

Seenentheck/tests/filter_stderr for an example; in particular note the $di r trick that ensures
the filter works correctly from any directory.

2.3.5. Profiling

Lots of profiling tools have trouble running Valgrind. For example, trying to use gprof is hopeless.

Writing aNew Valgrind Tool

Probably the best way to profile atool is with OProfile on Linux.

Y ou can also use Cachegrind onit. Read READVE DEVEL OPERS for detailson running VVal grind under Vagrind;
it'sabit fragile but can usually be made to work.

2.3.6. Other Makefile Hackery

If you add any directories under f oobar / , you will need to add an appropriate Makef i | e. amtoit, and add a
corresponding entry to the AC_OUTPUT listinconfi gur e. ac.

If you add any scripts to your tool (see Cachegrind for an example) you need to add them to the bi n_SCRI PTS
variableinf oobar / Makef i | e. amand possible also to the AC_OUTPUT listinconfi gure. ac.

2.3.7. The Coreltool Interface

The coreftool interface evolves over time, but it's pretty stable. We deliberately do not provide backward
compatibility with old interfaces, because it is too difficult and too restrictive. We view this as a good thing -- if
we had to be backward compatible with earlier versions, many improvements now in the system could not have
been added.

Because tools are statically linked with the core, if a tool compiles successfully then it should be compatible
with the core. We would not deliberately violate this property by, for example, changing the behaviour of a core
function without changing its prototype.

2.4. Final Words

Writing a new Valgrind tool is not easy, but the tools you can write with Valgrind are among the most powerful
programming tools there are. Happy programming!

3. Callgrind Format Specification

This chapter describes the Callgrind Format, Version 1.

The format description is meant for the user to be able to understand the file contents; but more important, it is
given for authors of measurement or visualization tools to be able to write and read this format.

3.1. Overview

The profile dataformat is ASCII based. It iswritten by Callgrind, and it is upwards compatible to the format used
by Cachegrind (ie. Cachegrind uses a subset). It can be read by callgrind_annotate and K Cachegrind.

This chapter gives on overview of format features and examples. For detailed syntax, look at the format reference.

3.1.1. Basic Structure

To uniquely specify that afileisacallgrind profile, it should add "# callgrind format" asfirst line. Thisis optional
but recommended for easy format detection.

Each file has a header part of an arbitrary number of lines of the format "key: value". After the header, lines
specifying profile costs follow. Everywhere, comments on own lines starting with '# are alowed. The header
lines with keys "positions" and "events" define the meaning of cost lines in the second part of the file: the value
of "positions" is alist of subpositions, and the value of "events' is alist of event type names. Cost lines consist
of subpositions followed by 64-bit counters for the events, in the order specified by the "positions' and "events"
header line.

The"events' header lineisawaysrequired in contrast to the optional linefor "positions’, which defaultsto "line",
i.e. aline number of some source file. In addition, the second part of the file contains position specifications of
the form "spec=name". "spec" can be e.g. "fn" for afunction name or "fl" for afile name. Cost lines are always
related to the function/file specifications given directly before.

3.1.2. Simple Example

Theevent namesin the following example are quite arbitrary, and are not related to event names used by Callgrind.
Especially, cycle counts matching real processors probably will never be generated by any Valgrind tools, asthese
are bound to simulations of simple machine models for acceptable slowdown. However, any profiling tool could
use the format described in this chapter.

callgrind format

events: Cycles Instructions Flops
fl=file.f

fn=mai n

15 90 14 2

16 20 12

The above example gives profile information for event types "Cycles’, "Instructions’, and "Flops'. Thus, cost
lines give the number of CPU cycles passed by, number of executed instructions, and number of floating point
operations executed while running code corresponding to some source position. Asthereisno line specifying the
value of "positions’, it defaultsto "line", which means that the first number of acost lineis aways aline number.

Thus, the first cost line specifiesthat in line 15 of sourcefilefi | e. f thereis code belonging to function mai n.
While running, 90 CPU cycles passed by, and 2 of the 14 instructions executed were floating point operations.
Similarly, the next line specifies that there were 12 instructions executed in the context of function mai n which
can berelated to line 16 infilefi | e. f, taking 20 CPU cycles. If a cost line specifies less event counts than
given in the "events' line, the rest is assumed to be zero. |.e. there was no floating point instruction executed
relating to line 16.

Callgrind Format Specification

Note that regular cost lines always give self (also called exclusive) cost of code at a given position. If you specify
multiple cost lines for the same position, these will be summed up. On the other hand, in the example above there
is no specification of how many times function mai n actually was called: profile data only contains sums.

3.1.3. Associations

The most important extension to the original format of Cachegrind isthe ability to specify call relationship among
functions. More generaly, you specify associations among positions. For this, the second part of the file also can
contain association specifications. Theselook similar to position specifications, but consist of two lines. For calls,
the format looks like

cal I s=(Call Count) (Target position)
(Source position) (Inclusive cost of call)

The destination only specifies subpositions like line number. Therefore, to be able to specify a call to another
function in another sourcefile, you have to precede the above lineswith a"cfn=" specification for the name of the
called function, and optionally a"cfi=" specification if thefunction isin another sourcefile ("cfl=" isan aternative
specification for "cfi=" because of historical reasons, and both should be supported by format readers). The second
line looks like a regular cost line with the difference that inclusive cost spent inside of the function call has to
be specified.

Other associations are for example (conditional) jumps. See the reference below for details.

3.1.4. Extended Example

The following example shows 3 functions, mai n, f uncl, and f unc2. Function mai n callsf unc1 once and
func2 3times. funcl callsf unc2 2 times.

callgrind format
events: Instructions

fl=filel.c
f n=mai n

16 20
cfn=funcl
cal l s=1 50
16 400
cfi=file2.c
cfn=func2
cal l s=3 20
16 400

fn=funcl

51 100
cfi=file2.c
cfn=func2
cal l s=2 20
51 300

fl=file2.c
f n=func?2
20 700

One can seethat in mai n only code from line 16 is executed where al so the other functions are called. Inclusive
cost of mai n is820, which isthe sum of self cost 20 and costs spent in the calls: 400 for thesinglecall tof uncl
and 400 as sum for the three callsto f unc2.

Callgrind Format Specification

Functionf unclislocatedinfi | el. c,thesameasmai n. Therefore, a"cfi=" specification for thecall tof uncl
isnot needed. The function f unc1 only consists of codeat line51of fi | el. ¢, wheref unc2 iscalled.

3.1.5. Name Compression

With the introduction of association specifications like callsit is needed to specify the same function or samefile
name multiple times. As absolute filenames or symbol names in C++ can be quite long, it is advantageous to be
ableto specify integer IDsfor position specifications. Here, theterm "position” correspondsto afile name (source
or object file) or function name.

To support name compression, a position specification can be not only of the format "spec=name", but also
"spec=(ID) name" to specify a mapping of an integer ID to a name, and "spec=(ID)" to reference a previously
defined ID mapping. Thereisaseparate |D mapping for each position specification, i.e. you can use ID 1 for both
afile name and a symbol name.

With string compression, the example from above looks like this:

call grind format
events: Instructions

fl=(1) filel.c
fn=(1) main

16 20

cfn=(2) funcl
call s=1 50

16 400

cfi=(2) file2.c
cfn=(3) func2
cal 1 s=3 20

16 400

fn=(2)
51 100
cfi=(2)
cfn=(3)
cal l s=2 20
51 300

fl=(2)
fn=(3)
20 700

As position specifications carry no information themselves, but only change the meaning of subsequent cost lines
or associations, they can appear everywhere in the file without any negative consequence. Especially, you can
define name compression mappings directly after the header, and before any cost lines. Thus, the above example
can also be written as

callgrind format
events: Instructions

define file | D nmapping
fl=(1) filel.c

fl=(2) file2.c

define function | D mappi ng
fn=(1) main

fn=(2) funcl

fn=(3) func2

f1=(1)

10

Callgrind Format Specification

fn=(1)
16 20

3.1.6. Subposition Compression

If aCallgrind datafile should hold costsfor each assembler instruction of aprogram, you specify subposition "instr"
in the "positions:" header line, and each cost line has to include the address of some instruction. Addresses are
allowed to have a size of 64 bitsto support 64-bit architectures. Thus, repeating similar, long addresses for almost
every line in the data file can enlarge the file size quite significantly, and motivates for subposition compression:
instead of every cost line starting with a 16 character long address, one is allowed to specify relative addresses.
Thisrelative specification is not only allowed for instruction addresses, but aso for line numbers; both addresses
and line numbers are called "subpositions’.

A relative subposition always is based on the corresponding subposition of the last cost line, and starts with
a"+" to specify a positive difference, a "-" to specify a negative difference, or consists of "*" to specify the
same subposition. Because absolute subpositions always are positive (ie. never prefixed by "-"), any relative
specification is non-ambiguous; additionally, absol ute and rel ative subposition specifications can be mixed freely.
Assume the following example (subpositions can always be specified as hexadecimal numbers, beginning with

"0x"):

callgrind format
positions: instr line
events: ticks

f n=f unc

0x80001234 90 1
0x80001237 90 5
0x80001238 91 6

With subposition compression, thislooks like

callgrind formt
positions: instr line
events: ticks

f n=f unc
0x80001234 90 1
+3 * 5
+1 +1 6

Remark: For assembler annotation to work, instruction addresses have to be corrected to correspond to addresses
found in the original binary. |.e. for relocatable shared objects, often aload offset has to be subtracted.

3.1.7. Miscellaneous

3.1.7.1. Cost Summary Information

For the visualization to be able to show cost percentage, a sum of the cost of the full run hasto be known. Usually,
it isassumed that thisisthe sum of al cost linesin afile. But sometimes, thisisnot correct. Thus, you can specify
a"summary:" line in the header giving the full cost for the profile run. An import filter may use this to show a
progress bar while loading alarge datafile.

3.1.7.2. Long Names for Event Types and inherited Types
Event types for cost lines are specified in the "events:" line with an abbreviated name. For visualization, it makes

sense to be able to specify some longer, more descriptive name. For an event type "Ir" which means "Instruction
Fetches', this can be specified the header line

11

Callgrind Format Specification

event: Ir : Instruction Fetches
events: |Ir Dr

In thisexample, "Dr" itself has no long name associated. The order of "event:" lines and the "events:" lineis of no
importance. Additionally, inherited event types can be introduced for which no raw data is available, but which
are calculated from given types. Suppose the last example, you could add

event: Sum=Ir + Dr

to specify an additional event type "Sum", which is calculated by adding costs for "Ir and "Dr".

3.2. Reference

3.2.1. Grammar

Profil eDataFile := Format Spec? Format Versi on? Creator? Part Dat a*
Format Spec := "# callgrind format\n"

For mat Version := "version: 1\n"

Creator := "creator:" NoNewLi neChar* "\n"

PartData : = (HeaderLine "\n")+ (BodyLine "\n")+

HeaderLine := (enpty |ine)
| ('# NoNewLi neChar*)

| PartDetail
| Description
| Event Specification
| Cost Li neDef
PartDetail := TargetComand | TargetlD
Target Command : = "cnd: " Space* NoNewlLi neChar*
TargetID := ("pid"|"thread"|"part™) ":" Space* Number
Description := "desc:" Space* Nane Space* ":" NoNewlLi neChar*
Event Specification := "event:" Space* Nane | nheritedDef? LongNanmeDef ?
I nheritedDef := "=" InheritedExpr

| nheritedExpr := Nane
| Nunber Space* ("*" Space*)? Nane
| I'nheritedExpr Space* "+" Space* |nheritedExpr

LongNanmeDef := ":" NoNewLi neChar*
Cost Li neDef := "events:" Space* Nanme (Space+ Nane)*
| "positions:" "instr"? (Space+ "line")?

BodyLi ne := (enpty line)
| ('# NoNewLi neChar*)
| CostLine
| PositionSpec
| Call Spec
| UncondJunpSpec

12

Callgrind Format Specification

| CondJunpSpec
Cost Li ne : = SubPositionLi st Costs?
SubPosi tionLi st := (SubPosition+ Space+) +
SubPosition := Nunber | "+" Nunber | "-" Nunber | "*"
Costs := (Nunber Space+)+
Posi ti onSpec := Position "=" Space* PositionNane
Position := CostPosition | CalledPosition
CostPosition := "ob" | "fI" | "fi" | "fe" | "fn"
Cal |l edPosition := " "cob" | "cfi" | "cfl" | "cfn"

PositionNane := ("(" Nunmber ")")? (Space* NoNewLi neChar*)?

Cal |l Spec := CallLine "\n" CostLine

CallLine := "calls=" Space* Nunber Space+ SubPositi onLi st

UncondJunpSpec : = "junp=" Space* Nunber Space+ SubPositi onLi st
CondJunpSpec : = "jcnd=" Space* Nunber Space+ Nunber Space+ SubPositi onLi st
Space := " " | "\t"

Nunber := HexNunber | (Digit)+

Digit :="0" | ... ["9"
HexNumber := "O0x" (Digit | HexChar)+
HexChar :="a" | ... | "f" | "A" | ... | "F"

Name = Al pha (Digit | Al pha)*
Alpha ="a" | ... | "z" | "A" | ... | "Z"
NoNewLi neChar := all characters wthout "\n"

A profiledatafile ("ProfileDataFile") startswith basic information such asaformat marker, the version and creator
information, and then has alist of parts, where each part has its own header and body. Partstypically are different
threads and/or time spans/phases within a profiled application run.

Note that callgrind_annotate currently only supports profile data files with one part. Callgrind may produce
multiple parts for one profile run, but defaults to one output file for each part.

3.2.2. Description of Header Lines

Basic information in the first lines of a profile datafile:

o« # callgrind formt [Callgrind]
Thisline specifiesthat the fileisacallgrind profile, and it hasto be thefirst line. It was added |ate to the format
(with Valgrind 3.13) and is optional, as all readers also should work with older callgrind profiles not including

this line. However, generation of this line is recommended to allow desktop environments and file managers
to uniquely detect the format.

13

Callgrind Format Specification

e version: nunber [Calgrind]

This is used to distinguish future profile data formats. A major version of 0 or 1 is supposed to be upwards
compatible with Cachegrind's format. It is optional; if not appearing, version 1 isassumed. Otherwise, it hasto
follow directly after the format specification (i.e. bethefirst lineif the optional format specification is skipped).

e creator: string][Cadlgrind]
Thisisan arbitrary string to denote the creator of thisfile. Optional.

The header for each part has an arbitrary number of lines of the format "key: value". Possible key values for the
header are:

e pid: process id][Cadlgrind]
Optional. This specifiesthe process ID of the supervised application for which this profile was generated.
o cnd: program nanme + args [Cachegrind]
Optional. Thisspecifiesthefull command line of the supervised application for which this profile was generated.
e part: nunber [Calgrind]
Optional. This specifies a sequentially incremented number for each dump generated, starting at 1.
» desc: type: val ue [Cachegrind]

This specifies various information for this dump. For some types, the semantic is defined, but any description
typeis alowed. Unknown types should be ignored.

Therearethetypes”l1 cache", "D1 cache", "LL cache", which specify parameters used for the cache simulator.
These are the only types originally used by Cachegrind. Additionally, Callgrind uses the following types:
"Timerange" givesarough range of the basic block counter, for which the cost of this dump was collected. Type
"Trigger" statesthe reason of why thistrace was generated. E.g. program termination or forced interactive dump.

e positions: [instr] [line] [Calgrind]

For cost lines, this defines the semantic of the first numbers. Any combination of "instr", "bb" and "line" is
alowed, but has to be in this order which corresponds to position numbers at the start of the cost lines later
inthefile.

If "instr" is specified, the position is the address of an instruction whose execution raised the events given later
ontheline. Thisaddressisrelative to the offset of the binary/shared library file to not have to specify relocation
info. For "line", the position is the line number of a sourcefile, which isresponsible for the events raised. Note
that the mapping of "instr" and "line" positions are given by the debugging line information produced by the
compiler.

This header lineis optional, defaulting to "positions: line" if not specified.
* events: event type abbreviations [Cachegrind]

A list of short names of the event types logged in cost lines in this part of the profile data file. Arbitrary short
names are allowed. The order given specifies the required order in cost lines. Thus, the first event type isthe
second or third number in a cost line, depending on the value of "positions”. Required to appear for each header
part exactly once.

e summary: costs [Cdlgrind]

Optional. This header line specifies a summary cost, which should be equal or larger than atotal over all self
costs. It may be larger as the cost lines may not represent all cost of the program run.

e totals: costs [Cachegrind]

14

Callgrind Format Specification

Optional. Should appear at the end of the file (although looking like a header ling). Must give the total of all
cost lines, to allow for a consistency check.

3.2.3. Description of Body Lines

The regular body lineis a cost line consisting of one or two position numbers (depending on "positions." header
line, see above) and an array of cost numbers. A position number either is aline numbersinto a source file or an
instruction address within binary code, with source/binary file names specified as position names (see below). The
cost numbers get mapped to event typesin the same order as specified in the "events:" header line. If less numbers
than event types are given, the costs default to zero for the remaining event types.

Further, there exist linesspec=posi ti on namne. A position nameisan arbitrary string. If it startswith "(" and
adigit, it'sastring in compressed format. Otherwise it's the real position string. This alows for file and symbol
names as position strings, as these never start with "(" + digit. The compressed format is either "(" number ")"
space position or only "(" number ")". The first relates position to number in the context of the given format
specification from this line to the end of the file; it makes the (number) an alias for position. Compressed format
is aways optional.

Position specifications allowed:
e ob=[Cdlgrind]
The ELF object where the cost of next cost lines happens.

o f| =[Cachegrind]

f i =[Cachegrind]

f e=[Cachegrind]

The source file including the code which is responsible for the cost of next cost lines. "fi="/"fe=" is used when
the source file changes inside of afunction, i.e. for inlined code.

» f n=[Cachegrind]
The name of the function where the cost of next cost lines happens.
e cob=[Calgrind]
The ELF object of the target of the next call cost lines.
o cfi=[Cadlgrind]
The source file including the code of the target of the next call cost lines.
e cfl =[Cadlgrind]
Alternative spelling for cf i = specification (because of historical reasons).
o cf n=[Calgrind]
The name of the target function of the next call cost lines.

Thelast type of body line provides specific costs not just related to one position asregular cost lines. It startswith
specific strings similar to position name specifications.

e cal I s=count target-position[Cdlgrind]

Call executed "count" times to "target-position”. After a"calls=" line there MUST be acost line. This provides
the source position of the call and the cost spent in the called function in total.

15

Callgrind Format Specification

e junp=count target-position][Calgrind]
Unconditional jump, executed "count” times, to "target-position".
* jcnd=exe-count junp-count target-position[Calgrind]

Conditional jump, executed "exe-count" times with "jump-count” jumps happening (rest is fall-through) to
"target-position”.

16

Valgrind Distribution Documents

Release 3.26.0.GIT ?? Oct 2025
Copyright © 2000-2025 Valgrind Developers
Email: valgrind@valgrind.org

http://www.valgrind.org/info/developers.html

Vagrind Distribution Documents

Table of Contents

N O I o [PP 1
2 | PPN 3
. OLDER NEWS .ottt ettt et e et e ettt e et e et et e et e et e et eaa e eens 19
N B PPN 77
5. README_MISSING_SYSCALL _OR TOCTL .etuiiitiiiiiaee ettt e e e e eane e 79
6. README_DEVELOPERSottt et e et e e e et e et e e e e e e aa e eaaeeenns 84
7. README_PACKAGERS ...t et e et e e e e ean s 94
8. README.SB00 ... ittt ettt ettt et e et et ettt et et e et a et a et e e e anns 97
LS =Y B 11V o o oo PP 98
10. README.@NArOid_EMUIBLOLc.uueeeeee ittt e e e e e et e et e et e e e et e e eaneaeens 102
I N B 1Y o T o PP 104
12, READMELTISCUBA ...ttt ettt ettt ettt e et e et e et e et n e et e e et e e et aeean e eanas 106
13, README.SOIGIIS ...ttt e e e e e et e e e et et a e aanas 107
I N B 1Y == o o PP 111

XViii

1. AUTHORS

Julian Seward was the original founder, designer and author of

Vagrind, created the dynamic translation frameworks, wrote Memcheck,
the 3.X versions of Helgrind, SGCheck, DHAT, and did lots of other
things.

Nicholas Nethercote did the core/tool generalisation, wrote
Cachegrind and Massif, and tons of other stuff.

Tom Hughes did a vast number of bug fixes, helped out with support for
more recent Linux/glibc versions, set up the present build system, and has
helped out with test and build machines.

Jeremy Fitzhardinge wrote Helgrind (in the 2.X line) and totally
overhauled low-level syscall/signal and address space layout stuff,
among many other things.

Josef Weidendorfer wrote and maintains Callgrind and the associated
K Cachegrind GUI.

Paul Mackerras did alot of the initial per-architecture factoring

that forms the basis of the 3.0 line and was also seen in 2.4.0.

He also did UCode-based dynamic trandation support for PowerPC, and
created a set of ppc-linux derivatives of the 2.X release line.

Greg Parker wrote the Mac OS X port.

Dirk Mueller contributed the malloc/free mismatch checking
and other bits and pieces, and acts as our KDE liaison.

Robert Walsh added file descriptor |eakage checking, new library
interception machinery, support for client allocation pools, and minor
other tweakage.

Bart Van Assche wrote and maintains DRD.

Cerion Armour-Brown worked on PowerPC instruction set support in the
Vex dynamic-trandation framework. Maynard Johnson improved the
Power6 support.

Kirill Batuzov and Dmitry Zhurikhin did the NEON instruction set
support for ARM. Donna Robinson did the v6 mediainstruction support.

Donna Robinson created and maintains the very excellent
http://www.valgrind.org.

Vince Weaver wrote and maintains BBV .
Frederic Gobry helped with autoconf and automake.

Daniel Berlin modified readelf's dwarf2 source line reader, written by Nick
Clifton, for usein Valgrind.

Michael Matz and Simon Hausmann modified the GNU binutils demangler(s) for

AUTHORS

usein Valgrind.

David Woodhouse has helped out with test and build machines over the course
of many releases.

Florian Krohm and Christian Borntraeger wrote the initial S390X/Linux
port. Andreas Arnez is the current maintainer and developer of it.

Florian improved and ruggedised the regression test system during 2011.
Philippe Waroquiers wrote and maintains the embedded GDB server. He
also made a bunch of performance and memory-reduction fixes across
diverse parts of the system.

Carl Love and Maynard Johnson contributed IBM Power6 and Power7
support, and generally deal with ppc{ 32,64} -linux issues.

Petar Jovanovic and Dejan Jevtic wrote and maintain the mips32-linux
port.

Dragos Tatulea modified the arm-android port so it also works on
x86-android.

Jakub Jelinek helped out extensively with the AVX and AV X2 support.

Mark Wielaard fixed a bunch of bugs and acts as our Fedora/RHEL
liaison.

Assad Hashmi contributed support for AArch64 v8.1 and later.

Maran Pakkirisamy implemented support for decimal floating point on
s390.

Rhys Kidd updated and maintains the macOS port.

Paul Floyd maintains the FreeBSD port and occasionally fixes Solaris
and macOS issues.

Many, many people sent bug reports, patches, and helpful feedback.

Development of Valgrind was supported in part by the Tri-Lab Partners
(Lawrence Livermore National Laboratory, Los Alamos National
Laboratory, and Sandia National Laboratories) of the U.S. Department
of Energy's Advanced Simulation & Computing (ASC) Program.

2. NEWS

Release 3.26.0 (?? Oct 2025)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, RISCV64/Linux, ARM/Android, ARM64/Android, MIPS32/Android,
X86/Android, X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD,
AMDG64/FreeBSD and ARM64/FreeBSD Thereis also preliminary support for
X86/macOS 10.13, AMD64/macOS 10.13 and nanoMIPS/Linux.

* CORE CHANGES

* PLATFORM CHANGES
* TOOL CHANGES

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

503098 Incorrect NAN-boxing for float registersin RISC-V

503641 close range syscalls started failing with 3.25.0

503677 duplicated-cond compiler warning in dis RV64M

503817 s390x: fix ‘ordered comparison of pointer with integer zero' compiler warnings

503914 mount syscall param filesystemtype may be NULL

504101 Add a"vgstack" script

504177 FILE DESCRIPTORS banner shows when closing some inherited fds

501741 syscall cachestat not wrapped

502359 Add --modify-fds=yes option

503969 Make test results of make Itpchecks compatible with bunsen

504265 FreeBSD: missing syscall wrappers for fchroot and setcred

504341 Valgrind killed by LTP syscall testcase setrlimit05

504466 Double close causes SEGV

504904 Hide "bad act handler address" warnings when -q (quiet) flag is set

504909 Hide "Bad oldset address" warnings when -q (quiet) flag is set

504936 Add FreeBSD amd64 sysarch subcommands AMD64 SET TLSBASE and
AMDG64_GET_TLSBASE

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed above.

Release 3.25.0 (25 Apr 2025)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, RISCV64/Linux, ARM/Android, ARM64/Android, MIPS32/Android,
X86/Android, X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD,

NEWS

AMDG64/FreeBSD and ARM64/FreeBSD There is also preliminary support for
X86/macOS 10.13, AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* The valgrind gdbserver now supports the GDB remote protocol packet
'x addr,len’ (availablein GDB release >= 16).
The x packet can reduce the time taken by GDB to read memory from valgrind.

* Valgrind now supports zstd compressed debug sections.
* The Linux Test Project (Itp) isintegrated in the testsuite try

'make ltpchecks' (this will take awhile and will point out various
missing syscalls and valgrind crashes!)

* PLATFORM CHANGES

* Added RISCV 64 support for Linux. Specifically for the RV64GC
instruction set.

* Numerous bug fixes for [llumos, in particular fixed aValgrind crash
whenever asignal handler was called.

* On FreeBSD, a change to the libc code that runs atexit handlers was
causing Helgrind to produce an extra error about exiting threads
still holding locks for. This applied to every multithreaded application.
The extraerror is now filtered out. A syscall wrapper had been added
for getrlimitusage.

* On Linux various new syscalls are supported (landlock*, io_pgetevents,
open_tree, move_mount, fsopen, fsconfig, fsmount, fspick, userfaultfd).

* s390x has support for various new instructions (BPP, BPRP, PPA and NIAI).

* TOOL CHANGES

* The --track-fds=yes and --track-fds=all options now treat all
inherited file descriptors the same as 0, 1, 2 (stdin/out/err).
And when the stdin/out/err descriptors are reassigned they are
now treated as normal (non-inherited) file descriptors.

* A new option --modify-fds=high can be used together with
--track-fds=yes to create new file descriptors with the highest
possible number (and then decreasing) instead of always using the
lowest possible number (which isrequired by POSIX). Thiswill help
catch issues where afile descriptor number might normally be reused
between a close and another open call.

* Helgrind:
There is achange to warnings about callsto pthread_cond_signal and
pthread_cond_broadcast when the associated mutex is unlocked. Previously
Helgrind would always warn about this. Now this error is controlled by
acommand line option, --check-cond-signal-mutex=yes|no. The default is
no. This change has been made because some C and C++ standard libraries
use pthread_cond_signal/pthread _cond_broadcast in thisway. Users are
obliged to use suppressions if they wish to avoid this noise.

* FIXED BUGS

NEWS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

290061 pieelf awaysloaded at 0x108000

396415 Valgrind is not looking up $ORIGIN rpath of shebang programs

420682 io_pgeteventsis not supported

468575 Add support for RISC-V

469782 Valgrind does not support zstd-compressed debug sections

487296 --track-fds=yes and --track-fds=all report erroneous information
when fds 0, 1, or 2 are used as non-std

489913 WARNING: unhandled amd64-linux syscall: 444 (landlock_create ruleset)

493433 Add --modify-fds=[no|high] option

494246 syscall fsopen not wrapped

494327 Crash when running Helgrind built with #define TRACE_PTH_FNS1

494337 All threaded applications cause till holding lock errors

495488 Add FreeBSD getrlimitusage syscall wrapper

495816 s390x: Fix disassembler segfault for C[G]RT and CL[G]RT

495817 s390x: Disassembly to match objdump -d output

496370 Illumos: signal handling is broken

496571 False positive for null key passed to bpf_map _get next_key syscall.

496950 s390x: Fix hardware capabilities and EmFail codes

497130 Recognize new DWARF5 DW_LANG constants

497455 Update drd/scripts/downl oad-and-build-gcc

497723 Enabling Ada demangling breaks callgrind differentiation between
overloaded functions and procedures

498037 s390x: Add disassembly checker

498143 False positive on EVIOCGRAB ioctl

498317 FdBadUseisnot avalid CoreError typein a suppression
even though it's generated by --gen-suppressions=yes

498421 s390x: support BPP, BPRP and NIAI insns

498422 s390x: Fix VLRL and VSTRL insns

498492 none/tests’'amd64/I1zcnt64 crashes on FreeBSD compiled with clang

498629 s390x: Fix SILJHHHR and SIL]JHHLR insns

498632 s390x: Fix LNGFR insn

498942 s390x: Rework s390_disasm interface

499183 FreeBSD: differencesin avx-vmovq output

499212 mmap() with MAP_ALIGNED() returns unaligned pointer

501119 memcheck/tests/pointer-trace fails when run on NFS filesystem

501194 Fix ML_(check_macho _and get rw_loads) so that it is correct for
any number of segment commands

501348 glibc built with -march=x86-64-v3 does not work due to 1d.so memcmp

501479 I[llumos DRD pthread_mutex_init wrapper errors

501365 syscall userfaultfd not wrapped

501846 Add x86 Linux shm wrappers

501850 FreeBSD syscall arguments 7 and 8 incorrect.

501893 Missing suppression for __ wcscat_avx2 (strcat-strlen-avx2.h.S.68)?

502126 glibc 2.41 extrasyscall_cancel frames

502288 s390x: Memcheck false positives with NNPA last tensor dimension

502324 s390x: Memcheck false positives with TMxx and TM/TMY

502679 Use LTP for testing valgrind

502871 Make Helgrind "pthread cond {signal,broadcast} : dubious: associated
lock is not held by any thread" optional

NEWS

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.25.0.RC1: 18 Apr 2025)
(3.25.0.RC2: 23 Apr 2025)

Release 3.24.0 (31 Oct 2024)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD, AMD64/FreeBSD
and ARM64/FreeBSD Thereis also preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* Bad file descriptor usage now generates areal error with
--track-fds=yes that is suppressible and shows up in the xml output
with full execution backtrace. The warnings shown without using the
option are deprecated and will be removed in afuture valgrind
version.

* Ada name demangling is now supported in error messages.

* PLATFORM CHANGES

* S390X added support for the DFLTCC instruction provided by the
deflate-conversion facility (z15/arch13).

* S390X added support for the instructions provided by the MSA facility
and MSA extensions 1-9.

* TOOL CHANGES

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

202770 open fd at exit --log-socket=127.0.0.1:1500 with --track-fds=yes

276780 Aninstruction in fftw (Fast Fourier Transform) is unhandled by
valgrind: vex x86->IR: unhandled instruction bytes:
0x66 OxF Ox3A 0x2

311655 --log-file=FILE leads to apparent fd leak

317127 Fedoral8/x86 64 --sanity-level=3 : aspacem segment mismatch

337388 fentl works on Valgrind's own file descriptors

377966 arm64 unhandled instruction dc zva392146 aarch64: unhandled
instruction 0xD5380001 (MRS T, midr_el1)

391148 Unhandled AV X instruction vmovq %oxmm89,%xmm1

392146 aarch64: unhandled instruction 0xD5380001 (MRS T, midr_el1)

412377 SIGILL on cache flushes on arm64

NEWS

417572 vex amd64->IR: unhandled instruction bytes: 0xC5 0x79 0xD6 OXED 0xC5

440180 s390x: Failed assertion in disassembler

444781 MIPS: wrong syscall numbers used

447989 Support Armv8.2 SHA-512 instructions

445235 JavalAda/D demangling is probably broken

453044 ghserver testsfailuresin aarch64

479661 Vagrind leaks file descriptors

486180 [Vagrind][MIPS] 'VexGuestArchState' has no member named
'guest_IP_AT_SYSCALL'

486293 memccpy false positives

486569 linux inotify_init syscall wrapper missing POST entry in syscall_table

487439 SIGILL in JDK11, JDK17

487993 Alignment error when using Eigen with Valgrind and -m32

488026 Use of "sizeof instead of “strlen

488379 --track-fds=yes errors that cannot be suppressed with --xml-file=

488441 Add testsfor --track-fds=yes --xml=yes and fd suppression tests

489040 massif trace change to show the location increasing the stack

489088 Valgrind throws unhandled instruction bytes: 0xC5 0x79 0xD6 OxEQ 0xC5

489338 arm64: Instruction fevtas should round 322.5 to 323, but result is 322.

489676 vgdb handle EINTR and EAGAIN more consistently

490651 Stop using -flto-partition=one

491394 (vgModuleLoca _addDiCfSl): Assertion 'di->fsm.have rx_map & &
di->fsm.rw_map_count' failed

492210 False positive on x86/amd64 with ZF taken directly from addition

492214 statx(fd, NULL, AT_EMPTY_PATH) is supported since Linux 6.11
but not supported in valgrind

492422 Please support DRM_IOCTL_SYNCOBJ HANDLE_TO_FD

492663 Valgrind ignores debug info for some binaries

493418 Add bad fd usage errors for --track-fdsin ML_(fd_allowed)

493454 Missing FUSE_COMPATIBLE_MAY_BLOCK markers

493507 direct readlink syscall from PRE handler isincompatible with
FUSE_COMPATIBLE_MAY_BLOCK

493959 s390x: Fix regtest failure for none/tests/s390x/op00

493970 s390x: Store/restore FPC upon helper call causes slowdown

494218 Remove FREEBSD_VERS from configure and build

494252 s390x: incorrect disassembly for LOCHI and friends

494960 Fixes and tweaks for gdl 19test

495278 PowerPC instruction dcbf should alow the L field values of 4, 6 on
ISA 3.0 and earlier, just ignore the value

495469 aligned alloc and posix_memalign missing MALLOC_TRACE with returned

pointer
495470 s390x: 3.24.0.RC1 missing file and regtest failure
n-i-bz Improve messages for sigaltstack errors, use specific
stack_t member names

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.24.0.RC1: 27 Oct 2024)

Release 3.23.0 (26 Apr 2024)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64L E/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,

NEWS

X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD, AMD64/FreeBSD
and ARM64/FreeBSD Thereis also preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM | PS/Linux.

* CORE CHANGES

* --track-fds=yes will now also warn about double closing of file
descriptors. Printing the context where the file descriptor was
originally opened and where it was previously closed.

* --track-fds=yes also produces "rea" errors now which can be
suppressed and work with --error-exitcode. When combined with
--xml the xml-output now also includes FdBadClose and FdNotClosed
error kinds (see docs/internal ’xml-output-protocol 5.txt).

* The option --show-error-list=nolyes now accepts a new value all.
Thisindicates to also print the suppressed errors.
Thisisuseful to analyse which errors are suppressed by which
Suppression entries.
The valgrind monitor command 'v.info all_errors similarly now
accepts a new optional argument 'also_suppressed' to show
all errorsincluding the suppressed errors.

* PLATFORM CHANGES

* Added ARM64 support for FreeBSD.
* ARM64 now supports dotprod instructions (sdot/udot).

* AMD64 better supports code build with -march=x86-64-v3.
fused-multiple-add instructions (fma) are now emulated more
accurately. And memcheck now handles __ builtin_strcmp using 128/256
bit vectors with sse4.1, avx/avx2.

* S390X added support for NNPA (neural network processing assist)
facility vector instructions VCNF, VCLFNH, VCFN, VCLFNL, VCRNF and
NNPA (z16/arch14).

* X86 recognizes new binutils-2.42 nop patterns.

* TOOL CHANGES

* The none tool now also supports xml output.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

283429 ARM leak checking needs CLEAR_CALLER SAVED_REGS
281059 Cannot connect to Oracle using valgrind

328563 make track-fds support xml output

362680 --error-exitcode not honored when file descriptor leaks are found

NEWS

369723 _ builtin_longjmp not supported in clang/llvm on Android arm64 target

390269 unhandled amd64-darwin syscall: unix:464 (openat_nocancel)

401284 False positive "Source and destination overlap in strncat"

428364 Signalsinsideio_uring_enter not handled

437790 valgrind reports "Conditional jump or move depends on uninitialised
value" in memchr of macOS 10.12-10.15

460616 dislnstr(arm64): unhandled instruction 0x4E819402 (dotprod/ASIMDDP)

463458 memcheck/tests/vcpu_fnfnsfails when glibc is built for x86-64-v3

463463 none/testsamd64/fma fails when executed on a x86-64-v3 system

466762 Add redirsfor C23 free_sized() and free aligned_sized()

466884 Missing writev uninit padding suppression for _XSend

471036 disinstr AMDG64: dislnstr miscalculated next %rip on RORX imm8, m32/64, r32/6

471222 support tracking of file descriptors being double closed

474160 If errors-for-leak-kinds is specified, exit-on-first-error should only exit
on one of the listed errors.

475498 Add redllocarray wrapper

476025 Vhit expected test results for lop_CmpGT64Ux2 are wrong

476320 Build failure with GCC

476331 clean up generated/distributed filter scripts

476535 Differencein allocation size for massif/tests/overloaded-new between
clang++/libc++ and g++/libstdc++

476548 valgrind 3.22.0 fails on assertion when loading debuginfo file
produced by mold

476708 valgrind-monitor.py regular expressions should use raw strings

476780 Extend stricat and strlcpy wrappersto GNU libc

476787 Build of Valgrind 3.21.0 failswhen SOLARIS_PT_SUNDWTRACE_THRPis
defined

476887 WARNING: unhandled amd64-freebsd syscall: 578

477198 Add fchmodat2 syscall on linux

477628 Add mremap support for Solaris

477630 Include ucontext.h rather than sys/ucontext.h in Solaris sources

477719 vgdb incorrectly replies to gRemd packet

478211 Redundant code for vgdb.c and Valgrind core tools

478624 Vagrind incompatibility with binutils-2.42 on x86 with new nop patterns
(unhandled instruction bytes: O0x2E 0x8D 0xB4 0x26

478837 valgrind failsto read debug info for rust binaries

479041 Executables without RW sections do not trigger debuginfo reading

480052 WARNING: unhandled amd64-freebsd syscall: 580

480126 Build failure on Raspberry Pi 5/ OS 6.1.0-rpi 7-rpi-v8

480405 valgrind 3.22.0 "m_debuginfo/image.c:586 (set_CEnt):
Assertion 'lsr_isError(sr) failed."

480488 Add support for FreeBSD 13.3

480706 Unhandled syscall 325 (mlock2)

481127 amd64: Implement VFMADD213 for lop_ MAddF32

481131 [PATCH] x86 regtest: fix clobber lists in generated asm statements

481676 Build failure on Raspberry Pi 5 Ubuntu 23.10 with clang

481874 Add arm64 support for FreeBSD

483786 Incorrect parameter indexing in FreeBSD clock nanosleep syscall wrapper

484002 Add suppression for invalid read in glibc's __ wcpnepy_avx2() viawesxfrm()

484426 aarch64: 0.5 getsrounded to O

484480 False positives when using sem_trywait

484935 [patch] Valgrind reports false "Conditional jump or move depends on
uninitialised value" errors for aarch64 signal handlers

485148 vfmadd213ssinstruction isinstrumented incorrectly (the remaining
part of the register is cleared instead of kept unmodified)

485487 glibc built with -march=x86-64-v3 does not work due to Id.so strcmp

485778 Crash with --track-fds=all and --gen-suppressions=all

n-i-bz Add redirect for memccpy

NEWS

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.23.0.RC1: 19 Apr 2024)
(3.23.0.RC2: 24 Apr 2024)

Release 3.22.0 (31 Oct 2023)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* A new configure option --with-gdbscripts-dir lets you install
the gdb valgrind python monitor scripts in a specific location.
For example adistro could useit to install the scriptsin a
safe load location --with-gdbscripts-dir=%{ _datadir} /gdb/auto-load
It is also possible to configure --without-gdb-scripts-dir so no
.debug_gdb_scripts section is added to the vgprel oad library and
no valgrind-monitor python scripts are installed at all.

* PLATFORM CHANGES

* Support has been added for FreeBSD 14 and FreeBSD 15.

* Add support for the folllowing FreeBSD system calls:
close _range, kqueuex, membarrier, timerfd_create,
timerfd_settime and timerfd_gettime (all added in FreeBSD 15).

* TOOL CHANGES

* Memcheck now tests and warns about the values used for
alignment and size. These apply to various functions: memalign,
posix_memalign and aligned_alloc in C and various overloads
of operators new and delete in C++. The kinds of error that can
be detected are
- invalid alignment, for instance the alignment is usually required
to be a power of 2

- mismatched alignment between aligned allocation and aligned
deallocation

- mismatched size when sized deleteis used

- bad size for functions that have implementation defined behaviour
when the requested sizeis zero

* Cachegrind:

- You can now profile part of a program's execution using the new
"CACHEGRIND_START_INSTRUMENTATION" and "CACHEGRIND_STOP_INSTRUMENTATION®
client requests, along with the new “--instr-at-start™ option. The
behaviour is the same as Callgrind's equivalent functionality.

* FIXED BUGS

10

NEWS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

390871 ELF debug info reader confused with multiple .rodata* sections
417993 vhit-test fail on s390x with lop_Add32: spurious dependency on uninit
426751 Vagrind reports "still reachable’ memory using musl
(apine running inside docker)
432801 Valgrind 3.16.1 reports a jump based on uninitialized memory somehow
related to clang and signals
433857 Add validation to C++17 aligned new/delete alignment size
433859 Add mismatched detection to C++ 17 aligned new/delete
460192 Add epoll_pwait2
461074 DWARF2 CFl reader: unhandled DW_OP_ 0x11 (consts) DW_OP_ 0x92 (bregx)
465782 s390x: Valgrind doesn't compile with Clang on s390x
466105 aligned alloc problems, part 2
467441 Add mismatched detection to C++ 14 sized delete
469049 link failure on ppc64 (big endian) valgrind 3.20
469146 massif --ignore-fn does not ignore inlined functions
469768 Makeit possibletoinstall gdb scriptsin adifferent location
470121 Can't run callgrind_control with valgrind 3.21.0 because of perl errors
470132 s390x: Assertion failure on VGM instruction
470520 Multiplerealloc zero errorscrashin MC_(eq_Error)
470713 Failure on the Yosys project: valgrind: m_libcfile.c:1802
(Bool vgPlain_realpath(const HChar *, HChar *)):
Assertion 'resolved' failed
470830 Don't print actions vgdb me ... continue for vgdb --multi mode
470978 s390x: Valgrind cannot start gemu-kvm when "sysctl vm.allocate pgste=0"
471311 gdb --multi mode stdout redirecting to stderr
471807 Add support for lazy reading and downloading of DWARF debuginfo
472219 Syscall param ppoll(ufds.events) points to uninitialised byte(s)
472875 nonel/tests/s390x/dfp-1 failure
472963 Broken regular expression in configure.ac
473604 Fix bug472219.c compile failure with Clang 16
473677 make check compile failure with Clang 16 based on GCC 13.x
473745 must-be-redirected function - strlen
473870 FreeBSD 14 applicationsfail early at startup
473944 Handle mold linker split RW PT_LOAD segments correctly
474332 aigned alloc under Valgrind returns nullptr when alignment is not a multiple of sizeof(void *)
475650 DRD does not work with C11 threads
475652 Missing suppression for __ wcesnecpy_avx2 (strncpy-avx2.S:308)?
476108 vg_replace malloc DELETE checks size
n-i-bz Allow arguments with spacesin .valgrindrc files
n-i-bz FreeBSD fixed reading of Valgrind tools own debuginfo

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.22.0.RC1: 17 Oct 2023)
(3.22.0.RC2: 26 Oct 2023)

Release 3.21.0 (28 Apr 2023)

11

NEWS

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* When GDB is used to debug a program running under valgrind using

the valgrind gdbserver, GDB will automatically load some
python code provided in valgrind defining GDB front end commands
corresponding to the valgrind monitor commands.
These GDB front end commands accept the same format as
the monitor commands directly sent to the Valgrind gdbserver.
These GDB front end commands provide a better integration
in the GDB command line interface, so asto use for example
GDB auto-completion, command specific help, searching for
acommand or command help matching aregexp, ...
For relevant monitor commands, GDB will evaluate arguments
to make the use of monitor commands easier.
For example, instead of having to print the address of avariable
to passit to a subsequent monitor command, the GDB front end
command will evaluate the address argument. It is for example
possible to do:

(gdb) memcheck who_points at & some_struct sizeof(some_struct)
instead of

(gdb) p &some_struct

$2 = (some_struct_type *) 0x1130a0 <some_struct>

(gdb) p sizeof (some_struct)

$3=40

(gdb) monitor who_point_at 0x1130a0 40

* The vgdb utility now supports extended-remote protocol when
invoked with --multi. In this mode the GDB run command is
supported. Which means you don't need to run gdb and valgrind
from different terminals. So for example to start your program
in gdb and run it under valgrind you can do:
$ gdb prog
(gdb) set remote exec-file prog
(gdb) set sysroot /

(gdb) target extended-remote | vgdb --muilti
(gdb) start

* The behaviour of realloc with a size of zero can now
be changed for tools that intercept malloc. Those
tools are memcheck, helgrind, drd, massif and dhat.
Realloc implementations generally do one of two things

- free the memory like free() and return NULL
(GNU libc and ptmalloc).

- either free the memory and then allocate a
minimum sized block or just return the
original pointer. Return NULL if the
allocation of the minimum sized block fails
(jemalloc, musl, snmalloc, Solaris, macOS).

When Valgrind is configured and built it will
try to match the OS and libc behaviour. However
if you are using a non-default library to replace

12

NEWS

malloc and family (e.g., musl on aglibc Linux or

tcmalloc on FreeBSD) then you can use acommand line

option to change the behaviour of Valgrind:
--realloc-zero-bytes-frees=yesino [yes on Linux glibc, no otherwise]

* PLATFORM CHANGES

* Make the address space limit on FreeBSD amd64 128Gbytes
(the same as Linux and Solaris, it was 32Ghytes)

* TOOL CHANGES

* Memcheck:
- When doing a deltaleak_search, it is now possible to only
output the new loss records compared to the previous leak search.
Thisisavailable in the memcheck monitor command 'leak_search
by specifying the "new" keyword or in your program by using
the client request VALGRIND_DO_NEW_LEAK_CHECK.
Whenever a"delta’ leak search is done (i.e. when specifying
"new" or "increased" or "changed" in the monitor command),
the new loss records have a"new" marker.
- Valgrind now contains python code that defines GDB memcheck
front end monitor commands. See CORE CHANGES.
- Performs checks for the use of realloc with a size of zero.
Thisis non-portable and a source of errors. If memcheck
detects such ausage it will generate an error
realloc() with size 0
followed by the usual callstacks.
A switch has been added to allow thisto be turned off:
--show-realloc-size-zero=yes|no [yes|

* Helgrind:
- The option ---history-backtrace-size=<number> allows to configure
the number of entriesto record in the stack traces of "old"
accesses. Previoudly, this number was hardcoded to 8.
- Valgrind now contains python code that defines GDB helgrind
front end monitor commands. See CORE CHANGES.

* Cachegrind:

- "--cache-sim=no" is now the default. The cache smulation is old and
unlikely to match any real modern machine. This means only the “Ir’
event are gathered by default, but that is by far the most useful
event.

- “cg_annotate’, “cg_diff’, and “‘cg_merge” have been rewrittenin
Python. As aresult, they all have more flexible command line
argument handling, e.g. supporting “--show-percs' and
“--no-show-percs’ forms as well as the existing “--show-percs=yes’
and “--show-percs=no".

- “cg_annotate” has some functional changes.

- It'smuch faster, e.g. 3-4x on common cases.

- It now supports diffing (with “--diff", --mod-filename’, and
“--mod-funcname’) and merging (by passing multiple datafiles).

- It now provides more information at the file and function level.
There are now "File:function” and "Function:file" sections. These
are very useful for programs that useinlining alot.

- Support for user-annotated files and the *-1°/*--include” option
has been removed, because it was of little use and blocked other
improvements.

13

NEWS

- The *--auto’ option is renamed “--annotate’, though the old
“--auto=yes /"--auto=no" forms are still supported.
- "cg_diff” and “cg_merge” are now deprecated, because “cg_annotate’
now does a better job of diffing and merging.
- The Cachegrind output file format has changed very dightly, but in
ways nobody islikely to notice.

* Callgrind:
- Valgrind now contains python code that defines GDB callgrind
front end monitor commands. See CORE CHANGES.

* Massif:
- Valgrind now contains python code that defines GDB massif
front end monitor commands. See CORE CHANGES.

* DHAT:
- A new kind of user request has been added which allows you to
override the 1024 byte limit on access count histograms for blocks
of memory. Theclient request isDHAT_HISTOGRAM_MEMORY .

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

170510 Don't warn about ioctl of size 0 without direction hint
241072 List toolsin --help output
327548 fase positive while destroying mutex
382034 Testcases build fixes for musl
351857 confusing error message about valid command line option
374596 inconsistent RDTSCP support on x86_64
392331 Spuriouslock not held error from inside pthread_cond_timedwait
397083 Likely false positive "uninitialised valug(s)" for __ wmemchr_avx2 and __ wmemcmp_avx2_movbe
400793 pthread rwlock_timedwrlock false positive
419054 Unhandled syscall getcpu on arm32
433873 openat2 syscall unimplemented on Linux
434057 Add stdio mode to valgrind's gdbserver
435441 valgrind failsto interpose malloc on musl 1.2.2 due to weak symbol name and no libc soname
436413 Warn about realloc of size zero
439685 compiler warning in callgrind/main.c
444110 priv/guest_ppc_tolR.c:36198:31: warning: duplicated 'if' condition.
444487 hginfo test detects an extralock inside data symbol "_rtld local"
444488 Use glibc.pthread.stack cache size tunable
444568 drd/tests/pth_barrier_thr_cr fails on Fedora 38
445743 "The impossible happened: mutex is locked simultaneously by two threads"
while using mutexes with priority inheritance and signals
449309 Missing loopback deviceioctl(s)
459476 vgdb: allow address reuse to avoid "address already in use" errorsuse” errors
460356 s390: Sqrt32Fx4 -- cannot reduce tree
462830 WARNING: unhandled amd64-freebsd syscall: 474
463027 broken check for MPX instruction support in assembler
464103 Enhancement: add a client request to DHAT to mark memory to be histogrammed
464476 Firefox failsto start under Valgrind
464609 Vagrind memcheck should support Linux pidfd_open

14

NEWS

464680 Show issues caused by memory policies like selinux deny _execmem
464859 Build failures with GCC-13 (drd tsan_unittest)
464969 D language demangling
465435 m_libcfile.c:66 (vgPlain_safe fd): Assertion 'newfd >=VG_(fd_hard limit)' failed.
466104 aligned alloc problems, part 1
467036 Add time cost statistics for Regtest
467482 Build failure on aarch64 Alpine
467714 fdleak * and rlimit tests fail when parent process has more than
64 descriptors opened
467839 Gdbserver: Improve compatibility of library directory name
468401 [PATCH] Add astylefilefor clang-format
468556 Build failure for vgdb
468606 build: remove "Valgrind relies on GCC" check/output
469097 ppc64(be) doesn't support SCV syscall instruction
n-i-bz FreeBSD rfork syscall fail with EINVAL or ENOSY S rather than VG_(unimplemented)

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

* KNOWN ISSUES

* configure --enable-Ito=yes is know to not work in all setups.
See bug 469049. Workaround: Build without LTO.

(3.21.0.RC1: 14 Apr 2023)
(3.21.0.RC2: 21 Apr 2023)

Release 3.20.0 (24 Oct 2022)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* The option "--vgdb-stop-at=event1,event2,..." accepts the new value abexit.
Thisindicates to invoke gdbserver when your program exits abnormally
(i.e. with anon zero exit code).

* Fix Rust vO name demangling.

* The Linux rseq syscall is now implemented as (silently) returning ENOSY S.

* Add FreeBSD syscall wrappersfor _ speciafd and __ realpathat.

* Remove FreeBSD dependencies on COMPAT10, which fixes compatibility with
HardenedBSD

* The option --enable-debuginfod=<nolyes> [default: yes| has been added on
Linux.

* More DWARF5 support as generated by clangl4.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather

15

NEWS

than mailing the developers (or mailing lists) directly -- bugs that
are not entered into bugzillatend to get forgotten about or ignored.

131186 writev reports error in (vector]...])
434764 iconv_open causes |d.so v2.28+ to use optimised strncmp
446754 Improve error codes from alloc functions under memcheck
452274 memcheck crashes with Assertion 'sci->status.what == Ssldl€' failed
452779 Vagrind failsto build on FreeBSD 13.0 with [lvm-devel (15.0.0)
453055 shared timed mutex drd test failswith "Lock shared failed" message
453602 Missing command line option to enable/disable debuginfod
452802 Handlelld 9+ split RW PT_LOAD segments correctly
454040 s390x: False-positive memcheck:cond in memmem on arch13 systems
456171 [PATCH] FreeBSD: Don't record address errors when accessing the 'kern.ps_strings' sysctl struct
n-i-bz Implement vgdb invoker on FreeBSD
458845 PowerPC: TheL field for the dcbf and sync instruction should be

3 bitsin ISA 3.1.
458915 Remove register cache to fix 458915 gdbserver causes wrong syscall return
459031 Documentation on --error-exitcode incomplete
459477 XERROR messages lacks ending '\n' in vgdb
462007 Implicit int in none/tests/faultstatus.c

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed above.

(3.20.0.RC1: 20 Oct 2022)

Release 3.19.0 (11 Apr 2022)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* Fix Rust vO name demangling.

* The Linux rseq syscall is now implemented as (silently) returning ENOSY S.

* Add FreeBSD syscall wrappersfor _ speciafd and __ realpathat.

* Remove FreeBSD dependencies on COMPAT10, which fixes compatibility with HardenedBSD

* PLATFORM CHANGES

* arm64:

- ignore the "v8.x" architecture levels, only look at actual CPU features
present. Fixes mismatch detected between RDMA and atomics features
preventing startup on some QEMU configurations.

- Implement LD{,A} XP and ST{,L} XP

- Fix incorrect code emitted for doubleword CAS.

* s390:
- Fix sys_ipc semtimedop syscall
- Fix VFLRX and WFLRX instructions
- Fix EXRL instruction with negative offset

16

NEWS

* ppc64:

- Reimplement the vbpermgq instruction support to generate less lops and
avoid overflowing internal buffers.

- Fix checking for scv support to avoid "Facility 'SCV' unavailable (12),
exception” messages in dmsg.

- Fix setting condition code for Vector Compare quad word instructions.

- Fix fix Ixsibzx, Ixsihzx and Ixsihzx instructions so they only load
their respective sized data.

- Fix the prefixed stq instruction in PC relative mode.

* TOOL CHANGES

* Memcheck:
- Speed up --track-origins=yes for large (in the range of hundreds to
thousands of megabytes) mmap/munmaps.
* DRD/Helgrind:
- Several fixesfor new versions of libstd++ using new posix try_lock
functions

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

403802 leak cpp_interior fails with some reachable blocks different than expected
435732 memcheck/tests/leak _cpp_interior fails with gccll
444242 s390x: Valgrind crashes on EXRL with negative offset
444399 arm64: unhandled instruction 0xC87F2D89 (LD{,A} XP and ST{,L} XP).
== 434283
444481 gdb_server test failures on s390x
444495 dhat/tests/copy fails on s390x
444552 memcheck/tests/sem fails on s390x with glibc 2.34
444571 PPC, fix the Ixsibzx and Ixsihzx so they only load their respective
sized data.
444836 PPC, pstq instruction for R=1 is not storing to the correct address.
444925 fexecve syscall wrapper not properly implemented
445032 valgrind/memcheck crash with SIGSEGV when SIGVTALRM timer used and
libthr.so associated
445211 Fix out of tree builds
445300 [PATCH] Fix building tests with Musl
445011 SIGCHLD is sent when valgrind uses debuginfod-find
445354 arm64 backend: incorrect code emitted for doubleword CAS
445415 arm64 front end: alignment checks missing for atomic instructions
445504 Using C++ condition_variable results in bogus "mutex is locked simultaneously by two threads" warning
445607 Unhandled amd64-freebsd syscall: 247
445668 Inline stack frame generation is broken for Rust binaries
445916 Demangle Rust vO symbols with .Ilvm suffix
446139 DRD/Helgrind with std::shared timed_mutex::try lock_until and try lock shared until false positives
446138 DRD/Helgrind with std::timed _mutex::try lock_until false positives
446281 Add a DRD suppression for fwrite
446103 Memcheck: “--track-origins=yes’ causes extreme slowdowns for large mmap/munmap
446139 DRD/Helgrind with std::shared timed_mutex::try_lock until and try lock shared until false
446251 TARGET_SIGNAL_THR added to enum target_signal

17

NEWS

446823 FreeBSD - missing syscalls when using libzm4
447991 s390x: Valgrind indicatesillegal instruction on wflrx
447995 Valgrind segfault on power10 due to hwcap checking code
449483 Powerpc: vempgtsg., vempgtug,, vempequg. instructions not setting the
condition code correctly.
449672 ppcb4 --track-origins=yes failures because of bad cmov addHRegUse
449838 sigsegv liburing the 'impossible’ happened for io_uring_setup
450025 Powerc: ACC file not implemented as alogical overlay of the VSR
registers.
450437 Warn for execve syscall with argv or argv[0] being NULL
450536 Powerpc: valgrind throws 'facility scv unavailable exception'
451626 Syscall param bpf(attr->raw_tracepoint.name) points to unaddressable byte(s)
451827 [ppc6dle] VEX temporary storage exhausted with several vbpermq instructions
451843 valgrind failsto start on a FreeBSD system which enforces WX

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX is the bug number as listed above.

(3.19.0.RC1: 02 Apr 2022)
(3.19.0.RC2: 08 Apr 2022)

18

3. OLDER NEWS

Release 3.18.0 (15 Oct 2021)

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris, AMD64/MacOSX 10.12, X86/FreeBSD and
AMDG64/FreeBSD. Thereisaso preliminary support for X86/macOS 10.13,
AMD64/macOS 10.13 and nanoMIPS/Linux.

* CORE CHANGES

* The libiberty demangler has been updated, which brings support for
Rust vO name demangling. [Update: alas, due to a bug, this support
isn't working in 3.18.0.]

* libc_freeresisn't called anymore after the program receives a
fatal signal. Causing someinternal glibc resources to hang around,
but preventing any crashes after the program has ended.

* The DWARF reader is now very much faster at startup when just
--read-inline-info=yes (the default in most cases) is given.

* glibc 2.34, which moved various functions from libpthread.so into
libc.so, is now supported.

* PLATFORM CHANGES
* arm64:

- v8.2 scalar and vector FABD, FACGE, FACGT and FADD.
- v8.2 FP compare & conditional compare instructions.
- Zero variants of v8.2 FP compare instructions.

* s390:

- Support the miscellaneous-instruction-extensions facility 3 and
the vector-enhancements facility 2. This enables programs
compiled with "-march=arch13" or "-march=z15" to be executed
under Valgrind.

* ppc64:
- ISA 3.1 support is now complete
- I|SA 3.0 support for the darn instruction added.
- I|SA 3.0 support for the vector system call instruction scv added.
- ISA 3.0 support for the copy, paste and cpabort instructions added.

* Support for X86/FreeBSD and AMD64/FreeBSD has been added.

* OTHER CHANGES

* Memcheck on amd64: minor fixes to remove some false positive
undef-vaue errors

OLDER NEWS

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

208531 [PATCH]: FreeBSD support for valgrind
368960 WARNING: unhandled amd64-linux syscall: 163 (acct)
407589 [Linux] Add support for C11 aligned alloc() and GNU reallocarray()
423963 Error in child thread when CLONE_PIDFD is used
426148 crash with "impossible happened" when running BPF CO-RE programs
429375 PPC ISA 3.1 support is missing, part 9
431157 PPC_FEATURE2_SCV needsto be masked in AT_HWCAP2
431306 Update demangler to support Rust vO name mangling
432387 s390x: z15 instructions support
433437 FreeBSD support, part 1
433438 FreeBSD support, part 2
433439 FreeBSD support, part 3
433469 FreeBSD support, part 4
433473 FreeBSD support, part 5
433477 FreeBSD support, part 6
433479 FreeBSD support, part 7
433504 FreeBSD support, part 8
433506 FreeBSD support, part 9
433507 FreeBSD support, part 10
433508 FreeBSD support, part 11
433510 FreeBSD support, part 12
433801 PPC ISA 3.1 support is missing, part 10 (ISA 3.1 support complete)
433863 s390x: memcheck/tests/s390x/{ cds,cs,csg} failures
434296 s390x: False-positive memcheck diagnostics from vector string
instructions
434840 PPCG64 darn instruction not supported
435665 PPC ISA 3.0 copy, paste, cpabort instructions are not supported
435908 valgrind tries to fetch from deubginfod for files which already
have debug information
438871 unhandled instruction bytes: 0xF3 0x49 OxF 0x6F 0x9C 0x24 0x60 0x2
439046 valgrind is unusably large when linked with IId
439090 Implement close range(2)
439326 Valgrind 3.17.0 won't compile with Intel 2021 oneAPI compilers
439590 glibc-2.34 breaks suppressions against obj:*/lib*/libc-2.* so*
440670 unhandled ppc64le-linux syscall: 252 statfs64 and 253 fstatfs64
440906 Fix impossible constraint issuein P10 testcase.
441512 Remove aunneeded / unnecessary prefix check.
441534 Update the expected output for test isa 3 1 VRT.
442061 very slow execution under Fedora 34 (readdwarf3)
443031 Gcce -many change requires explicit .machine directives
443033 Add support for the ISA 3.0 merxrx instruction
443034 Sraw, srawi, srad, sradi, mfs
443178 Powerpc, test jm-mfspr expected output needs to be updated.
443179 Need new test for the Ixvx and stxvx instructions on ISA 2.07 and
ISA 3.0 systems.
443180 The subnormal test and the |SA 3.0 test generate compiler warnings
443314 Inthelatest GIT version, Vagrind with "--trace-flags' crashes
at "al" register

20

OLDER NEWS

443605 Don't call fina_tidyup (__libc_freeres) on Fatal Signal

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX

where XXXXXX isthe bug number as listed below.

(3.18.0.RC1: 12 Oct 2021)
(3.18.0: 150ct 2021)

Release 3.17.0 (19 Mar 2021)

3.17.0 fixes anumber of bugs and adds some functional changes: support for
GCC 11, Clang 11, DWARF5 debuginfo, the 'debuginfod' debuginfo server, and
some new instructions for Arm64, S390 and POWER. There are aso some tool
updates.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* DWARF version 5 support. Valgrind can now read DWARF version 5 debuginfo as
produced by GCC 11.

* Valgrind now supports debuginfod, an HTTP server for distributing ELF/DWARF
debugging information. When a debuginfo file cannot be found locally,
Valgrind is able to query debuginfod serversfor the file using its
build-id. See the user manual for more information about debuginfod support.

* PLATFORM CHANGES

* armo4.

- Inaccuracies resulting from double-rounding in the simulation of
floating-point multiply-add/subtract instructions have been fixed. These
should now behave exactly as the hardware does.

- Partial support for the ARM v8.2 instruction set. v8.2 support work is
ongoing. Support for the half-word variants of at |east the following
instructions has been added:

FABS <Hd>, <Hn>

FABS <Vd>.<T>, <Vn>.<T>
FNEG <Hd>, <Hn>

FNEG <Vd>.<T>, <Vn>.<T>
FSQRT <Hd>, <Hn>

FSQRT <Vd>.<T>, <Vn>.<T>
FADDP

* s390:
- Implement the new instructions/features that were added to z/Architecture

with the vector-enhancements facility 1. Also cover the instructions from

21

OLDER NEWS

the vector-packed-decimal facility that are defined outside the chapter
"Vector Decimal Instructions’, but not the ones from that chapter itself.

For adetailed list of newly supported instructions see the updatesto
“docg/internal /s390-opcodes.csv'.

Since the miscellaneous instruction extensions facility 2 was already
added in Valgrind 3.16.0, this compl etes the support necessary to run
general programs built with “--march=z14' under Valgrind. The
vector-packed-decimal facility is currently not exploited by the standard
toolchain and libraries.

* ppc64:

- Various bug fixes. Fix for the sync field to limit setting just two of
the two bitsin the L-field. Fix the write size for the stxsibx and
stxsihx instructions. Fix the modsw and modsd instructions.

- Partial support for |SA 3.1 has been added. Support for the VSX PCV mask
instructions, bfloat16 GER instructions, and bfloat16 to/from float 32-bit
conversion instructions are still missing.

* TOOL CHANGES

* General tool changes

- All the tools and their vgpreload libraries are now installed under
libexec because they cannot be executed directly and should be run through
the valgrind executable. This should be an internal, not user visible,
change, but might impact valgrind packagers.

- The --track-fds option now respects -q, --quiet and won't output anything
if no file descriptors are leaked. It also won't report the standard stdin
(0), stdout (1) or stderr (2) descriptors as being leaked with
--trace-fds=yes anymore. To track whether the standard file descriptors
are still open at the end of the program run use --trace-fds=all.

* DHAT:

- DHAT has been extended, with two new modes of operation. The new
--mode=copy flag triggers copy profiling, which records calls to memcpy,
strcpy, and similar functions. The new --mode=ad-hoc flag triggers ad hoc
profiling, which records callsto the DHAT_AD_HOC_EVENT client request in
the new dhat/dhat.h file. Thisis useful for learning more about hot code
paths. See the user manual for more information about the new modes.

- Because of these changes, DHAT's file format has changed. DHAT output
files produced with earlier versions of DHAT will not work with this
version of DHAT's viewer, and DHAT output files produced with this version
of DHAT will not work with earlier versions of DHAT's viewer.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

22

OLDER NEWS

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

140178 open("/proc/self/exe”, ...); doesn't quite work

140939 --track-fds reports leakage of stdout/in/err and doesn't respect -q

217695 malloc/calloc/realloc/memalign failure doesn't set errno to ENOMEM

338633 gdbserver_tests/nlcontrolc.vgtest hangs on arm64

345077 linux syscall execveat support (linux 3.19)

361770 Missing F_ ADD_SEALS

369029 handle linux syscalls sched getattr and sched _setattr

384729 libc freeresinhibits cross-platform valgrind

388787 Support for C++17 new/delete

391853 Makefile.all.am:L247 and @SOLARIS_UNDEF_LARGESOURCE@ being empty

396656 Warnings while reading debug info

397605 ioctl FICLONE mishandled

401416 Compile failure with openmpi 4.0

408663 Suppression file for mudl libc

404076 s390x: z14 vector instructions not implemented

410743 shmat() callsfor 32-hit programs fail when running in 64-bit valgrind
(actually affected all x86 and nanomips regardless of host bitness)

413547 regression test does not check for Arm 64 features.

414268 Enable AArch64 feature detection and decoding for v8.x instructions

415293 Incorrect call-graph tracking dueto new _dl_runtime resolve xsave*

422174 unhandled instruction bytes: 0x48 OXE9 (REX prefixed IMP instruction)

422261 platform selection fails for unqualified client name

422623 epoll_ctl warns for uninitialized padding on non-amd64 64bit arches

423021 PPC: Add missing ISA 3.0 documentation link and HWCAPS test.

423195 PPC ISA 3.1 support is missing, part 1

423361 Addsio_uring support on arm64/aarch64 (and all other arches)

424012 crash with readv/writev having invalid but not NULL arg2 iovec

424298 amd64: Implement RDSEED

425232 PPC ISA 3.1 support is missing, part 2

425820 Failure to recognize vpcmpeqq as a dependency breaking idiom.

426014 arm64: implement fmadd and fmsub as lop_ MAdd/Sub

426123 PPC ISA 3.1 support is missing, part 3

426144 Fix "condition variable has not been initialized" on Fedora 33.

427400 PPC ISA 3.1 support is missing, part 4

427401 PPCISA 3.1 support is missing, part 5

427404 PPC ISA 3.1 support is missing, part 6

427870 Imw, Iswi and related PowerPC insns aren't allowed on ppc64le

427787 Support new faccessat2 linux syscall (439)

427969 debuginfo section duplicates a section in the main ELF file

428035 drd: Unbreak the musl build

428648 s390_emit_load_mem panics due to 20-hit offset for vector load

428716 cppcheck detects potential leak in VEX/useful/smchash.c

428909 helgrind: need to intercept duplicate libc definitions for Fedora 33

429352 PPC ISA 3.1 support is missing, part 7

429354 PPC ISA 3.1 support is missing, part 8

429692 unhandled ppc64le-linux syscall: 147 (getsid)

429864 s390x: C++ atomic test_and_set yields fal se-positive memcheck
diagnostics

429952 Errors when building regtest with clang

430354 ppc stxsibx and stxsihx instructions write too much data

430429 valgrind.h doesn't compile on s390x with clang

430485 expr_is _guardable doesn't handle lex_Qop

23

OLDER NEWS

431556 Complete arm64 FADDP v8.2 instruction support

432102 Add support for DWARF5 as produced by GCC11

432161 Addition of arm64 v8.2 FADDP, FNEG and FSQRT

432381 drd: Process STACK_REGISTER client requests

432552 [AArch64] invalid error emitted for pre-decremented byte/hword addresses
432672 vg_regtest: test-specific environment variables not reset between tests
432809 VEX should support REX.W + POPF

432861 PPC modsw and modsd give incorrect results for 1 mod 12

432870 gdbserver_tests:nlcontrolc hangs with newest glibc2.33 x86-64

432215 Add debuginfod functionality

433323 Use pkglibexecdir as vglibdir

433500 DRD regtest faulures when libstdc++ and libgcc debuginfo are installed
433629 valgrind/README has type "abd" instead of "and"

433641 Rust std::sys::unix::fs::try statx Syscall param fstatat(file_name)

433898 arm64: Handle sp, Ir, fp as DwReg in CfiExpr

434193 GCC 9+ inlined strcmp causes "Conditional jump or move|[..] value" report
n-i-bz helgrind: If hg_cli__ realloc fails, return NULL.

n-i-bz arm64 front end: avoid Memcheck false positives relating to CPUID

(3.17.0.RC1: 13 Mar 2021)

(3.17.0.RC2: 17 Mar 2021)
(3.17.0. 19 Mar 2021)

Release 3.16.1 (22 June 2020)

3.16.1 fixes two critical bugs discovered after 3.16.0 was frozen. It aso
fixes character encoding problems in the documentation HTML.

422677 PPC syncinstruction L field should only be 2 hitsin ISA 3.0
422715 32-bit x86: vex: the "impossible’ happened: expr_is guardable: unhandled expr

(3.16.1, 22 June 2020, 36d6727e1d768333a8536f274491e5879cab2c2f7)

Release 3.16.0 (27 May 2020)

3.16.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13 and nanoM I PS/Linux.

* CORE CHANGES

* |t is now possible to dynamically change the value of many command line
options while your program (or its children) are running under Valgrind.

To see thelist of dynamically changeable options, run
"valgrind --help-dyn-options".

24

OLDER NEWS

Y ou can change the options from the shell by using vgdb to launch

the monitor command "v.clo <clo option>...".

The same monitor command can be used from a gdb connected

to the valgrind gdbserver.

Y our program can also change the dynamically changeable options using
the client request VALGRIND_CLO_CHANGE(option).

* PLATFORM CHANGES

* MIPS: preliminary support for nanoMIPS instruction set has been added.

* TOOL CHANGES

* DHAT:

- Theimplicit memcpy done by each call to realloc now counts towards the
read and write counts of resized heap blocks, making those counts higher
and more accurate.

* Cachegrind:

- cg_annotate's --auto and --show-percs options now default to 'yes, because
they are usually wanted.

* Callgrind:

- callgrind_annotate's --auto and --show-percs options now default to 'yes,
because they are usually wanted.

- The command option --collect-systime has been enhanced to specify
the unit used to record the elapsed time spent during system calls.
The command option now accepts the val ues nolyes|msec|usec|nsec,
where yesis asynonym of msec. When giving the value nsec, the
system cpu time of system callsis also recorded.

* Memcheck:

- Several memcheck options are now dynamically changeable.
Use valgrind --help-dyn-options to list them.

- The release 3.15 introduced a backward incompatible change for
some suppression entries related to preadv and pwritev syscalls.
When reading a suppression entry using the unsupported 3.14 format,
valgrind will now produce awarning to say the suppression entry will not
work, and suggest the needed change.

- Significantly fewer false positive errors on optimised code generated by
Clang and GCC. In particular, Memcheck now deals better with the
situation where the compiler will transform C-level "A && B" into"B && A"
under certain circumstances (in which the transformation is valid).
Handling of integer equality/non-equality checks on partially defined
valuesis also improved on some architectures.

* exp-sgcheck:
- The exprimental Stack and Global Array Checking tool has been removed.

It only ever worked on x86 and and64, and even on those it had a
high false positive rate and was slow. An alternative for detecting

25

OLDER NEWS

stack and global array overrunsis using the AddressSanitizer (ASAN)
facility of the GCC and Clang compilers, which require you to rebuild
your code with -fsanitize=address.

* OTHER CHANGES

* New and modified GDB server monitor features:
- Option -T tells vgdb to output a timestamp in the vgdb information messages.

- The gdbserver monitor commands that require an address and an optional
length argument now accepts the alternate 'C like' syntax "address[length]".
For example, the memcheck command "monitor who_points at 0x12345678 120"
can now also be given as "monitor who_points_at 0x12345678[120]".

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

343099 Linux setns syscall wrapper missing, unhandled syscall: 308
== 368923 WARNING: unhandled arm64-linux syscall: 268 (setns)
== 369031 WARNING: unhandled amd64-linux syscall: 308 (setns)
385386 Assertion failed "szB >= CACHE_ENTRY_SIZE" at m_debuginfo/image.c:517
400162 Patch: Guard against __ GLIBC PREREQ for musl libc
400593 In Coregrind, use statx for some internal syscalls if [f]stat[64] fail
400872 Add nanoMIPS support to Valgrind
403212 drd/tests/trylock hangs on FreeBSD
404406 s390x: z14 miscellaneous instructions not implemented
405201 Incorrect size of struct vki_siginfo on 64-hit Linux architectures
406561 mcinfcallWSRU gdbserver_test fails on ppc64
406824 Unsupported baseline
407218 Add support for the copy_file range syscall
407307 Intercept stpcpy also inld.so for arm64
407376 Update Xen support to 4.12 (4.13, actually) and add more coverage
== 390553
407764 drd cond post_wait gets wrong (?) condition on s390x z13 system
408009 Expose rdrand and f16¢ even on avx if host cpu supports them
408091 Missing pkey syscalls
408414 Add support for missing for preadv2 and pwritev2 syscalls
409141 Vagrind hangs when SIGKILLed
409206 Support for Linux PPS and PTPioctls
409367 exit_group() after signal to thread waiting in futex() causes hangs
409429 amd64: recognize 'cmpeq’ variants as a dependency breaking idiom
409780 References to non-existent configure.in
410556 Add support for BLKIO{MIN,OPT} and BLKALIGNOFF ioctls
410599 Non-deterministic behaviour of pth_self kill 15 other test
410757 discrepancy for preadv2/pwritev2 syscalls across different versions
411134 Allow the user to change a set of command line options during execution
411451 amd64->IR of bt/btc/bts/btr with immediate clears zero flag

26

OLDER NEWS

412344 Problem setting mips flags with specific paths
412408 unhandled arm-linux syscall: 124 - adjtime - on arm-linux
413119 loctl wrapper for DRM_IOCTL_1915 GEM_MMAP
413330 avx-1 test failson AMD EPY C 7401P 24-Core Processor
413603 callgrind_annotate/cg_annotate truncate function names at '#
414565 Specific use case bug found in SysResVG_(do_sys sigprocmask)
415136 ARMvV8.1 Compare-and-Swap instructions are not supported
415757 vex x86->IR: 0x66 OxF OXCE Ox4F (bswapw)
416239 valgrind crashes when handling clock _adjtime
416285 Use prlimit64 in VG_(getrlimit) and VG_(setrlimit)
416286 DRD reports "conflicting load" error on std::mutex::lock()
416301 s390x: "compare and signal" not supported
416387 finit_module and bpf syscalls are unhandled on arm64
416464 Fix false reports for uninitialized memory for PR_CAPBSET READ/DROP
416667 gcclO ppcb4dle impossible constraint in 'asm' in test_isa.
416753 new 32bit time syscalls for 2038+
417075 pwritev(vector]...]) suppression ignored
417075 is not fixed, but incompatible supp entries are detected
and awarning is produced for these.
417187 [MIPS] Conditional branch problem since 'grail' changes
417238 Test memcheck/tests/vbit-test fails on mips64 BE
417266 Make memcheck/tests/linux/sigqueue usable with musl
417281 s390x: /bin/true segfaults with "grail" enabled
417427 commit to fix vki_siginfo_t definition created numerous regression
errors on ppcé4
417452 s390 _insn_store_emit: dst->tag for HRcVec128
417578 Add suppressionsfor glibc DTV leaks
417906 clonewith CLONE_VFORK and no CLONE_VM fails
418004 Grail code additions break ppc64.
418435 s390x: spurious "Conditional jump or move depends on uninitialised [..]"
418997 s390x: Support lex_ITE for float and vector types
419503 s390x: Avoid modifying registers returned from isel functions
421321 gccl0 arm64 build needs getauxval for linking with libgec
421570 std mutex fails on Arm v8.1 h/w
434035 vgdb might crash if valgrind iskilled
n-i-bz Fix minor onetimeleaksin dhat.
n-i-bz Add --run-cxx-freeres=no in outer args to avoid inner crashes.
n-i-bz Add support for the Linux io_uring system calls
n-i-bz sys statx: don't complain if both [filename| and |buf| are NULL.
n-i-bz Fix non-glibc build of test suite with s390x_features
n-i-bz MinGW, include/valgrind.h: Fix detection of 64-bit mode
423195 PPC ISA 3.1 support is missing, part 1

(3.16.0.RC1: 18 May 2020, git 6052ee66a0cf5234e8e2a2h49a3760226bc13b92)

(3.16.0.RC2: 19 May 2020, git 940ec1ca69a09f 7fdae3e800b7359f85c13c4b37)
(3.16.0: 27 May 2020, git bf5e647edb9e96chd5c57cc944984402eeee296d)

Release 3.15.0 (12 April 2019)

3.15.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,

PPC32/Linux, PPC64BE/Linux, PPCB4LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,

27

OLDER NEWS

X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13 and AMD64/macOS 10.13.

* CORE CHANGES

* The XTree Massif output format now makes use of the information obtained
when specifying --read-inline-info=yes.

* amd64 (x86_64): the RDRAND and F16C insn set extensions are now supported.

* TOOL CHANGES

* DHAT:
- DHAT been thoroughly overhauled, improved, and given aGUI. Asaresult,
it has been promoted from an experimental tool to aregular tool. Run it
with --tool=dhat instead of --tool=exp-dhat.
- DHAT now prints only minimal data when the program ends, instead writing
the bulk of the profiling datato afile. Asaresult, the --show-top-n
and --sort-by options have been removed.

- Profile results can be viewed with the new viewer, dh_view.html. When
arun ends, a short message is printed, explaining how to view the result.

- See the documentation for more details.
* Cachegrind:

- cg_annotate has a new option, --show-percs, which prints percentages next
to all event counts.

* Callgrind:

- callgrind_annotate has a new option, --show-percs, which prints percentages
next to al event counts.

- callgrind_annotate now inserts commasin call counts, and
sort the caller/calleelistsin the call tree.

* Massif:

- The default value for --read-inline-info is now "yes' on
Linux/Android/Solaris. Itis still "no" on other OS.

* Memcheck:

- The option --xtree-leak=yes (to output leak result in xtree format)
automatically activates the option --show-leak-kinds=all, as xtree
visualisation tools such as kcachegrind can in any case select what kind
of leak to visualise.

- There has been further work to avoid false positives. In particular,
integer equality on partially defined inputs (C == and !=) is now handled
better.

* OTHER CHANGES

28

OLDER NEWS

* The new option --show-error-list=nolyes displays, at the end of the run, the
list of detected errors and the used suppressions. Prior to this change,
showing this information could only be done by specifying "-v -v", but that
also produced alot of other possibly-non-useful messages. The option -sis
equivalent to --show-error-list=yes.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

385411 s390x: z13 vector floating-point instructions not implemented

397187 z13 vector register support for vgdb gdbserver

398183 Vex errorswith _mm256_shuffle_epi8/vpshufb

398870 Please add support for instruction vevtps2ph

399287 amd64 front end: Illegal Instruction vemptrueps

399301 Useinlined framesin Massif X Tree output.

399322 Improve callgrind_annotate output

399444 VEX/priv/iguest_s390 tolR.c:17407: (style) Mismatching assignment |[..]

400164 helgrind test encounters mips x-compiler warnings and assembler error

400490 s390x: VRs allocated asif separate from FPRs

400491 s390x: Operand of LOCH treated as unsigned integer

400975 Compile error: error: -mips64r2' conflicts with the other architecture
options, which specify a mips64 processor

401112 LLVM 5.0 generates comparison against partialy initialized data

401277 More bugsin z13 support

401454 Add a--show-percs option to cg_annotate and callgrind_annotate.

401578 drd: crashes sometimes on fork()

401627 memcheck errors with glibc avx2 optimized wesncmp

401822 none/tests/ppc64/jm-vmx fails and produces assembler warnings

401827 noneftests/ppcbd/test isa 2 06 part3 failure on ppcédle (xvrsgrtesp)

401828 none/tests/ppcbditest isa 2 06_partl failure on ppcé4le (fcfids and
fcfidus)

402006 mark helper regs defined in final_tidyup before freeres wrapper call

402048 WARNING: unhandled ppc64{belle]-linux syscall: 26 (ptrace)

402123 invalid assembler opcodes for mips32r2

402134 assertion fail in mc_trandate.c (noteTmpUsesin) lex VECRET on arm64

402327 Warning: DWARF2 CFI reader: unhandled DW_OP_ opcode 0x13 (DW_OP_drop)

402341 drd/tests/tsan_thread_wrappers pthread.h:369: suspicious code ?

402351 mips64 libvexmultiarch_test fails on s390x

402369 Overhaul DHAT

402395 coregrind/vgdb-invoker-solaris.c: 2* poor error checking

402480 Do not use %rsp in clobber list

402481 vhit-test fails on x86 for lop_ CmpEQ64 isel Int64Expr Sar64

402515 Implement new option --show-error-list=nolyes/ -s

402519 POWER 3.0 addex instruction incorrectly implemented

402781 Redo the cache used to process indirect branch targets

403123 vex amd64->IR:0xF3 0x48 OxF OXAE 0xD3 (wrfsbase)

403552 s390x: wrong facility bit checked for vector facility

404054 memcheck powerpc subfe x, X, x initializes x to 0 or -1 based on CA

29

OLDER NEWS

404638 Add VG _(replacelndexXA)

404843 s390x: backtrace sometimes ends prematurely

404888 autotools cleanup series

405079 unhandled ppc64le-linux syscall: 131 (quotactl)

405182 Valgrind failsto build with Clang

405205 filter_libc: remove the line holding the futex syscall error entirely

405356 PPC64, xvecvsxdsp, xvevuxdsp are supposed to write the 32-bit result to
the upper and lower 32-hits of the 64-bit result

405362 PPC64, vmsummbm instruction doesn't handle overflow case correctly

405363 PPC64, xvevdpsxws, xvevdpuxws, do not handle NaN arguments correctly.

405365 PPC64, function _get maxmin_fp_NaN() doesn't handle QNaN, SNaN case
correctly.

405403 s390x disassembler cannot be used on x86

405430 Use gece -Wimplicit-fallthrough=2 by default if available

405458 MIPS mkFormVEC arguments swapped?

405716 drd: Fix an integer overflow in the stack margin calculation

405722 Support arm64 core dump

405733 PPC64, xvevdpsp should write 32-bit result to upper and lower 32-bits
of the 64-bit destination field.

405734 PPC64, vrlwnm, vrlwmi, vridrm, vrldmi do not work properly when me < mb

405782 "VEX temporary storage exhausted" when attempting to debug slic3r-pe

406198 none/tests/ppcbditest_isa 3 0 other test sporadicaly including CA
bit in output.

406256 PPC64, vector floating point instructions don't handle subnormal
according to VSCR[NJ] hit setting.

406352 cachegrind/callgrind fails ann tests because of missing a.c

406354 dhat is broken on x86 (32hit)

406355 mcsignopass, mcsigpass, mcbreak fail due to difference in gdb output

406357 gdbserver_testsfails because of gdb output change

406360 memcheck/tests/libstdc++.supp needs more supression variants

406422 none/tests’amd64-linux/map_32bits.vgtest failstoo easily

406465 arm64 insn selector fails on "t0 = <expr>" where <expr> hastype Ity_F16

407340 PPC64, does not support the vliogefp, vexptefp instructions.

n-i-bz add syswrap for PTRACE_GET|SET_THREAD_AREA on amd64.

n-i-bz Fix callgrind_annotate non deterministic order for equal total

n-i-bz callgrind_annotate --threshold=100 does not print all functions.

n-i-bz callgrind_annotate Use of uninitialized value in numeric gt (>)

n-i-bz amd64 (x86_64): RDRAND and F16C insn set extensions are supported

(3.15.0.RC1: 8 April 2019, git ce94d674de5b99df 173aad4c3eed8f c2a92e5d9c)

(3.15.0.RC2: 11 April 2019, git 0c8bedbbede189ec580ec270521811766429595f)
(3.15.0: 14 April 2019, git 270037da8h508954f0f 7d703a0bebf5364eec548)

Release 3.14.0 (9 October 2018)

3.14.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64L E/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12. Thereisalso preliminary
support for X86/macOS 10.13, AMD64/macOS 10.13.

* CORE CHANGES

30

OLDER NEWS

* The new option --keep-debuginfo=nolyes (default no) can be used to retain
debug info for unloaded code. This allows saved stack traces (e.g. for
memory leaks) to include file/line info for code that has been diclose'd (or
similar). Seethe user manual for more information and known limitations.

* Ability to specify suppressions based on source file name and line number.

* Majorly overhauled register allocator. No end-user changes, but the JI T
generates code a bit more quickly now.

* PLATFORM CHANGES

* Preliminary support for macOS 10.13 has been added.

* mips. support for MIPS32/M1PS64 Revision 6 has been added.

* mips. support for MIPS SIMD architecture (MSA) has been added.
* mips. support for MIPS N32 ABI has been added.

* s390: partial support for vector instructions (integer and string) has been
added.

* TOOL CHANGES

* Helgrind: Addition of aflag
--delta-stacktrace=nolyes [yes on linux amd64/x86]
which specifies how full history stack traces should be computed.
Setting this to =yes can speed up Helgrind by 25% when using
--history-level=full.

* Memcheck: reduced false positive rate for optimised code created by Clang 6
/ LLVM 6 on x86, amd64 and arm64. |n particular, Memcheck analyses code
blocks more carefully to determine where it can avoid expensive definedness
checks without loss of precision. Thisis controlled by the flag
--expensi ve-definedness-checks=nolautolyes [auto] .

* OTHER CHANGES

* Valgrind is now buildable with link-time optimisation (LTO). A new
configure option --enable-Ito=yes allows building Valgrind with LTO. If the
toolchain supportsit, this produces a smaller/faster Valgrind (up to 10%).
Note that if you are doing Valgrind devel opment, --enable-lto=yes massively
slows down the build process.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit

https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

31

OLDER NEWS

79362 Debuginfoislost for .so files when they are diclose'd
208052 stricpy error whenn=0
255603 exp-sgcheck Assertion 'lalready present’ failed
338252 huilding valgrind with -flto (link time optimisation) fails
345763 MIPS N32 ABI support
368913 WARNING: unhandled arm64-linux syscall: 117 (ptrace)
== 388664 unhandled arm64-linux syscall: 117 (ptrace)
372347 Replacement problem of the additional c++14/c++17 new/delete operators
373069 memcheck/tests/leak cpp_interior failswith GCC 5.1+
376257 helgrind history full speed up using a cached stack
379373 Fix syscall param msg->desc.port.name points to uninitialised byte(s)
on macOS 10.12
379748 Fix missing pselect syscall (OS X 10.11)
379754 Fix missing syscall ulock wait (OS X 10.12)
380397 s390x: __ Gl_strespn() replacemenet needed
381162 possible array overrunin VEX register allocator
381272 ppcb4 doesn't compiletest isa 2 06 partx.c without VSX support
381274 powerpc too chatty even with --sigill-diagnostics=no
381289 epoll_pwait can have aNULL sigmask
381553 VEX register allocator v3
381556 arm64: Handle feature registers access on 4.11 Linux kernel or later
381769 Use ucontext t instead of struct ucontext
381805 arm32 needs Id.so index hardwire for new glibc security fixes
382256 gz compiler flag test doesn't work for gold
382407 vg_perf needs "--terse" command line option
382515 "Assertion 'di->have dinfo' failed." on wine's dlls'mscoree/tests/[..]
382563 MIPS MSA ASE support
382998 xml-socket doesn't work
383275 massif: m_xarray.c:162 (ensureSpaceXA): Assertion 'Ixa->arr' failed
383723 Fix missing kevent_qos syscall (macOS 10.11)
== 385604 illegal hardware instruction (OpenCV cv::namedWindow)
384096 Mention AddrCheck at Memcheck's command line option [..]
384230 vex x86->IR: 0x67 OXE8 OXAB 0x68
== 384156 vex x86->IR: 0x67 OXE8 0x6B Ox6A
== 386115 vex x86->IR: 0x67 OXE8 0xD3 0x8B any program
== 388407 vex x86->IR: 0x67 OXE8 OXAB 0x29
== 394903 vex x86->IR: 0x67 OxE8 0x1B OxDA
384337 performance improvementsto VEX register allocator v2 and v3
384526 reduce number of spill insns generated by VEX register allocator v3
384584 Callee saved regs listed first for AM D64, X86, and PPC architectures
384631 Sanitise client args as printed with -v
384633 Add asimple progress-reporting facility
384987 VEX regalloc: alocate caller-save registers for short lived vregs
385055 PPC VEX temporary storage exhausted
385182 PPC64 is missing support for the DSCR
385183 PPC64, Add support for xscmpegdp, xscmpgtdp, xscmpgedp, xsmincdp
385207 PPC64, generate store FPRF() generates too many lops
385208 PPC64, xxperm instruction exhausts temporary memory
385210 PPC64, vpermr instruction could exhaust temporary memory
385279 unhandled syscall: mach:43 (mach_generate activity id)
== 395136 valgrind: m_syswrap/syswrap-main.c:438 (Bool eq Syscall]..]
== 387045 Valgrind crashing on High Sierrawhen testing any newly [..]
385334 PPC64, fix vpermr, xxperm, xxpermr mask value.
385408 s390x: z13 vector "support" instructions not implemented
385409 s390x: z13 vector integer instructions not implemented
385410 s390x: z13 vector string instructions not implemented
385412 s390x: new non-vector z13 instructions not implemented

32

OLDER NEWS

385868 glibcld.so _dl_runtime resolve avx_slow conditional jump warning.

385912 none/testsrlimit_nofile fails on newer glibc/kernel.

385939 Optionally exit on thefirst error

386318 valgrind.org/info/tools.html is missing SGCheck

386425 running valgrind + wine on armv7l givesillegal opcode

386397 PPC64, valgrind truncates powerpc timebase to 32-hits.

387410 MIPSr6 support

387664 Memcheck: make expensive-definedness-checks be the default

387712 s390x cgijnl reports Conditional jump depends on uninitialised value

387766 asm shifts cause false positive " Conditional jump or move depends
on uninitialised value"

387773 .gnu_debugaltlink paths resolve relative to .debug file, not symlink

388174 vagrind with Wine quits with "Assertion 'cfsi_fits failed"

388786 Support bpf syscall in amd64 Linux

388862 Add replacements for wmemchr and wesnlen on Linux

389065 valgrind meets gec flag -Wlogical-op

389373 exp-sgcheck the 'impossible’ happened as Ist_LoadG is not instrumented

390471 suppression by specification of source-file line number

390723 make xtree dump files world wide readable, similar to log files

391164 constraint bug in tests/ppc64/test isa 2 07_partl.c for mtfprwa

391861 Massif Assertion'n_ips>=1&& n_ips<=VG_(clo_backtrace size)'

392118 unhandled amd64-linux syscall: 332 (statx)

392449 callgrind not clearing the number of calls properly

393017 Add missing support for xsmaxcdp instruction, bug fixes for xsmincdp,
Ixssp, stxssp and stxvl instructions.

393023 callgrind_contral risks using the wrong vgdb

393062 build-id ELF phdrs read causes "debuginfo reader: ensure valid failed"

393099 posix_memalign() invalid writeif alignment ==0

393146 failing assert "is Debuglnfo_active(di)"

395709 PPC64 is missing support for the xvnegsp instruction

395682 Accept read-only PT_LOAD segments and .rodata by Id -z separate-code
== 384727

396475 valgrind OS-X build: config.h not found (out-of-tree macOS builds)

395991 arm-linux: wine's unit tests enter asignal delivery loop [..]

396839 s390x: Trap instructions not implemented

396887 arch_prctl should return EINVAL on unknown option
== 397286 crash before launching binary (Unsupported arch_prctl option)
== 397393 valgrind: the 'impossible’ happened: (Archlinux)
== 397521 valgrind: the 'impossible’ happened: Unsupported [..]

396906 compile tests failure on mips32-linux: broken inline asm in tests on
mips32-linux

397012 glibc Id.so uses arch_prctl oni386

397089 amd64: Incorrect decoding of three-register vmovss/'vmovsd opcode 11h

397354 utimensat should ignore timespec tv_secif tv_nsecisUTIME_NOW/OMIT

397424 glibc 2.27 and gdb_server tests

398028 Assertion “cfsi_fits failing in simple C program

398066 s390x: cgijl depl, O reports false unitialised values warning

n-i-bz Fix missing workqg_ops operations (macOS)
n-i-bz fix bug in strspn replacement
n-i-bz Add support for the Linux BLKFLSBUF ioctl
n-i-bz Add support for the Linux BLKREPORTZONE and BLKRESETZONE ioctls
n-i-bz Fix possible stack trashing by semctl syscall wrapping
n-i-bz Add support for the Linux membarrier() system call
n-i-bz x86 front end: recognise and handle UD2 correctly
n-i-bz Signal delivery for x86-linux: ensure that the stack pointer is
correctly aligned before entering the handler.

33

OLDER NEWS

(3.14.0.RC1: 30 September 2018, git c2aeea2d28ach0639bcc8ccledabl15067dbleas)
(3.14.0.RC2: 3 October 2018, git 3e214c4858a6fdd5697€767543a0c19e30505582)
(3.14.0: 9 October 2018, git 353a3587bb0e2757411f9138f5e936728ed6cc4f)

Release 3.13.0 (15 June 2017)

3.13.0 is afeature release with many improvements and the usual collection of
bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, ARM64/Android, MIPS32/Android, X86/Android,
X86/Solaris, AMD64/Solaris and AMD64/MacOSX 10.12.

* CORE CHANGES

* The translation cache size has been increased to keep up with the demands of
large applications. The maximum number of sectors has increased from 24 to
48. The default number of sectors hasincreased from 16 to 32 on all
targets except Android, where the increaseis from 6 to 12.

* The amount of memory that Valgrind can use has been increased from 64GB to
128GB. In particular this means your application can allocate up to about
60GB when running on Memcheck.

* Valgrind's default load address has been changed from 0x3800'0000 to
0x5800'0000, so asto make it possible to load larger executables. This
should make it possible to |oad executables of size at least 1200MB.

* A massive spaceleak caused by reading compressed debuginfo files has been
fixed. Valgrind should now be entirely usable with gcc-7.0 "-gz" created
debuginfo.

* The C++ demangler has been updated.
* Support for demangling Rust symbols has been added.

* A new representation of stack traces, the "XTree", has been added. An XTree
isatree of stacktraces with data associated with the stacktraces. Thisis
used by various tools (Memcheck, Helgrind, Massif) to report on the heap
consumption of your program. Reporting is controlled by the new options
--xtree-memory=nonejallocsfull and --xtree-memory-file=<file>.

A report can also be produced on demand using the gdbserver monitor command
'xtmemory [<filename>]>'. The XTree can be output in 2 formats: ‘callgrind
format' and 'massif format. The existing visualisers for these formats (e.g.
calgrind_annotate, KCachegrind, ms_print) can be used to visualise and

analyse these reports.

Memcheck can also produce X Tree leak reports using the Callgrind file
format. For more details, see the user manual.

* PLATFORM CHANGES

* ppc64: support for ISA 3.0B and various fixes for existing 3.0 support

OLDER NEWS

* amd64: fixes for JT failure problems on long AV X2 code blocks
* amd64 and x86: support for CET prefixes has been added
* arm32: afew missing ARMv8 instructions have been implemented

* arm64, mips64, mips32: an alternative implementation of Load-Linked and
Store-Conditional instructions has been added. Thisisto deal with
processor implementations that implement the LL/SC specifications strictly
and as aresult cause Valgrind to hang in certain situations. The
alternative implementation is automatically enabled at startup, as required.
Y ou can use the option --sim-hints=fallback-lIsc to force-enable it if you
want.

* Support for OSX 10.12 has been improved.

* On Linux, clone handling has been improved to honour CLONE_VFORK that
involves achild stack. Note however that CLONE_VFORK | CLONE_VM ishandled
like CLONE_VFORK (by removing CLONE_VM), so applications that depend on
CLONE_VM exact semantics will (still) not work.

* The TileGX/Linux port has been removed because it appears to be both unused
and unsupported.

* TOOL CHANGES

* Memcheck:

- Memcheck should give fewer false positives when running optimised
Clang/LLVM generated code.

- Support for --xtree-memory and 'xtmemory [<filename>]>".
- New command line options --xtree-leak=nolyes and --xtree-leak-file=<file>
to produce the end of execution leak report in a xtree callgrind format

file.

- New option xtleak' in the memcheck leak check monitor command, to produce
the leak report in an xtreefile.

* Massif:
- Support for --xtree-memory and 'xtmemory [<filename>]>".

- For some workloads (typically, for big applications), Massif memory
consumption and CPU consumption has decreased significantly.

* Helgrind:
- Support for --xtree-memory and 'xtmemory [<filename>]>".

- addition of client request VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN, useful
for Adagnat compiled applications.

* OTHER CHANGES

* For Valgrind developers: in an outer/inner setup, the outer Valgrind will

35

OLDER NEWS

append the inner guest stacktrace to the inner host stacktrace. This helps

to investigate the errors reported by the outer, when they are caused by the

inner guest program (such as an inner regtest). See README_DEVELOPERS for
moreinfo.

* To allow fast detection of callgrind files by desktop environments and file
managers, the format was extended to have an optional first line that
uniquely identifies the format ("# callgrind format"). Callgrind creates
thisline now, as does the new xtree functionality.

* File name template arguments (such as --log-file, --xtree-memory-file, ...)
have anew %n format letter that is replaced by a sequence number.

* "_-yersion -v" now shows the SV N revision numbers from which Valgrind was
built.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

162848 --log-file output isn't split when a program forks

340777 lllegal instruction on mips (ar71xx)

341481 MIPS64: lop_ CmpNE32 triggers false warning on MIPS64 platforms

342040 Valgrind mishandles clone with CLONE_VFORK | CLONE_VM that clones
to adifferent stack.

344139 x86 stack-seg overrides, needed by the Wine people

344524 store conditional of guest applications always fail - observed on
Octeon3(MIPS)

348616 Wine/valgrind: noted but unhandled ioctl 0x5390 [..] (DVD_READ_STRUCT)

352395 Please provide SVN revision info in --version -v

352767 Wine/valgrind: noted but unhandled ioctl 0x5307 [..] (CDROMSTOP)

356374 Assertion 'DRD_(g_threadinfo)[tid].pt_threadid !=
INVALID_POSIX_THREADID' failed

358213 helgrind/drd bar_bad testcase hangs or crashes with new glibc pthread
barrier implementation

358697 valgrind.h: Some code remains even when defining NVALGRIND

359202 Add musl libc configure/compile

360415 amd64 instructions ADCX and ADOX are not implemented in VEX
== 372828 (vex amd64->IR: 0x66 OxF 0x3A 0x62 0x4A 0x10)

360429 unhandled ioctl 0x530d with no size/direction hints (CDROMREADMODEL)

362223 assertion failed when .valgrindrc is a directory instead of afile

367543 bt/btc/btr/bts x86/x86_64 instructions are poorly-handled wrt flags

367942 Segfault vgPlain_do_sys sigaction (m_signals.c:1138)

368507 can't malloc chunks larger than about 34GB

368529 Android arm target link error, missing atexit and pthread_atfork

368863 WARNING: unhandled arm64-linux syscall: 100 (get_robust_list)

368865 WARNING: unhandled arm64-linux syscall: 272 (kcmp)

368868 dislnstr(arm64): unhandled instruction 0xD53BEO0OO = cntfrq_el0 (ARMvS8)

368917 WARNING: unhandled arm64-linux syscall: 218 (request_key)

36

OLDER NEWS

368918 WARNING: unhandled arm64-linux syscall: 127 (sched_rr_get_interval)

368922 WARNING: unhandled arm64-linux syscall: 161 (sethostname)

368924 WARNING: unhandled arm64-linux syscall: 84 (sync_file range)

368925 WARNING: unhandled arm64-linux syscall: 130 (tkill)

368926 WARNING: unhandled arm64-linux syscall: 97 (unshare)

369459 valgrind on arm64 violates the ARMv8 spec (Idxr/stxr)

370028 Reduce the number of compiler warnings on MIPS platforms

370635 arm64 missing syscall getcpu

371225 Fix order of timer_{ gettime,getoverrun,settime} syscalls on arm64

371227 Clean AArch64 syscall table

371412 Renamewrap_sys shmat to sys shmat like other wrappers

371471 Valgrind complains about non legit memory leaks on placement new (C++)

371491 handleAddrOverrides() is[incorrect] when ASO prefix is used

371503 dislnstr(arm64): unhandled instruction 0xF89F0000

371869 support '%' in symbol Z-encoding

371916 execution tree xtree concept

372120 c++ demangler demangles symbols which are not c++

372185 Support of valgrind on ARMv8 with 32 hit executable

372188 vex amd64->IR: 0x66 OxF 0x3A 0x62 0x4A 0x10 0x10 0x48 (PCMPxSTRx $0x10)

372195 Power PC, xxsdl instruction is not always recognized.

372504 Hanging on exit_group

372600 process loops forever when fatal signals are arriving quickly

372794 LibVEX (arm32 front end): 'Assertion szBlg2 <= 3' failed

373046 Stacks registered by core are never deregistered

373069 memcheck/tests/leak cpp_interior failswith GCC 5.1+

373086 Implement additional Xen hypercalls

373192 Calling posix_spawn in glibc 2.24 completely broken

373488 Support for fanotify APl on ARM64 architecture

== 368864 WARNING: unhandled arm64-linux syscall: 262 (fanotify_init)

373555 Rename BBPTR to GSPTR asit denotes guest state pointer only

373938 const IRExpr arguments for matchl RExpr()

374719 some spelling fixes

374963 increase valgrind's |oad address to prevent mmap failure

375514 valgrind_get tls addr() does not work in case of static TLS

375772 +1 error inget_elf symbol_info() when computing value of 'hi' address
for ML_(find_rx_mapping)()

375806 Test helgrind/tests/tc22 exit w_lock failswith glibc 2.24

375839 Temporary storage exhausted, with long sequence of vfmadd231psinsns
== 377159 "vex: the ‘impossible’ happened" still present
== 375150 Assertion 'tres.status == VexTransOK' failed
== 378068 valgrind crashes on AV X2 function in FFmpeg

376142 Segfaults on MIPS Cavium Octeon boards

376279 dislnstr(arm64): unhandled instruction 0xD50320FF

376455 Solaris: unhandled syscall Igrpsys(180)

376518 Solaris: unhandled fast trap getlgrp(6)

376611 ppc64 and arm64 don't know about prlimit64 syscall

376729 PPC64, remove R2 from the clobber list
== 371668

376956 syswrap of SNDDRV and DRM_IOCTL_VERSION causing some addresses
to be wrongly marked as addressable

377066 Some Valgrind unit tests fail to compile on Ubuntu 16.10 with
PIE enabled by default

377376 memcheck/tests/linux/getregset fails with glibc2.24

377427 PPC64, Ixv instruction failing on odd destination register

377478 PPC64: 1SA 3.0 setup fixes

377698 Missing memory check for futex() uaddr arg for FUTEX WAKE
and FUTEX_WAKE_BITSET, check only 4 argsfor FUTEX_WAKE_BITSET,
and 2 argsfor FUTEX_TRYLOCK_PI

37

OLDER NEWS

377717 Fix massive space leak when reading compressed debuginfo sections

377891 Update Xen 4.6 domctl wrappers

377930 fentl syscall wrapper is missing flock structure check

378524 libvexmultiarch_test regression on s390x and ppc64

378535 Valgrind reports INTERNAL ERROR in execve syscall wrapper

378673 Update libiberty demangler

378931 Add ISA 3.0B additional isnstructions, add OV 32, CA32 setting support

379039 syscall wrapper for prctl(PR_SET_NAME) must not check more than 16 bytes

379094 Valgrind reports INTERNAL ERROR in rt_sigsuspend syscall wrapper

379371 UNKNOWN task message [id 3444, to mach_task _self(), reply 0x603]
(task_register_dyld image infos)

379372 UNKNOWN task message [id 3447, to mach_task_self(), reply 0x603]
(task_register_dyld shared cache image info)

379390 unhandled syscall: mach:70 (host_create mach voucher_trap)

379473 MIPS: add support for rdhwr cycle counter register

379504 remove TileGX/Linux port

379525 Support more x86 nop opcodes

379838 disAMode(x86): not an addr!

379703 PC ISA 3.0 fixes: stxvx, stxv, xscmpexpdp instructions

379890 arm: unhandled instruction: OXEBAD 0x1B05 (sub.w fp, sp, 15, |l #4)

379895 clock gettime does not execute POST syscall wrapper

379925 PPC64, mtffs does not set the FPCC and C bits in the FPSCR correctly

379966 WARNING: unhandled amd64-linux syscall: 313 (finit_module)

380200 xtree generated callgrind files refer to files without directory name

380202 Assertion failure for cache line size (cls == 64) on aarch64.

380397 s390x: __ Gl_strespn() replacement needed

n-i-bz Fix pub_tool_basics.h build issue with g++ 4.4.7.

(3.13.0.RC1: 2 June 2017, vex r3386, valgrind r16434)

(3.13.0.RC2: 9 June 2017, vex r3389, valgrind r16443)
(3.13.0: 14 June 2017, vex r3396, valgrind r16446)

Release 3.12.0 (20 October 2016)

3.12.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux,
ARMG64/Linux, PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux,
MIPS32/Linux, MIPS64/Linux, ARM/Android, ARM64/Android,
MIPS32/Android, X86/Android, X86/Solaris, AMD64/Solaris, X86/MacOSX
10.10 and AMD64/MacOSX 10.10. Thereisaso preliminary support for
X86/MacOSX 10.11/12, AMD64/MacOSX 10.11/12 and TILEGX/Linux.

* PLATFORM CHANGES

* POWER: Support for ISA 3.0 has been added

* mips: support for 032 FPXX ABI has been added.

* mips: improved recognition of different processors

* mips. determination of page size now done at run time

* amd64: Partial support for AMD FMA4 instructions.

* arm, arm64: Support for v8 crypto and CRC instructions.

38

OLDER NEWS

* |mprovements and robustification of the Solaris port.
* Preliminary support for MacOS 10.12 (Sierra) has been added.

Whilst 3.12.0 continues to support the 32-bit x86 instruction set, we
would prefer users to migrate to 64-bit x86 (a.k.aamd64 or x86_64)
where possible. Valgrind's support for 32-bit x86 has stagnated in
recent years and has fallen far behind that for 64-hit x86
instructions. By contrast 64-bit x86 iswell supported, up to and
including AV X2.

* TOOL CHANGES

* Memcheck:
- Added meta mempool support for describing a custom allocator which:
- Auto-frees all chunks assuming that destroying a pool destroys all
objects in the pool
- Uses itself to allocate other memory blocks
- New flag --ignore-range-bel ow-sp to ignore memory accesses below
the stack pointer, if you really haveto. Therelated flag
--workaround-gcc296-bugs=yesis now deprecated. Use
--ignore-range-bel ow-sp=1024-1 as a replacement.
* DRD:
- Improved thread startup time significantly on non-Linux platforms.

* DHAT

- Added collection of the metric "tot-blocks-allocd"

* OTHER CHANGES

* Replacement/wrapping of malloc/new related functions is now done not just
for system libraries by default, but for any globally defined malloc/new
related function (both in shared libraries and statically linked alternative

malloc implementations). The dynamic (runtime) linker is excluded, though.

To only intercept malloc/new related functionsin

system libraries use --soname-synonyms=somall oc=nouserintercepts (where
"nouserintercepts’ can be any non-existing library name).

This new functionality is not implemented for MacOS X.

* The maximum number of callersin a suppression entry is now equal to
the maximum size for --num-callers (500).
Note that --gen-suppressions=yes|all similarly generates suppressions
containing up to --num-callers frames.

* New and modified GDB server monitor features:
- Valgrind's gdbserver now accepts the command ‘catch syscall'.
Note that you must have GDB >= 7.11 to use 'catch syscall' with

gdbserver.

* New option --run-cxx-freeres=<yes|no> can be used to change whether
__gnu_cxx::__freeres() cleanup function is called or not. Default is

39

OLDER NEWS

'yes.
* Valgrind is able to read compressed debuginfo sectionsin two formats;
- Zlib ELF gABI format with SHF_COMPRESSED flag (gcc option -gz=zlib)
- Zlib GNU format with .zdebug sections (gcc option -gz=zlib-gnu)
* Modest JIT-cost improvements: the cost of instrumenting code blocks
for the most common use case (x86_64-linux, Memcheck) has been
reduced by 10%-15%.

* Improved performance for programs that do alot of discarding of
instruction address ranges of 8KB or less.

* The C++ symbol demangler has been updated.

* More robustness against invalid syscall parameters on Linux.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

191069 Exiting dueto signal not reported in XML output
199468 Suppressions: stack size limited to 25
while --num-callers allows more frames
212352 vex amd64 unhandled opc_aux = Ox 2, first_opcode == 0xDC (FCOM)
278744 cvtps2pd with redundant RexW
303877 valgrind doesn't support compressed debuginfo sections.
345307 Warning about "still reachable" memory when using libstdc++ from gcc 5
348345 Assertion fails for negative lineno
348924 MIPS:; Load doubles through memory so the code compiles with the FPXX ABI
351282 V 3.10.1 MIPS softfloat build broken with GCC 4.9.3/ binutils 2.25.1
351692 Dumps created by valgrind are not readable by gdb (mips32 specific)
351804 Crash on generating suppressions for "printf" call on OS X 10.10
352197 mips: mmap2() not wrapped correctly for page size > 4096
353083 arm64 doesn't implement various xattr system calls
353084 arm64 doesn't support sigpending system call
353137 www: update info for Supported Platforms
353138 www: update "The Valgrind Developers' page
353370 don't advertise RDRAND in cpuid for Core-i7-4910-like avx2 machine
== 365325
== 357873
353384 amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x62 (pcmpXstrX $0x62)
353398 WARNING: unhandled amd64-solaris syscall: 207
353660 XML inauxwhat tag not escaping reserved symbols properly
353680 s390x: Crash with certain glibc versions due to non-implemented TBEGIN
353727 amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x72 (pcmpXstrX $0x72)
353802 ELF debug info reader confused with multiple .rodata sections
353891 Assert 'bad scanned _addr < VG_ROUNDDN(start+len, sizeof(Addr)) failed
353917 unhandled amd64-solaris syscall fchdir(120)

OLDER NEWS

353920 unhandled amd64-solaris syscall: 170
354274 arm: unhandled instruction: OXEBAD OxOACL1 (sub.w d, sp, rl, Isl #3)
354392 unhandled amd64-solaris syscall: 171
354797 Vhit test does not include lops for Power 8 instruction support
354883 tst->0s state.pthread - magic_delta assertion failure on OSX 10.11
== 361351
== 362920
== 366222
354933 Fix documentation of --kernel-variant=android-no-hw-tls option
355188 valgrind should intercept all malloc related global functions
355454 do not intercept malloc related symbols from the runtime linker
355455 stderr.exp of test cases wrapmalloc and wrapmallocstatic overconstrained
356044 Dwarf lineinfo reader misinterpretsis_stmt register
356112 mips: replace addi with addiu
356393 valgrind (vex) crashes because isZeroU happened
== 363497
== 364497
356676 arm64-linux: unhandled syscalls 125, 126 (sched get priority_max/min)
356678 arm64-linux: unhandled syscall 232 (mincore)
356817 valgrind.h triggers compiler errors on MSVC when defining NVALGRIND
356823 Unsupported ARM instruction: stlex
357059 x86/amd64: SSE cvtpi2ps with memory source does transition to MM X state
357338 Unhandled instruction for SHA instructions libcrypto Boring SSL
357673 crashif | try to run valgrind with abinary link with libcurl
357833 Setting RLIMIT_DATA to zero breaks with linux 4.5+
357871 pthread spin_destroy not properly wrapped
357887 Callsto VG _(fclose) do not close the file descriptor
357932 amd64->IR: accept redundant REX prefixes for { minsd,maxsd} m128, xmm.
358030 support direct socket calls on x86 32bit (new in linux 4.3)
358478 drd/tests/std_thread.cpp doesn't build with GCC6
359133 Assertion 'eltSzB <= ddpa->pool SzB' failed
359181 Buffer Overflow during Demangling
359201 futex syscall "skips' argument 5if opisFUTEX _WAIT BITSET
359289 s390x: popcnt (BOEL) not implemented
359472 The Power PC vsubugm instruction doesn't always give the correct result
359503 Add missing syscalls for aarch64 (arm64)
359645 "Y ou need libc6-dbg" help message could be more helpful
359703 s390: wire up separate socketcalls system calls
359724 getsockname might crash - deref Ulnt should call safe to_deref
359733 amd64 implement Id.so strchr/index override like x86
359767 Valgrind does not support the IBM POWER ISA 3.0 instructions, part 1/5
359829 Power PC test suite none/tests/ppc64itest isa 2 07.c uses
uninitialized data
359838 arm64: Unhandled instruction 0xD5033F5F (clrex)
359871 Incorrect mask handling in ppoll
359952 Unrecognised PCMPESTRM variants (0x70, 0x19)
360008 Contents of Power vr registers contentsis not printed correctly when
the --vgdb-shadow-registers=yes option is used
360035 POWER PC instruction bcdadd and bedsubtract generate result with
non-zero shadow bits
360378 arm64: Unhandled instruction 0x5E280844 (shalh s4, s2)
360425 arm64 unsupported instruction |dpsw
== 364435
360519 none/tests’arm64/memory.vgtest might fail with newer gcc
360571 Error about the Android Runtime reading below the stack pointer on ARM
360574 Wrong parameter type for an ashmem ioctl() call on Android and ARM64
360749 kludge for multiple .rodata sections on Solaris no longer needed
360752 raise the number of reserved fdsin m_main.c from 10 to 12

41

OLDER NEWS

361207
361226
361253
361354
361615
361926
362009
362329
362894
362935
362953
363680
363705
363714
363858
364058
364413
364728

Valgrind does not support the IBM POWER ISA 3.0 instructions, part 2/5
s390x: rishgn (EC59) not implemented

[s390x] ex_clone.c:42: undefined reference to “pthread_create’

ppc64|le]: wire up separate socketcalls system calls

Inconsistent termination for multithreaded process terminated by signal
Unhandled Solaris syscall: sysfs(84)

V dumps core on unimplemented functionality before threads are created
Valgrind does not support the IBM POWER ISA 3.0 instructions, part 3/5
missing (broken) support for whit field on mtfsfi instruction (ppc64)
[AsusWRT] Assertion 'sizeof (TTEntryC) <= 88' failed

Request for an update to the Valgrind Developers page

add renameat2() support

arm64 missing syscall name to_handle_at and open_by handle_at

ppc64 missing syscalls sync, waitid and name_to/open by handle at
Valgrind does not support the IBM POWER ISA 3.0 instructions, part 4/5
clarify in manual limitations of array overruns detections

pselect sycallwrapper mishandles NULL sigmask

Power PC, missing support for several HW registersin

get_otrack shadow_offset wrk()

364948
365273
365912
366079
366138
366344

Valgrind does not support the IBM POWER ISA 3.0 instructions, part 5/5
Invalid write to stack location reported after signal handler runs

ppc64BE segfault during jm-insns test (RELRO)

FPXX Support for MIPS32 Valgrind

Fix configure errors out when using Xcode 8 (clang 8.0.0)

Multiple unhandled instruction for Aarch64

(OXOEEOEO020, 0x1AC15800, 0x4E284801, 0x5E040023, 0Ox5E056060)

367995
368120
368412
368416
368419
368461
368823
369000
369169
369175
369209
369356
369359
369360
369361
369362
369383
369402
369441
369446
369439
369468
370265
371128
372195

Integration of memcheck with custom memory allocator

x86_linux asm _start functions do not keep 16-byte aligned stack pointer
False positive result for altivec capability check

Add tc06_two_races xml.exp output for ppc64

Perf Eventsioctls not implemented

mmapunmap test fails on ppc64

run_a thread NORETURN assembly code typo for VGP_arm64 _linux target
AMD64 fmad instructions unsupported.

ppc64 failsjm_int_isa 2 07 test

jm_vec isa 2 07 test crashes on ppc64

valgrind loops and eats up all memory if cwd doesn't exist.

pre_ mem_read_sockaddr syscall wrapper can crash with bad sockaddr
msghdr_foreachfield can crash when handling bad iovec

Bad sigprocmask old or new sets can crash valgrind

vmsplice syscall wrapper crashes on bad iovec

Bad sigaction arguments crash valgrind

x86 sys modify_Idt wrapper crashes on bad ptr

Bad set/get_thread area pointer crashes valgrind

bad Ivec argument crashes process vm_readv/writev syscall wrappers
valgrind crashes on unknown fcntl command

S390x: Unhandled insns RISBLG/RISBHG and LDE/LDER

Remove quadratic metapool algorithm using VG_(HT_remove _at_lter)
ISA 3.0 HW cap stuff needs updating

BCD add and subtract instructions on Power BE in 32-bit mode do not work
Power PC, xxsel instruction is not always recognized

n-i-bz Fix incorrect (or infinite loop) unwind on RHEL 7 x86 and amd64

n-i-bz massif --pages-as-heap=yes does not report peak caused by mmap+munmap
n-i-bz false positive leaks due to aspacemgr merging heap & non heap segments
n-i-bz Fix ppoll_alarm exclusion on OS X

n-i-bz Document brk segment limitation, reference manual in limit reached msg.
n-i-bz Fix clobber list in none/testsamd64/xacq xrel.c [valgrind r15737]

42

OLDER NEWS

n-i-bz Bump allowed shift value for "add.w reg, sp, reg, Il #N" [vex r3206]
n-i-bz amd64: memcheck false positive with shr %edx

n-i-bz arm3: Allow early writeback of SP base register in "strd rD, [sp, #-16]"
n-i-bz ppc: Fix two cases of PPCAVFpOp vs PPCFpOp enum confusion

n-i-bz arm: Fix incorrect register-number constraint check for LDAEX{,B,H,D}
n-i-bz DHAT: added collection of the metric "tot-blocks-allocd"

(3.12.0.RC1: 20 October 2016, vex r3282, valgrind r16094)

(3.12.0.RC2: 20 October 2016, vex r3282, valgrind r16096)
(3.12.0: 21 October 2016, vex r3282, valgrind r16098)

Release 3.11.0 (22 September 2015)

3.11.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux,
ARMG64/Linux, PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux,
MIPS32/Linux, MIPS64/Linux, ARM/Android, ARM64/Android,
MIPS32/Android, X86/Android, X86/Solaris, AMD64/Solaris, X86/MacOSX
10.10 and AMD64/MacOSX 10.10. Thereisalso preliminary support for
X86/MacOSX 10.11, AMD64/MacOSX 10.11 and TILEGX/Linux.

* PLATFORM CHANGES

* Support for Solaris/x86 and Solaris'amd64 has been added.
* Preliminary support for Mac OS X 10.11 (El Capitan) has been added.
* Preliminary support for the Tilera TileGX architecture has been added.

* s390x: It is now required for the host to have the "long displacement”
facility. The oldest supported machine model is z990.

* x86: on an SSE2 only host, Valgrind in 32 bit mode now claimsto be a
Pentium 4. 3.10.1 wrongly claimed to be a Core 2, which is SSSE3.

* The J T's register allocator is significantly faster, making the JIT
as awhole somewhat faster, so J T-intensive activities, for example
program startup, are modestly faster, around 5%.

* There have been changes to the default settings of several command
line flags, as detailed below.

* Intel AV X2 support is more complete (64 bit targets only). On AV X2
capable hosts, the simulated CPUID will now indicate AV X2 support.

* TOOL CHANGES

* Memcheck:

- The default value for --leak-check-heuristics has been changed from
"none" to "al". This helps to reduce the number of possibly
lost blocks, in particular for C++ applications.

OLDER NEWS

- The default value for --keep-stacktraces has been changed from
"malloc-then-free" to "malloc-and-free". Thishasasmall cost in
memory (one word per malloc-ed block) but allows Memcheck to show the
3 stacktraces of a dangling reference: where the block was allocated,
where it was freed, and where it is acccessed after being freed.

- The default value for --partial-loads-ok has been changed from "no" to
"yes', so asto avoid false positive errors resulting from some kinds
of vectorised loops.

- A new monitor command 'xb <addr> <len>' shows the validity bits of
<len> bytes at <addr>. The monitor command 'xb' is easier to use
than get_vhits when you need to associate byte data value with
their corresponding validity bits.

- The 'block_list" monitor command has been enhanced:

0 it can print arange of loss records

0 it now accepts an optional argument 'limited <max_blocks>'
to control the number of blocks printed.

o if ablock has been found using a heuristic, then
'block_list' now shows the heuristic after the block size.

o the loss records/blocks to print can be limited to the blocks
found via specified heuristics.

- The C helper functions used to instrument loads on
x86-{ linux,solaris} and arm-linux (both 32-hit only) have been
replaced by handwritten assembly sequences. This gives speedups
in the region of 0% to 7% for those targets only.

- A new command line option, --expensive-definedness-checks=yes|no,
has been added. Thisisuseful for avoiding occasional invalid
uninitialised-value errorsin optimised code. Watch out for
runtime degradation, as this can be up to 25%. As aways, though,
the slowdown is highly application specific. The default setting
is"no".

* Massif:

- A new monitor command 'all_snapshots <filename>' dumps all
snapshots taken so far.

* Helgrind:

- Significant memory reduction and moderate speedups for
--history-level=full for applications accessing alot of memory
with many different stacktraces.

- The default value for --conflict-cache-size=N has been doubled to
2000000. Usersthat were not using the default value should
preferably also double the value they give.

The default was changed due to the changesin the "full history"
implementation. Doubling the value gives on average a dlightly more
complete history and uses similar memory (or significantly less memory
in the worst case) than the previous implementation.

- The Helgrind monitor command 'info locks now accepts an optional
argument 'lock_addr', which shows information about the lock at the

OLDER NEWS

given address only.

- When using --history-level=full, the new Helgrind monitor command
‘accesshistory <addr> [<len>]" will show the recorded accesses for
<len> (or 1) bytes at <addr>.

* OTHER CHANGES

* The default value for the --smc-check option has been changed from
"stack" to "all-non-file" on targets that provide automatic D-I
cache coherence (x86, and64 and s390x). Theresult isto provide,
by default, transparent support for J T generated and self-modifying
code on all targets.

* Mac OS X only: the default value for the --dsymutil option has been
changed from "no" to "yes', since any serious usage on Mac OS X
alwaysrequired it to be "yes'.

* The command line options --db-attach and --db-command have been removed.
They were deprecated in 3.10.0.

* When a process dies due to asignal, Valgrind now shows the signal
and the stacktrace at default verbosity (i.e. verbosity 1).

* The address description logic used by Memcheck and Helgrind now
describes addresses in anonymous segments, file mmap-ed segments,
shared memory segments and the brk data segment.

* The new option --error-markers=<begin>,<end> can be used to mark the
begin/end of errorsin textual output mode, to facilitate
searching/extracting errorsin output files that mix valgrind errors
with program output.

* The new option --max-threads=<number> can be used to change the number
of threads valgrind can handle. The default is 500 threads which
should be more than enough for most applications.

* The new option --val grind-stacksize=<number> can be used to change the
size of the private thread stacks used by Valgrind. Thisis useful
for reducing memory use or increasing the stack sizeif Valgrind
segfaults due to stack overflow.

* The new option --avg-transtab-entry-size=<number> can be used to specify
the expected instrumented block size, either to reduce memory use or
to avoid excessive retrandation.

* Valgrind can be built with Intel's ICC compiler, version 14.0 or later.
* New and modified GDB server monitor features:

- When asignal isreported in GDB, you can now use the GDB convenience
variable $_siginfo to examine detailed signal information.

- Valgrind's gdbserver now allows the user to change the signal
to deliver to the process. So, use 'signal SIGNAL' to continue execution
with SIGNAL instead of the signal reported to GDB. Use 'signal 0' to
continue without passing the signal to the process.

OLDER NEWS

- With GDB >= 7.10, the command 'target remote’
will automatically load the executable file of the process running
under Valgrind. This means you do not need to specify the executable
file yourself, GDB will discover it itself. See GDB documentation about
'gXfer:exec-filerread' packet for more info.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

116002 VG_(printf): Problems with justification of strings and integers
155125 avoid cutting away file:lineno after long function name
197259 Unsupported arch_prtctl PR_SET_GS option
201152 ppc64: Assertion in ppc32g_dirtyhelper MFSPR_268 269
201216 Fix Valgrind does not support pthread_sigmask() on OS X
201435 Fix Darwin: -v does not show kernel version
208217 "Warning: noted but unhandled ioctl 0x2000747b" on Mac OS X
211256 Fixed an outdated comment regarding the default platform.
211529 Incomplete call stacks for code compiled by newer versions of MSVC
211926 Avoid compilation warnings in valgrind.h with -pedantic
212291 Fix unhandled syscall: unix;:132 (mkfifo) on OS X

== 263119
226609 Crediting upstream authors in man page
231257 Valgrind omits path when executing script from shebang line
254164 OS X task_info; UNKNOWN task message [id 3405, to mach_task_self() [..]
294065 Improve the pdb file reader by avoiding hardwired absolute pathnames
269360 s390x: Fix addressing mode selection for compare-and-swap
302630 Memcheck: Assertion failed: 'sizeof(UWord) == sizeof(UInt)'

== 326797
312989 ioctl handling needs to do POST handling on generic ioctlsand [..]
319274 Fix unhandled syscall: unix:410 (sigsuspend_nocancel) on OS X
324181 mmap does not handle MAP_32BIT (handle it now, rather than fail it)
327745 Fix valgrind 3.9.0 build failson Mac OS X 10.6.8
330147 libmpiwrap PMPI_Get_count returns undefined value
333051 mmap of huge pages fails due to incorrect alignment

== 339163
334802 valgrind does not always explain why a given option is bad
335618 mov.w rN, pc/sp (ARM32)
335785 amd64->IR 0xC4 OxE2 0x75 0x2F (vmaskmovpd)

== 307399

== 343175

== 342740

== 346912
335907 segfault when running wine's ddrawex/tests/surface.c under valgrind
338602 AVX2 hitin CPUID missing
338606 Strange message for scriptswith invalid interpreter
338731 ppc: Fix testuite build for toolchains not supporting -maltivec
338995 shmat with hugepages (SHM_HUGETLB) fails with EINVAL
339045 Getting valgrind to compile and run on OS X Y osemite (10.10)

46

OLDER NEWS

== 340252
339156 gdbsrv not called for fatal signal
339215 Valgrind 3.10.0 contain 2013 in copyrights notice
339288 support Cavium Octeon MIPS specific BBIT* 32 instructions
339636 Use fxsave64 and fxrstor64 mnemonics instead of old-school rex64 prefix
339442 Fix testsuite build failureon OS X 10.9
339542 Enable compilation with Intel's ICC compiler
339563 The DVB demux DMX_STOP ioctl doesn't have awrapper
339688 Mac-specific ASM does not support .version directive (cpuid,
tronical and pushfpopf tests)
339745 Valgrind crash when check Marmalade app (partial fix)
339755 Fix known deliberate memory leak in setenv() on Mac OS X 10.9
339778 Linux/TileGx platform support for Valgrind
339780 Fix known uninitialised read in pthread rwlock_init() on Mac OS X 10.9
339789 Fix nonef/tests/execve test on Mac OS X 10.9
339808 Fix none/tests/rlimité4 nofile test on Mac OS X 10.9
339820 vex amd64->IR: 0x66 OxF 0x3A 0x63 OxA 0x42 0x74 0x9 (pcmpistri $0x42)
340115 Fix none/tests'cmdling]1]2] tests on systems which define TMPDIR
340392 Allow user to select more accurate definedness checking in memcheck
to avoid invalid complaints on optimised code
340430 Fix some grammatical weirdness in the manual.
341238 Recognize GCC5/DWARFV5 DW_LANG constants (Go, C11, C++11, C++14)
341419 Signal handler ucontext_t not filled out correctly on OS X
341539 VG_(describe _addr) should not describe address as belonging to client
segment if it is past the heap end
341613 Enable building of manythreads and thread-exits tests on Mac OS X
341615 Fix noneftests/darwin/access extended test on Mac OS X
341698 Valgrind's AESKEY GENASSIST giveswrong result inwordsOand 2[..]
341789 aarch64: shmat fails with valgrind on ARMv8
341997 MIPS64: Cavium OCTEON insns - immediate operand handled incorrectly
342008 valgrind.h needs type cast [..] for clang/llvm in 64-bit mode
342038 Unhandled syscalls on aarch64 (mbind/get/set_ mempolicy)
342063 wrong format specifier for test mechlocklistsearch in gdbserver_tests
342117 Hang when loading PDB file for MSVC compiled Firefox under Wine
342221 socket connect false positive uninit memory for unknown af family
342353 Allow dumping full massif output while valgrind is still running
342571 Valgrind chokeson AV X compareintrinsic with_ CMP_GE_QS
== 346476
== 348387
== 350593
342603 Add12C_SMBUS ioctl support
342635 OS X 10.10 (Y osemite) - missing system calls and fentl code
342683 Mark memory past theinitial brk limit as unaddressable
342783 arm: unhandled instruction OXEEFE1ACA = "vcvt.s32.f32 s3, s3, #12"
342795 Interna glibc Gl _mempcpy call should be intercepted
342841 s390x: Support instructions fiebr(a) and fidbr(a)
343012 Unhandled syscall 319 (memfd_create)
343069 Patch updating v4l2 API support
343173 helgrind crash during stack unwind
343219 fix GET_STARTREGS for arm
343303 Fix known deliberate memory leak in setenv() on Mac OS X 10.10
343306 OS X 10.10: UNKNOWN mach_msg unhandled MACH_SEND_TRAILER option
343332 Unhandled instruction 0x9E310021 (fcvtmu) on aarch64
343335 unhandled instruction 0x1E638400 (fccmp) aarch64
343523 OS X mach_ports _register: UNKNOWN task message [id 3403, to[..]
343525 OS X host_get_special_port: UNKNOWN host message [id 412, to [..]
343597 ppcbdle: incorrect use of offseof macro
343649 OS X host_create_ mach_voucher: UNKNOWN host message [id 222, to [..]

47

OLDER NEWS

343663 OS X 10.10 Memchecj aways reports aleak regardless of [..]
343732 Unhandled syscall 144 (setgid) on aarch64
343733 Unhandled syscall 187 (msgctl and related) on aarch64
343802 s390x: False positive "conditional jump or move dependson|..]
343902 --vgdb=yes doesn't break when --xml=yes is used
343967 Don't warn about setuid/setgid/setcap executable for directories
343978 Recognize DWARF5/GCC5 DW_LANG_Fortran 2003 and 2008 constants
344007 acceptd syscall unhandled on arm64 (242) and ppc64 (344)
344033 Helgrind on ARM32 loses track of mutex statein pthread cond wait
344054 www - update info for Solaris/illumos
344416 'make regtest' does not work cleanly on OS X
344235 Remove duplicate include of pub_core aspacemgr.h
344279 syscall sendmmsg on arm64 (269) and ppc32/64 (349) unhandled
344295 syscall recvmmsg on arm64 (243) and ppc32/64 (343) unhandled
344307 2 unhandled syscalls on aarch64/arm64: umount2(39), mount (40)
344314 callgrind_annotate ... warnings about commands containing newlines
344318 socketcall should wrap recvmmsg and sendmmsg
344337 Fix unhandled syscall: mach:41 (_kernelrpc_mach _port_guard trap)
344416 Fix 'make regtest' does not work cleanly on OS X
344499 Fix compilation for Linux kernel >=4.0.0
344512 OS X: unhandled syscall: unix:348 (__pthread chdir),
unix:349 (__pthread_fchdir)
344559 Garbage collection of unused segment names in address space manager
344560 Fix stack traces missing penultimate frame on OS X
344621 Fix memcheck/tests/err_disabled test on OS X
344686 Fix suppression for pthread rwlock init on OS X 10.10
344702 Fix missing libobjc suppressions on OS X 10.10
== 344543
344936 Fix unhandled syscall: unix:473 (readlinkat) on OS X 10.10
344939 Fix memcheck/tests’xml1 on OS X 10.10
345016 helgrind/tests/locked vs unlocked? isfailing sometimes
345079 Fix build problemsin VEX/useful/test_main.c
345126 Incorrect handling of VIDIOC_G_AUDIO and G_ AUDOUT
345177 arm64: prfm (reg) not implemented
345215 Performance improvements for the register allocator
345248 add support for Solaris OSin valgrind
345338 TIOCGSERIAL and TIOCSSERIAL ioctl support on Linux
345394 Fix memcheck/tests/strchr on OS X
345637 Fix memcheck/tests/sendmsg on OS X
345695 Add POWERPC support for AT_DCACHESIZE and HWCAP2
345824 Fix aspacem segment mismatch: seen with none/tests/bigcode
345887 Fix an assertion in the address space manager
345928 amd64: callstack only contains current function for small stacks
345984 dislnstr(arm): unhandled instruction: OXEE193F1E
345987 MIPS64: Implement cavium LHX instruction
346031 MIPS: Implement support for the CvmCount register (rhwr %0, 31)
346185 Fix typo saving altivec register v24
346267 Compiler warnings for PPC64 code on call to LibVEX_GuestPPC64 get XER()
and LibVEX_GuestPPC64_get CR()
346270 Regression tests none/tests/jm_vec/isa 2 07 and
none/tests/test_isa 2 07 _part2 have failures on PPC64 little endian
346307 fuse filesystem syscall deadlocks
346324 PPC64 missing support for Ibarx, lharx, stbcx and sthex instructions
346411 MIPS: SysRes::_vaEx handling isincorrect
346416 Add support for LL_IOC_PATH2FID and LL_IOC_GETPARENT Lustreioctls
346474 PPC64 Power 8, spr TEXASRU register not supported
346487 Compiler generates "note" about a future ABI change for PPC64
346562 MIPS64: lwl/Iwr instructions are performing 64bit loads

OLDER NEWS

and causing spurious "invalid read of size 8" warnings

346801 Fix link error on OS X: _vgModuleLocal_sf_maybe extend stack

347151 Fix suppression for pthread rwlock_init on OS X 10.8

347233 Fix memcheck/tests/strchr on OS X 10.10 (Haswell)

347322 Power PC regression test cleanup

347379 valgrind --leak-check=full leak errors from system libs on OS X 10.8
== 217236

347389 unhandled syscall: 373 (Linux ARM syncfs)

347686 Patch set to cleanup PPC64 regtests

347978 Remove bash dependencies where not needed

347982 OS X: undefined symbolsfor architecture x86_64: " global" [..]

347988 Memcheck: the 'impossible’ happened: unexpected size for Addr (OSX/wine)
== 345929

348102 Patch updating v4l2 API support

348247 amd64 front end: jno jumps wrongly when overflow is not set

348269 Improve mmap MAP_HUGETLB support.

348334 (ppc) valgrind does not simulate dcbfl - then my program terminates

348345 Assertion fails for negative lineno

348377 Unsupported ARM instruction: yield

348565 Fix detection of command line option availability for clang

348574 vex amd64->IR pcmpistri SSE4.2 unsupported (pcmpistri $0x18)

348728 Fix broken check for VIDIOC_G_ENC_INDEX

348748 Fix redundant condition

348890 Fix clang warning about unsupported --param inline-unit-growth=900

348949 Bogus "ERROR: --ignore-ranges: suspiciously large range"

349034 Add LustreioctlsLL_IOC_GROUP_LOCK and LL_IOC_GROUP_UNLOCK

349086 Fix UNKNOWN task message [id 3406, to mach_task self(), [..]

349087 Fix UNKNOWN task message [id 3410, to mach_task self(), [..]

349626 Implemented additional Xen hypercalls

349769 Clang/osx: Id: warning: -read_only_relocs cannot be used with x86_64

349790 Clean up of the hardware capability checking utilities.

349828 memcpy intercepts memmove causing src/dst overlap error (ppc64 1d.so)

349874 Fix typosin source code

349879 memcheck: add handwritten assembly for helperc LOADV*

349941 di_notify_mmap might create wrong start/size DebuglnfoMapping

350062 vex x86->IR: 0x66 0xF 0x3A 0xB (ROUNDSD) on OS X

350202 Add limited param to 'monitor block_list'

350290 s390x: Support instructions fixbr(a)

350359 memcheck/tests/x86/fxsave hangs indefinetely on OS X

350809 Fix noneftests/async-sigs for Solaris

350811 Remove reference to --db-attach which has been removed.

350813 Memcheck/x86: enable handwritten assembly helpers for x86/Solaris too

350854 hard-to-understand code in VG_(load ELF)()

351140 arm64 syscalls setuid (146) and setresgid (149) not implemented

351386 Solaris. Cannot run ld.so.1 under Valgrind

351474 Fix VG_(isegsigset) as obvious

351531 Typo in /include/vki/vki-xen-physdev.h header guard

351756 Intercept platform_memchr$V ARIANT$Haswell on OS X

351858 |dsoexec support on Solaris

351873 Newer gcc doesn't allow __ builtin_tabortdc][i] in ppc32 mode

352130 helgrind reports false races for printfs using mempcpy on FILE* state

352284 s390: Conditional jump depends on uninitialised value(s) in vfprintf

352320 arm64 crash on none/tests/nestedfs

352765 Vhit test fails on Power 6

352768 The mbar instruction is missing from the Power PC support

352769 Power PC program priority register (PPR) is not supported

n-i-bz Provide implementations of certain compiler builtins to support
compilers that may not provide those

49

OLDER NEWS

n-i-bz Old STABS codeis still being compiled, but never used. Removeit.
n-i-bz Fix compilation on distros with glibc < 2.5

n-i-bz (vex 3098) Avoid generation of Neon insns on non-Neon hosts
n-i-bz Enable rt_sigpending syscall on ppc64 linux.

n-i-bz mremap did not work properly on shared memory

n-i-bz Fix incorrect sizeof expression in syswrap-xen.c reported by Coverity
n-i-bz In VALGRIND_PRINTF write out thread name, if any, to xml

(3.11.0.TEST1: 8 September 2015, vex r3187, valgrind r15646)

(3.11.0.TEST2: 21 September 2015, vex r3193, valgrind r15667)
(3.11.0: 22 September 2015, vex r3195, valgrind r15674)

Release 3.10.1 (25 November 2014)

3.10.1isabug fix release. It fixes various bugs reported in 3.10.0

and backports fixes for all reported missing AArch64 ARMv8 instructions
and syscalls from the trunk. If you package or deliver 3.10.0 for others

to use, you might want to consider upgrading to 3.10.1 instead.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

335440 arm64: 1d1 (single structure) is not implemented
335713 arm64: unhanded instruction: prfm (immediate)
339020 ppc64: memcheck/tests/ppc64/power ISA2 05 failing in nightly build
339182 ppc64: AvSplat ought to load destination vector register with [..]
339336 PPC64 store quad instruction (stq) is not supposed to change[..]
339433 ppc64 Ixvwax instruction uses four 32-byte loads
339645 Use correct tag namesin sys _getdents/64 wrappers
339706 Fix false positive for ioctl(TIOCSIG) on linux
339721 assertion 'check_sibling == sibling' failed in readdwarf3.c ...
339853 arm64 times syscall unknown
339855 arm64 unhandled getsid/setsid syscalls
339858 arm64 dmb sy not implemented
339926 Unhandled instruction Ox1E674001 (frintx) on aarm64
339927 Unhandled instruction 0x9E7100C6 (fcvtmu) on aarch64
339938 dislnstr(arm64): unhandled instruction 0x4F8010A4 (fmla)

== 339950
339940 arm64: unhandled syscall: 83 (sys fdatasync) + patch
340033 arm64: unhandled insn dmb ishld and some other isb-dmb-dsb variants
340028 unhandled syscalls for arm64 (msync, pread64, setreuid and setregid)
340036 arm64: Unhandled instruction |d4 (multiple structures, no offset)
340236 arm64: unhandled syscalls: mknodat, fchdir, chroot, fchownat
340509 arm64: unhandled instruction fcvtas
340630 arm64: fchmod (52) and fchown (55) syscalls not recognized
340632 arm64: unhandled instruction fcvtas
340722 Resolve "UNKNOWN attrlist flags 0:0x10000000"
340725 AVX2: Incorrect decoding of vpbroadcast{ b,w} reg,reg forms

50

OLDER NEWS

340788 warning: unhandled syscall: 318 (getrandom)

340807 dislnstr(arm): unhandled instruction: OXEE989B20

340856 dislnstr(arm64): unhandled instruction Ox1E634C45 (fcsel)

340922 arm64: unhandled getgroups/setgroups syscalls

350251 Fix typoin VEX utility program (test_main.c).

350407 arm64: unhandled instruction ucvtf (vector, integer)

350809 none/tests/async-sigs breaks when run under cron on Solaris
350811 update README.solaris after r15445

350813 Use handwritten memcheck assembly helpers on x86/Solaris|..]
350854 strangecodein VG _(load ELF)()

351140 arm64 syscalls setuid (146) and setresgid (149) not implemented
n-i-bz DRD and Helgrind: Handle Imbe_CancelReservation (clrex on ARM)
n-i-bz Add missing]] to terminate CDATA.

n-i-bz Glibc versions prior to 2.5 do not define PTRACE_GETSIGINFO
n-i-bz Enable sys fadvise64 64 on arm32.

n-i-bz Add test casesfor all remaining AArch64 SIMD, FP and memory insns.
n-i-bz Add test casesfor al known arm64 |oad/store instructions.

n-i-bz PRE(sys_openat): when checking whether ARG1 == VKI_AT_FDCWD [..]
n-i-bz Add detection of old ppc32 magic instructions from bug 278808.
n-i-bz exp-dhat: Implement missing function "dh_malloc_usable size".
n-i-bz arm64: Implement "fcvtpu w, s".

n-i-bz arm64: implement ADDP and various others

n-i-bz arm64: Implement { S,U} CVTF (scalar, fixedpt).

n-i-bz arm64: enable FCVT{A,N} S X,S.

(3.10.1: 25 November 2014, vex r3026, valgrind r14785)

Release 3.10.0 (10 September 2014)

3.10.0 is afeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, MIPS32/Android, X86/Android, X86/MacOSX 10.9
and AMD64/MacOSX 10.9. Support for MacOSX 10.8 and 10.9 is

significantly improved relative to the 3.9.0 release.

* PLATFORM CHANGES

* Support for the 64-bit ARM Architecture (AArch64 ARMv8). This port
ismostly complete, and is usable, but some SIMD instructions are as
yet unsupported.

* Support for little-endian variant of the 64-bit POWER architecture.

* Support for Android on MIPS32.

* Support for 64bit FPU on MIPS32 platforms.

* Both 32- and 64-bit executables are supported on MacOSX 10.8 and 10.9.

* Configuration for and running on Android targets has changed.
See README.android in the source tree for details.

51

OLDER NEWS

* DEPRECATED FEATURES

* --db-attach is now deprecated and will be removed in the next
valgrind feature release. The built-in GDB server capabilities are
superior and should be used instead. Learn more here:
http://valgrind.org/docs/manual/manual -core-adv.html#manual -core-adv.gdbserver

* TOOL CHANGES

* Memcheck:

- Client code can now selectively disable and re-enable reporting of
invalid address errors in specific ranges using the new client
requests VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE and
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE.

- Leak checker: thereis anew leak check heuristic called
"length64". Thisis used to detect interior pointers pointing 8
bytes inside a block, on the assumption that the first 8 bytes
holds the value "block size - 8". Thisisused by
sgliteBMemMalloc, for example.

- Checking of system call parameters: if a syscall parameter
(e.g. bind struct sockaddr, sendmsg struct msghdr, ...) has
severa fields not initialised, an error is now reported for each
field. Previously, an error was reported only for the first
uninitialised field.

- Mismatched alloc/free checking: a new flag
--show-mismatched-frees=nolyes [yes] makes it possible to turn off
such checksif necessary.

* Helgrind:
- Improvements to error messages:

0 Race condition error message involving heap allocated blocks also
show the thread number that allocated the raced-on block.

o All locks referenced by an error message are now announced.
Previoudly, some error messages only showed the lock addresses.

0 The message indicating where alock was first observed now also
describes the address/location of the lock.

- Helgrind now understands the Ada task termination rules and
creates a happens-before relationship between a terminated task
and its master. This avoids some false positives and avoids abig
memory leak when alot of Adatasks are created and terminated.
The interceptions are only activated with forthcoming rel eases of
gnatpro >= 7.3.0w-20140611 and gcc >= 5.0.

- A new GDB server monitor command "info locks" giving thelist of
locks, their location, and their status.

* Callgrind:

- callgrind_control now supports the --vgdb-prefix argument,

52

OLDER NEWS

which is needed if valgrind was started with this same argument.

* OTHER CHANGES

* Unwinding through inlined function calls. Stack unwinding can now
make use of Dwarf3 inlined-unwind information if it is available.
The practical effect isthat inlined calls become visible in stack
traces. The suppression matching machinery has been adjusted
accordingly. Thisis controlled by the new option
--read-inline-info=yeg|no. Currently thisis enabled by default
only on Linux and Android targets and only for the tools Memcheck,
Helgrind and DRD.

* Valgrind can now read EXIDX unwind information on 32-bit ARM
targets. If an object contains both CFl and EXIDX unwind
information, Valgrind will prefer the CFl over the EXIDX. This
facilitates unwinding through system libraries on arm-android
targets.

* Address description logic has been improved and is now common
between Memcheck and Helgrind, resulting in better address
descriptions for some kinds of error messages.

* Error messages about dubious arguments (eg, to malloc or calloc) are
output like other errors. This means that they can be suppressed
and they have a stack trace.

* The C++ demangler has been updated for better C++11 support.
* New and modified GDB server monitor features:
- Thread local variables/storage (__thread) can now be displayed.

- The GDB server monitor command "v.info location <address>"
displays information about an address. The information produced
depends on the tool and on the options given to valgrind.
Possibly, the following are described: global variables, local
(stack) variables, allocated or freed blocks, ...

- The option "--vgdb-stop-at=eventl,event2,..." alowsthe user to
ask the GDB server to stop at the start of program execution, at
the end of the program execution and on Valgrind internal errors.

- A new monitor command "v.info stats" shows various Valgrind core
and tool statistics.

- A new monitor command "v.set hostvisibility" allows the GDB server
to provide access to Valgrind internal host status/memory.

* A new option "--aspace-minaddr=<address>" can in some situations
allow the use of more memory by decreasing the address above which
Valgrind maps memory. It can also be used to solve address
conflicts with system libraries by increasing the default value.

See user manual for details.

* The amount of memory used by Valgrind to store debug info (unwind
info, line number information and symbol data) has been
significantly reduced, even though Valgrind now reads more

53

OLDER NEWS

information in order to support unwinding of inlined function calls.
* Dwarf3 handling with --read-var-info=yes has been improved:
- Adaand C struct containing VLASs no longer cause a "bad DIE" error

- Code compiled with
-ffunction-sections -fdata-sections -WI,--gc-sections
no longer causes assertion failures.

* |mproved checking for the --sim-hints= and --kernel-variant=
options. Unknown strings are now detected and reported to the user
as a usage error.

* The semantics of stack start/end boundariesin the valgrind.h
VALGRIND_STACK_REGISTER client request has been clarified and
documented. The convention isthat start and end are respectively
the lowest and highest addressable bytes of the stack.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

175819 Support for ipv6 socket reporting with --track-fds

232510 make distcheck fails

249435 Analyzing wine programs with callgrind triggers a crash

278972 support for inlined function calls in stacktraces and suppression
==199144

291310 FXSAVE instruction marks memory as undefined on amd64

303536 ioctl for SIOCETHTOOL (ethtool (8)) isn't wrapped

308729 vex x86->IR: unhandled instruction bytes Oxf 0x5 (syscall)

315199 vgcorefile for threaded app does not show which thread crashed

315952 tun/tap ioctls are not supported

323178 Unhandled instruction: PLDW register (ARM)

323179 Unhandled instruction: PLDW immediate (ARM)

324050 Helgrind: SEGV because of unaligned stack when using movdga

325110 Add test-cases for Power |SA 2.06 insns: divdo/divdo. and divduo/divduo.

325124 [MIPSEL] Compilation error

325477 Phase 4 support for IBM Power ISA 2.07

325538 cavium octeon mips64, valgrind reported "dumping core” [...]

325628 Phase 5 support for IBM Power ISA 2.07

325714 Empty vgcore but RLIMIT_CORE is big enough (too big)

325751 Missing the two privileged Power PC Transactional Memory Instructions

325816 Phase 6 support for IBM Power ISA 2.07

325856 Make SGCheck fail gracefully on unsupported platforms

326026 lop namesfor count leading zeros/sign hits incorrectly imply [..]

326436 DRD: False positivein libstdc++ std::list::push_back

326444 Cavium MIPS Octeon Specific Load Indexed Instructions

326462 Refactor vgdb to isolate invoker stuff into separate module

OLDER NEWS

326469 amd64->IR: 0x66 0xF 0x3A 0x63 0xC1 OXE (pcmpistri 0xOE)
326623 DRD: false positive conflict report in afield assignment
326724 Valgrind does not compile on OSX 1.9 Mavericks
326816 Intercept for __strncpy_sse? unaligned missing?
326921 coregrind failsto compile m_trampoline.S with MIPS/Linux port of V
326983 Clear direction flag after tests on and64.
327212 Do not prepend the current directory to absolute path names.
327223 Support for Cavium MIPS Octeon Atomic and Count Instructions
327238 Callgrind Assertion 'passed <= last_bb->cjmp_count' failed
327284 s390x: Fix trandation of the rishg instruction
327639 vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x34
327837 dwz compressed alternate .debug_info and .debug_str not read correctly
327916 DW_TAG_typedef may have no name
327943 s390x: add aredirection for the 'index’ function
328100 XABORT not implemented
328205 Implement additional Xen hypercalls
328454 add support Backtraces with ARM unwind tables (EXIDX)
328455 s390x: SIGILL after emitting wrong register pair for ldxbr
328711 vagrind.1 manpage "memcheck options" section is badly generated
328878 vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x14
329612 Incorrect handling of AT_BASE for image execution
329694 clang warns about using uninitialized variable
329956 valgrind crashes when Imw/stmw instructions are used on ppc64
330228 mmap must align to VKI_SHMLBA on mips32
330257 LLVM does not support “-mno-dynamic-no-pic’ option
330319 amd64->IR: unhandled instruction bytes: OxF 0x1 0xD5 (xend)
330459 --track-fds=yes doesn't track eventfds
330469 Add clock adjtime syscall support
330594 Missing sysalls on PowerPC / uClibc
330622 Add test to regression suite for POWER instruction: dcbzl
330939 Support for AMD's syscall instruction on x86
== 308729
330941 Typo in PRE(poll) syscall wrapper
331057 unhandled instruction: OXEEE01B20 (vfma.f64) (has patch)
331254 Fix expected output for memcheck/tests/dw4
331255 Fix race condition in test none/tests/coolo_sigaction
331257 Fix type of jump buffer in test none/tests/faultstatus
331305 configure uses bash specific syntax
331337 s390x WARNING: unhandled syscall: 326 (dup3)
331380 Syscall param timer_create(evp) points to uninitialised byte(s)
331476 Patch to handleioctl 0x5422 on Linux (x86 and amd64)
331829 Unexpected ioctl opcode sign extension
331830 ppc64: WARNING: unhandled syscall: 96/97
331839 drd/tests/sem_open specifies invalid semaphore name
331847 outcome of drd/tests/thread_name is nondeterministic
332037 Valgrind cannot handle Thumb "add pc, reg"
332055 drd asserts on platformswith VG_STACK_REDZONE_SZB == 0 and
consistency checks enabled
332263 intercepts for pthread rwlock _timedrdlock and
pthread rwlock_timedwrlock are incorrect
332265 drd could do with post-rwlock _init and pre-rwlock_destroy
client requests
332276 Implement additional Xen hypercalls
332658 Idrd.w rl, r2, [PC, #imm)] does not adjust for 32hit alignment
332765 Fix ms_print to create temporary filesin a proper directory
333072 drd: Add semaphore annotations
333145 Tests for missaligned PC+#imm access for arm
333228 AAarch64 Missing instruction encoding: mrs %[reg], ctr_el0

55

OLDER NEWS

333230 AAarch64 missing instruction encodings: dc, ic, dsb.

333248 WARNING: unhandled syscall: unix:443

333428 Idr.w pc [rD, #imm] instruction leads to assertion

333501 cachegrind: assertion: Cache set count is not a power of two.
== 336577
== 292281

333666 Recognize MPX instructions and bnd prefix.

333788 Valgrind does not support the CDROM_DISC_STATUS ioctl (has patch)

333817 Valgrind reports the memory areas written to by the SG_10
ioctl as untouched

334049 lzent failssilently (x86_32)

334384 Valgrind does not have support Little Endian support for
IBM POWER PPC 64

334585 recvmmsg unhandled (+patch) (arm)

334705 sendmsg and recvmsg should guard against bogus msghdr fields.

334727 Build fails with -Werror=format-security

334788 clarify doc about --log-file initial program directory

334834 PPC64 Little Endian support, patch 2

334836 PPC64 Little Endian support, patch 3 testcase fixes

334936 patch to fix false positiveson alsa SNDRV_CTL_* ioctls

335034 Unhandled ioctl: HCIGETDEVLIST

335155 vgdb, fix error print statement.

335262 arm64: movi 8hit version is not supported

335263 arm64: dmb instruction is not implemented

335441 unhandled ioctl 0x8905 (SIOCATMARK) when running wine under valgrind

335496 arm64: shc/abe instructions are not implemented

335554 arm64: unhandled instruction: abs

335564 arm64:; unhandled instruction: fcvtpu Xn, Sn

335735 arm64: unhandled instruction: cnt

335736 arm64: unhandled instruction: uaddlv

335848 arm64: unhandled instruction: { s,u} cvtf

335902 arm64: unhandled instruction: dli

335903 arm64: unhandled instruction; umull (vector)

336055 arm64: unhandled instruction; mov (element)

336062 arm64: unhandled instruction: shrn{,2}

336139 mip64: [...] valgrind hangs and spinson asingle core|...]

336189 arm64: unhandled Instruction: mvn

336435 Valgrind hangsin pthread spin_lock consuming 100% CPU

336619 valgrind --read-var-info=yes doesn't handle DW_TAG _restrict_type

336772 Make moans about unknown ioctls more informative

336957 Add a section about the Solaris/illumos port on the webpage

337094 ifunc wrapper is broken on ppc64

337285 fentl commands F OFD_SETLK, F OFD_SETLKW, and F OFD_GETLK not supported

337528 leak check heuristic for block prefixed by length as 64bit number
337740 Implement additional Xen hypercalls

337762 guest_arm64 tolR.c:4166 (dis ARM64 load_store): Assertion "0’ failed.
337766 arm64-linux: unhandled syscalls mlock (228) and mlockall (230)
337871 deprecate --db-attach

338023 Add support for all V4L2/mediaioctls

338024 inlined functions are not shown if DW_AT _rangesis used
338106 Add support for 'kemp' syscall

338115 DRD: computed conflict set differs from actual after fork

338160 implement display of thread local storage in gdbsrv

338205 configure.ac and check for -Wno-tautol ogical -compare

338300 coredumps are missing one byte of every segment

338445 amd64 vhit-test fails with unknown opcodes used by arm64 VEX
338499 --sim-hints parsing broken due to wrong order in tokens

338615 suppress glibc 2.20 optimized stremp implementation for ARMv7

56

OLDER NEWS

338681 Unable to unwind through clone thread created on i386-linux

338698 race condition between gdbsrv and vgdb on startup

338703 helgrind on arm-linux gets false positives in dynamic loader

338791 dt dwz files can be relative of debug/main file

338878 on MacOS: assertion 'VG_IS PAGE_ALIGNED(clstack_end+1) failed
338932 build V-trunk with gec-trunk

338974 glibc 2.20 changed size of struct sigaction sa flagsfield on s390
345079 Fix build problemsin VEX/useful/test_main.c

n-i-bz Fix KVM_CREATE_IRQCHIP ioctl handling

n-i-bz s390x: Fix memory corruption for multithreaded applications

n-i-bz vex aam->IR: allow PC as basereg in some LDRD cases

n-i-bz internal error in Valgrind if vgdb transmit signals when ptrace invoked
n-i-bz Fix mingw64 support in valgrind.h (dev@, 9 May 2014)

n-i-bz drd manual: Document how to C++11 programs that use class "std::thread"
n-i-bz Add command-line option --default-suppressions

n-i-bz Add support for BLKDISCARDZEROES ioctl

n-i-bz ppc32/64: fix aregression with the mtfshO/mtfsbl instructions

n-i-bz Add support for sys pivot_root and sys unshare

(3.10.0.BETAL: 2 September 2014, vex r2940, valgrind r14428)

(3.10.0.BETA2: 8 September 2014, vex r2950, valgrind r14503)
(3.10.0: 10 September 2014, vex r2950, valgrind r14514)

Release 3.9.0 (31 October 2013)

3.9.0 isafeature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, ARM/Android,
X86/Android, X86/MacOSX 10.7 and AMD64/MacOSX 10.7. Support for
MacOSX 10.8 is significantly improved relative to the 3.8.0 release.

* PLATFORM CHANGES

* Support for MIPS64 LE and BE running Linux. Valgrind has been
tested on M1PS64 Dehian Squeeze and Debian Wheezy distributions.

* Support for MIPS DSP ASE on MIPS32 platforms.

* Support for s390x Decimal Floating Point instructions on hosts that
have the DFP facility installed.

* Support for POWERS (Power |SA 2.07) instructions

* Support for Intel AV X2 instructions. Thisisavailable only on 64
bit code.

* |nitial support for Intel Transactional Synchronization Extensions,
both RTM and HLE.

* |nitial support for Hardware Transactional Memory on POWER.

* Improved support for MacOSX 10.8 (64-bit only). Memcheck can now
run large GUI apps tolerably well.

57

OLDER NEWS

* TOOL CHANGES

* Memcheck:

- Improvements in handling of vectorised code, leading to
significantly fewer false error reports. Y ou need to use the flag
--partial-loads-ok=yes to get the benefits of these changes.

- Better control over the leak checker. It isnow possibleto
specify which leak kinds (definite/indirect/possible/reachable)
should be displayed, which should be regarded as errors, and which
should be suppressed by agiven leak suppression. Thisis done
using the options --show-leak-kinds=kind1,kind2,..,
--errors-for-leak-kinds=kind1,kind2,.. and an optional
"match-leak-kinds:" line in suppression entries, respectively.

Note that generated leak suppressions contain this new line and

are therefore more specific than in previous releases. To get the
same behaviour as previous releases, remove the "match-leak-kinds:"
line from generated suppressions before using them.

- Reduced "possible leak" reports from the leak checker by the use
of better heuristics. The available heuristics provide detection
of valid interior pointers to std::stdstring, to new[] allocated
arrays with elements having destructors and to interior pointers
pointing to an inner part of a C++ object using multiple
inheritance. They can be selected individually using the
option --leak-check-heuristics=heur1,heur2,...

- Better control of stacktrace acquisition for heap-allocated
blocks. Using the --keep-stacktraces option, it is possible to
control independently whether a stack trace is acquired for each
alocation and deallocation. This can be used to create better
"use after free" errors or to decrease Valgrind's resource
consumption by recording less information.

- Better reporting of leak suppression usage. Thelist of used
suppressions (shown when the -v option is given) now shows, for
each leak suppressions, how many blocks and bytes it suppressed
during the last leak search.

* Helgrind:
- False errors resulting from the use of statically initialised
mutexes and condition variables (PTHREAD_MUTEX_INITIALISER, etc)

have been removed.

- False errors resulting from the use of pthread cond waits that
timeout, have been removed.

* OTHER CHANGES

* Some attempt to tune Valgrind's space requirements to the expected
capabilities of the target:

- The default size of the trandglation cache has been reduced from 8

sectors to 6 on Android platforms, since each sector occupies
about 40M B when using Memcheck.

58

OLDER NEWS

- The default size of the translation cache has been increased to 16
sectors on al other platforms, reflecting the fact that large
applications require instrumentation and storage of huge amounts
of code. For similar reasons, the number of memory mapped
segments that can be tracked has been increased by a factor of 6.

- In all cases, the maximum number of sectorsin the translation
cache can be controlled by the new flag --num-transtab-sectors.

* Changesin how debug info (line numbers, etc) is read:

- Valgrind no longer temporarily mmaps the entire object to read
fromit. Instead, reading is done through a small fixed sized
buffer. Thisavoids virtual memory usage spikes when Valgrind
reads debuginfo from large shared objects.

- A new experimental remote debug info server. Valgrind can read
debug info from a different machine (typically, abuild host)
where debuginfo objects are stored. This can save alot of time
and hassle when running Valgrind on resource-constrained targets
(phones, tablets) when the full debuginfo objects are stored
somewhere else. Thisis enabled by the --debuginfo-server=
option.

- Consistency checking between main and debug objects can be
disabled using the --all ow-mismatched-debuginfo option.

* Stack unwinding by stack scanning, on ARM. Unwinding by stack
scanning can recover stack traces in some cases when the normal
unwind mechanismsfail. Stack scanning is best described as"a
nasty, dangerous and misleading hack” and so is disabled by default.
Use --unw-stack-scan-thresh and --unw-stack-scan-frames to enable
and control it.

* Detection and merging of recursive stack frame cycles. When your
program has recursive algorithms, this limits the memory used by
Valgrind for recorded stack traces and avoids recording
uninteresting repeated calls. Thisis controlled by the command
line option --merge-recursive-frame and by the monitor command
"v.set merge-recursive-frames”.

* File name and line numbers for used suppressions. Thelist of used
suppressions (shown when the -v option is given) now shows, for each
used suppression, the file name and line number where the suppression
is defined.

* New and modified GDB server monitor features:
- valgrind.h has anew client request, VALGRIND_MONITOR_COMMAND,
that can be used to execute gdbserver monitor commands from the

client program.

- A new monitor command, "v.info open_fds", that givesthelist of
open file descriptors and additional details.

- An optional message in the "v.info n_errs found" monitor command,
for example "v.info n_errs found test 1234 finished", allowing a

59

OLDER NEWS

comment string to be added to the process output, perhaps for the
purpose of separating errors of different tests or test phases.

- A new monitor command "v.info execontext" that shows information
about the stack traces recorded by Valgrind.

- A new monitor command "v.do expensive sanity check general” to run
some internal consistency checks.

* New flag --sigill-diagnostics to control whether a diagnostic
message is printed when the J T encounters an instruction it can't
translate. The actual behavior -- delivery of SIGILL to the
application -- is unchanged.

* The maximum amount of memory that Valgrind can use on 64 bit targets
has been increased from 32GB to 64GB. This should make it possible
to run applications on Memcheck that natively require up to about 35GB.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

123837 system call: 4th argument is optional, depending on cmd

135425 memcheck should tell you where Freed blocks were Mallocd

164485 VG_N_SEGNAMES and VG_N_SEGMENTS are (till) too small
207815 Adds some of the drmioctls to syswrap-linux.c

251569 vex amd64->IR: OxF 0x1 0xF9 OxBF 0x90 0xDO0 0x3 0x0 (RDTSCP)
252955 Impossible to compile with ccache

253519 Memcheck reports auxv pointer accesses asinvalid reads.

263034 Crash when loading some PPC64 binaries

269599 |ncrease deepest backtrace

274695 s390x: Support "compare to/from logical" instructions (z196)

275800 s390x: Autodetect cache info (part 2)

280271 Valgrind reports possible memory leaks on still-reachable std::string
284540 Memcheck shouldn't count suppressions matching still-reachable [..]
289578 Backtraces with ARM unwind tables (stack scan flags)

296311 Wrong stack traces due to -fomit-frame-pointer (x86)

304832 ppc32: build failure

305431 Usefind_buildid shdr fallback for separate .debug files

305728 Add support for AV X2 instructions

305948 ppc64: code generation for ShiD64 / ShrD64 asserts

306035 s390x: Fix IR generation for LAAG and friends

306054 s390x: Condition code computation for convert-to-int/logical

306098 s390x: aternate opcode form for convert to/from fixed

306587 Fix cache line detection from auxiliary vector for PPC.

306783 Mips unhandled syscall : 4025 / 4079 /4182

307038 DWARF2 CFlI reader: unhandled DW_OP_ opcode 0x8 (DW_OP_constlu et al)
307082 HG false positive: pthread cond_destroy: destruction of unknown CV
307101 sys capget second argument can be NULL

60

OLDER NEWS

307103 sys openat: If pathname is absolute, then dirfd isignored.

307106 amd64->IR: fO Of c0 02 (lock xadd byte)

307113 s390x: DFP support

307141 vagrind doest work in mips-linux system

307155 filter_gdb should filter out syscall-template. ST _PSEUDO

307285 x86_amd64 feature test for avx in test suite iswrong

307290 memcheck overlap testcase needs memcpy version filter

307463 Please add "&limit=0" to the "all open bugs" link

307465 --show-possibly-lost=no should reduce the error count / exit code
307557 Leakson Mac OS X 10.7.5 libraries at Imagel oader::recursivel nit[..]
307729 pkgconfig support broken valgrind.pc

307828 Memcheck false errors SSE optimized wescpy, wescmp, wesrchr, weschr
307955 Building valgrind 3.7.0-r4 fails in Gentoo AMD64 when using clang
308089 Unhandled syscall on ppc64: prctl

308135 PPC32 MPC8xx has 16 bytes cache size

308321 testsuite memcheck filter interferes with gdb _filter

308333 == 307106

308341 vgdb should report process exit (or fatal signal)

308427 s390 memcheck reports tsearch cjump/cmove depends on uninit
308495 Remove build dependency on installed Xen headers

308573 Interna error on 64-bit instruction executed in 32-bit mode

308626 == 308627

308627 pmovmskb validity bit propagation isimprecise

308644 vgdb command for having the info for the track-fds option

308711 give moreinfo about aspacemgr and arenasin out_of _memory
308717 ARM: implement fixed-point VCVT.F64.[SU]32

308718 ARM implement SMLALBB family of instructions

308886 Missing support for PTRACE_SET/GETREGSET

308930 syscall name _to_handle at (303 on amd64) not handled

309229 V-hit tester does not report number of tests generated

309323 print unrecognized instuction on MIPS

309425 Provide a--sigill-diagnostics flag to suppressillegal [..]

309427 SSE optimized stpnepy trigger uninitialised value [..] errors
309430 Sdf hosting ppc64 encounters avassert error on operand type
309600 valgrind is ahbit confused about 0-sized sections

309823 Generate errors for still reachable blocks

309921 PCMPISTRI validity bit propagation isimprecise

309922 none/tests/ppcba/test_dfp5 sometimesfails

310169 Thelop_CmpORD class of lopsis not supported by the vbit checker.
310424 --read-var-info does not properly describe static variables

310792 search additional path for debug symbols

310931 s390x: Message-security assist (MSA) instruction extension [..]
311100 PPC DFP implementation of the integer operandsisinconsistent |[..]
311318 ARM: "128-hit constant is not implemented” error message
311407 ssse3 beopy (actually converted memcpy) causesinvalid read [..]
311690 V crashes because it redirects branches inside of aredirected function
311880 x86 64: make regtest hangs at shell_validl

311922 WARNING: unhandled syscall: 170

311933 == 251569

312171 ppc: insn selection for DFP

312571 Rounding mode call wrong for the DFP lops]..]

312620 Changeto lop_D32toD64 [..] for s390 DFP support broke ppc [..]
312913 Dangling pointers error should also report the alloc stack trace
312980 Building on Mountain Lion generates some compiler warnings
313267 Adding MIPS64/Linux port to Valgrind

313348 == 251569

313354 == 251569

313811 Buffer overflow in assert_fail

61

OLDER NEWS

314099 coverity pointed out error in VEX guest_ppc_tolR.c insn_suffix

314269 ppc: dead code in insn selection

314718 ARM: implement integer divide instruction (sdiv and udiv)

315345 cl-format.xml and callgrind/dump.c don't agree on using cfl= or cfi=
315441 sendmsg syscall should ignore unset msghdr msg_flags

315534 msgrev inside athread causes valgrind to hang (block)

315545 Assertion '(UChar*)sec->tt[tteNo].tcptr <= (UChar*)hcode' failed
315689 dislnstr(thumb): unhandled instruction; 0xF852 0xOE10 (LDRT)

315738 dislnstr(arm): unhandled instruction: OXEEBEOBEE (vcvt.s32.f64)
315959 valgrind man page has bogus SGCHECK (and no BBV) OPTIONS section
316144 vagrind.1 manpage contains unknown ??? strings|..]

316145 callgrind command line options in manpage reference (unknown) [..]
316145 callgrind command line options in manpage reference[..]

316181 drd: Fixed a4x slowdown for certain applications

316503 Valgrind does not support SSE4 "movntdga” instruction

316535 Use of [signed int| instead of [size_t| in valgrind messages

316696 fluidanimate program of parsec 2.1 stuck

316761 syscall open_by handle at (304 on amd64, 342 on x86) not handled
317091 Use-WI,-Ttext-segment when static linking if possible|..]

317186 "Impossible happens' when occurs VCVT instruction on ARM

317318 Support for Threading Building Blocks "scalable_malloc"

317444 amd64->IR: 0xC4 0x41 0x2C 0xC2 0xD2 0x8 (vcmpeq_ugps)

317461 Fix BMI assembler configure check and avx2/bmi/fmavgtest preregs
317463 bmi testcase IR SANITY CHECK FAILURE

317506 memcheck/tests/vhit-test fails with unknown opcode after [..]

318050 libmpiwrap failsto compile with out-of-source build

318203 setsockopt handling needs to handle SOL_SOCKET/SO_ATTACH_FILTER
318643 annotate trace memory testsinfinite loop on arm and ppc [..]

318773 amd64->IR: 0xF3 0x48 0xOF 0xBC 0xC2 0xC3 0x66 0xO0F

318929 Crash with: dislnstr(thumb): OxF321 0x0001 (ssat16)

318932 Add missing PPC64 and PPC32 system call support

319235 --db-attach=yesis broken with Y ama (ptrace scoping) enabled

319395 Crash with unhandled instruction on STRT (Thumb) instructions
319494 VEX Makefile-gce standalone build update after r2702

319505 [MIPSEL] Crash: unhandled UNRAY operator.

319858 dislnstr(thumb): unhandled instruction on instruction STRBT

319932 dislnstr(thumb): unhandled instruction on instruction STRHT

320057 Problems when we try to mmap more than 12 memory pages on MI1PS32
320063 Memory from PTRACE_GET_THREAD_AREA isreported uninitialised
320083 dislnstr(thumb): unhandled instruction on instruction LDRBT

320116 bind on AF_BLUETOOTH produces warnings because of sockaddr_rc padding
320131 WARNING: unhandled syscall: 369 on ARM (prlimit64)

320211 Stack buffer overflow in ./coregrind/m_main.c with huge TMPDIR
320661 vgModuleLoca read elf debug_info(): "Assertion '!di->soname’
320895 add fanotify support (patch included)

320998 vex amd64->IR pcmpestri and pcmpestrm SSE4.2 instruction

321065 Valgrind updatesfor Xen 4.3

321148 Unhandled instruction:
321363 Unhandled instruction:
321364 Unhandled instruction:
321466 Unhandled instruction:
321467 Unhandled instruction:
321468 Unhandled instruction:
321619 Unhandled instruction:
321620 Unhandled instruction:
321621 Unhandled instruction:
321692 Unhandled instruction:
321693 Unhandled instruction:

PLI (Thumb 1, 2, 3)

SSAX (ARM + Thumb)
SXTAB16 (ARM + Thumb)
SHASX (ARM + Thumb)
SHSAX (ARM + Thumb)
SHSUB16 (ARM + Thumb)
SHSUB8 (ARM + Thumb)
UASX (ARM + Thumb)
USAX (ARM + Thumb)
UQADD16 (ARM + Thumb)
LDRSBT (Thumb)

62

OLDER NEWS

321694 Unhandled instruction;: UQASX (ARM + Thumb)

321696 Unhandled instruction; UQSAX (Thumb + ARM)

321697 Unhandled instruction;: UHASX (ARM + Thumb)

321703 Unhandled instruction;: UHSAX (ARM + Thumb)

321704 Unhandled instruction: REVSH (ARM + Thumb)

321730 Add cg_diff and cg_merge man pages

321738 Add vgdb and valgrind-listener man pages

321814 == 315545

321891 Unhandled instruction: LDRHT (Thumb)

321960 pthread create() then aloca() causing invalid stack write errors
321969 ppc32 and ppc64 don't support [If]setxattr

322254 Show threadname together with tid if set by application

322294 Add initial support for IBM Power ISA 2.07

322368 Assertion failure in wathread_hijack under OS X 10.8

322563 vex mips->IR: 0x70 0x83 0xFO 0x3A

322807 VALGRIND_PRINTF_BACKTRACE writes callstack to xml and text to stderr
322851 ObXXX binary literal syntax is not standard

323035 Unhandled instruction: LDRSHT(Thumb)

323036 Unhandled instruction;: SMMLS (ARM and Thumb)

323116 The memcheck/tests/ppc64/power |SA2 05.c failsto build [..]
323175 Unhandled instruction: SMLALD (ARM + Thumb)

323177 Unhandled instruction; SMLSLD (ARM + Thumb)

323432 Cadlling pthread _cond_destroy() or pthread mutex_destroy() [..]
323437 Phase 2 support for IBM Power ISA 2.07

323713 Support mmxext (integer sse) subset on 1386 (athlon)

323803 Transactional memory instructions are not supported for Power
323893 SSE3 not available on amd cpusin valgrind

323905 Probable false positive from Valgrind/drd on close()

323912 valgrind.h header isn't compatible for mingw64

324047 Valgrind doesn't support [LDR,ST]{ S}[B,H]T ARM instructions
324149 helgrind: When pthread_cond_timedwait returns ETIMEDOUT [..]
324181 mmap does not handle MAP_32BIT

324227 memcheck false positive leak when athread calls exit+block [..]
324421 Support for fanotify APl on ARM architecture

324514 gdbserver monitor cmd output behaviour consistency |[..]

324518 ppc64: Emulation of dcbt instructions does not handle|[..]

324546 noneltests/ppc32test_isa 2 07 part2 requests -m64

324582 When access is made to freed memory, report both allocation [..]
324594 Fix overflow computation for Power 1SA 2.06 insns. mulldo/mulldo.
324765 ppcb4: illegal instruction when executing none/tests/ppc64/jm-misc
324816 Incorrect VEX implementation for xscvspdp/xvevspdp for SNaN inputs
324834 Unhandled instructions in Microsoft C run-time for x86_64
324894 Phase 3 support for IBM Power ISA 2.07

326091 drd: Avoid false race reports from optimized strlen() impls
326113 valgrind libvex hwcaps error on AMD64

n-i-bz Some wrong command line options could be ignored

n-i-bz patch to allow fair-sched on android

n-i-bz report error for vgdb snapshot requested before execution

n-i-bz same as 303624 (fixed in 3.8.0), but for x86 android

(3.9.0: 31 October 2013, vex r2796, valgrind r13708)

Release 3.8.1 (19 September 2012)

3.8.1lisabug fix release. It fixes some assertion failuresin 3.8.0
that occur moderately frequently in real use cases, adds support for

63

OLDER NEWS

some missing instructions on ARM, and fixes a deadlock condition on
MacOSX. If you package or deliver 3.8.0 for others to use, you might
want to consider upgrading to 3.8.1 instead.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

284004 == 301281

289584 Unhandled instruction: OxF 0x29 OXE5 (MOVAPS)

295808 amd64->IR: 0xF3 OxF 0xBC O0xCO (TZCNT)

298281 wcslen causes false(?) uninitialised value warnings

301281 valgrind hangs on OS X when the process calls system()

304035 dislnstr(arm): unhandled instruction OxE1023053

304867 implement MOV BE instruction in x86 mode

304980 Assertion'lo <= hi' failed in vgModuleLocal_find _rx_mapping
305042 amd64: implement OF 7F encoding of movq between two registers
305199 ARM: implement QDADD and QDSUB

305321 amd64->IR: OxF 0xD OxC (prefetchw)

305513 killed by fatal signal: SIGSEGV

305690 DRD reporting invalid semaphore when sem_trywait fails
305926 Invalid alignment checks for some AV X instructions

306297 dislnstr(thumb): unhandled instruction OXxE883 0x000C

306310 3.8.0 release tarball missing somefiles

306612 RHEL 6 glibc-2.X default suppressions need /lib*/libc-* patterns
306664 vex amd64->IR: 0x66 OxF 0x3A 0x62 0xD1 0x46 0x66 OxF
n-i-bz shmat of a segment > 4Gb does not work

n-i-bz ssimulate_control_c script wrong USR1 signal number on mips
n-i-bz vgdb ptrace calls wrong on mips|...]

n-i-bz Fixesfor more MPI false positives

n-i-bz exp-sgcheck's memcpy causes programs to segfault

n-i-bz OSX build w/ clang: asserts at startup

n-i-bz Incorrect undef'dness prop for lop DPBtoBCD and lop BCDtoDPB
n-i-bz fix a couple of union tag-vs-field mixups

n-i-bz OSX:use__ NR_poll_nocancel rather than _ NR_poll

The following bugs were fixed in 3.8.0 but not listed in this NEWS
file at thetime:

254088 Valgrind should know about UD2 instruction
301280 == 254088

301902 == 254088

304754 NEWS blows TeX'slittle mind

(3.8.1: 19 September 2012, vex r2537, valgrind r12996)

Release 3.8.0 (10 August 2012)

3.8.0 isafeature release with many improvements and the usual

OLDER NEWS

collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS/Linux, ARM/Android, X86/Android,
X86/MacOSX 10.6/10.7 and AMD64/MacOSX 10.6/10.7. Support for recent
distros and toolchain components (glibc 2.16, gcc 4.7) has been added.
Thereisinitia support for MacOSX 10.8, but it is not usable for

serious work at present.

* PLATFORM CHANGES

* Support for MIPS32 platforms running Linux. Valgrind has been
tested on MI1PS32 and MI1PS32r2 platforms running different Debian
Squeeze and MeeGo distributions. Both little-endian and big-endian
cores are supported. Thetools Memcheck, Massif and Lackey have
been tested and are known to work. See README.mips for more details.

* Preliminary support for Android running on x86.
* Preliminary (as-yet largely unusable) support for MacOSX 10.8.

* Support for Intel AV X instructions and for AES instructions. This
support is available only for 64 bit code.

* Support for POWER Decimal Floating Point instructions.

* TOOL CHANGES

* Non-libc malloc implementations are now supported. Thisis useful
for tools that replace malloc (Memcheck, Massif, DRD, Helgrind).
Using the new option --soname-synonyms, such tools can be informed
that the malloc implementation is either linked statically into the
executable, or is present in some other shared library different
from libc.so. This makesit possible to process statically linked
programs, and programs using other malloc libraries, for example
TCMalloc or JEMalloc.

* For tools that provide their own replacement for malloc et al, the
option --redzone-size=<number> allows users to specify the size of
the padding blocks (redzones) added before and after each client
allocated block. Smaller redzones decrease the memory needed by
Valgrind. Bigger redzones increase the chance to detect blocks
overrun or underrun. Prior to this change, the redzone size was
hardwired to 16 bytesin Memcheck.

* Memcheck:

- Theleak check GDB server monitor command now can
control the maximum nr of loss records to output.

- Reduction of memory use for applications allocating
many blocks and/or having many partially defined bytes.

- Addition of GDB server monitor command 'block_list' that lists
the addresses/sizes of the blocks of aleak search loss record.

- Addition of GDB server monitor command ‘who_points_at' that lists
the locations pointing at a block.

65

OLDER NEWS

- If aredzonesize > Oisgiven, VALGRIND MALLOCLIKE _BLOCK now will
detect an invalid access of these redzones, by marking them
noaccess. Similarly, if aredzone sizeis given for amemory
pool, VALGRIND_MEMPOOL_ALLOC will mark the redzones no access.
This still allowsto find some bugsiif the user has forgotten to
mark the pool superblock noaccess.

- Performance of memory leak check has been improved, especially in
cases where there are many |eaked blocks and/or many suppression
rules used to suppress leak reports.

- Reduced noise (false positive) level on MacOSX 10.6/10.7, due to
more precise analysis, which isimportant for LLVM/Clang
generated code. Thisisat the cost of somewhat reduced
performance. Note there is no change to analysis precision or
costs on Linux targets.

* DRD:
- Added even more facilities that can help finding the cause of adata
race, namely the command-line option --ptrace-addr and the macro

DRD_STOP_TRACING_VAR(x). More information can be found in the manual.

- Fixed a subtle bug that could cause false positive data race reports.

* OTHER CHANGES

* The C++ demangler has been updated so as to work well with C++
compiled by up to at least g++ 4.6.

* Tool developers can make replacement/wrapping more flexible thanks
to the new option --soname-synonyms. Thiswas reported above, but
infact isvery general and appliesto all function
replacement/wrapping, not just to malloc-family functions.

* Round-robin scheduling of threads can be selected, using the new
option --fair-sched= yes. Prior to this change, the pipe-based
thread serialisation mechanism (which is still the default) could
give very unfair scheduling. --fair-sched=yesimproves
responsiveness of interactive multithreaded applications, and
improves repeatability of results from the thread checkers Helgrind
and DRD.

* For tool developers: support to run Valgrind on Valgrind has been
improved. We can now routinely Valgrind on Helgrind or Memcheck.

* gdbserver now shows the float shadow registers as integer
rather than float values, as the shadow values are mostly
used as bit patterns.

* Increased limit for the --num-callers command line flag to 500.

* Performance improvements for error matching when there are many
suppression records in use.

* Improved support for DWARF4 debugging information (bug 284184).

66

OLDER NEWS

* |nitial support for DWZ compressed Dwarf debug info.

* Improved control over the IR optimiser's handling of the tradeoff
between performance and precision of exceptions. Specifically,
--vex-iropt-precise-memory-exns has been removed and replaced by
--vex-iropt-register-updates, with extended functionality. This
allows the Valgrind gdbserver to always show up to date register
valuesto GDB.

* Modest performance gains through the use of trand ation chaining for
JIT-generated code.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (https://bugs.kde.org/enter _bug.cgi ?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that

are not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgi Zid=XXXXXX
where XXXXXX isthe bug number as listed below.

197914 Building valgrind from svn now requires automake-1.10

203877 increase to 16Mb maximum allowed alignment for memalign et al
219156 Handle statically linked malloc or other malloc lib (e.g. tcmalloc)
247386 make perf does not run all performance tests

270006 Valgrind scheduler unfair

270777 Adding MIPS/Linux port to Valgrind

270796 s390x: Removed broken support for the TSinsn

271438 Fix configure for proper SSE4.2 detection

273114 s390x: Support TR, TRE, TROO, TROT, TRTO, and TRTT instructions
273475 Add support for AV X instructions

274078 improved configure logic for mpicc

276993 fix mremap 'no thrash checks

278313 Fedora 15/x64: err read debug info with --read-var-info=yes flag
281482 memcheck incorrect byte allocation count in realloc() for silly argument
282230 group allocator for small fixed size, use it for MC_Chunk/SEc vbit
283413 Fix wrong sanity check

283671 Robustize alignment computation in LibVEX_Alloc

283961 Adding support for some HCI IOCTLs

284124 parse_type DIE: confused by: DWARF 4

284864 == 273475 (Add support for AV X instructions)

285219 Too-restrictive constraints for Thumb2 " SP plus/minus register"

285662 (MacOSX): Memcheck needs to replace memcpy/memmove

285725 == 273475 (Add support for AV X instructions)

286261 add wrapper for linux 12C_RDWR ioctl

286270 vgpreload is not friendly to 64->32 hit execs, gives Id.so warnings
286374 Running cachegrind with --branch-sim=yes on 64-bit PowerPC program fails
286384 configure fails "checking for a supported version of gcc"

286497 == 273475 (Add support for AV X instructions)

286596 == 273475 (Add support for AV X instructions)

286917 dislnstr(arm): unhandled instruction: QADD (also QSUB)

287175 ARM: scalar VFP fixed-point VCVT instructions not handled

287260 Incorrect conditional jump or move depends on uninitialised value(s)
287301 vex amd64->IR: 0x66 OxF 0x38 0x41 0xCO 0xB8 0x0 0x0 (PHMINPOSUW)

67

OLDER NEWS

287307 == 273475 (Add support for AV X instructions)

287858 VG_(strerror): unknown error

288298 (MacOSX) unhandled syscall shm_unlink

288995 == 273475 (Add support for AV X instructions)

289470 Loading of large Mach-O thin binariesfails.

289656 == 273475 (Add support for AV X instructions)

289699 vgdb connection in relay mode erroneously closed due to buffer overrun
289823 == 293754 (PCMPXSTRXx not implemented for 16-bit characters)
289839 s390x: Provide support for unicode conversion instructions

289939 monitor cmd ‘leak _check' with details about leaked or reachable blocks
290006 memcheck doesn't mark %xmm as initialized after "pcmpegw Yoxmm %xmm"
290655 Add support for AESKEY GENASSIST instruction

290719 valgrind-3.7.0 fails with automake-1.11.2 due to"pkglibdir" usage
290974 vgdb must align pagesto VKI_SHMLBA (16KB) on ARM

291253 ESregister not initialised in valgrind simulation

291568 Fix 3DNOW-related crashes with baseline x86_64 CPU (w patch)
291865 s390x: Support the "Compare Double and Swap" family of instructions
292300 == 273475 (Add support for AV X instructions)

292430 unrecognized instructionin__intel_get new_mem_ops _cpuid

292493 == 273475 (Add support for AV X instructions)

292626 Missing fentl F SETOWN_EX and F GETOWN_EX support

292627 Missing support for some SCSI ioctls

292628 none/tests/’x86/bugl25959-x86.c triggers undefined behavior

292841 == 273475 (Add support for AV X instructions)

292993 implement the getcpu syscall on amd64-linux

292995 Implement the “cross memory attach” syscallsintroduced in Linux 3.2
293088 Add some VEX sanity checks for ppc64 unhandled instructions
293751 == 290655 (Add support for AESKEY GENASSIST instruction)
293754 PCMPxSTRx not implemented for 16-hit characters

293755 == 293754 (No tests for PCMPxSTRx on 16-hit characters)

293808 CLFLUSH not supported by latest VEX for amd64

294047 valgrind does not correctly emulate prlimité4(..., RLIMIT_NOFILE, ...)
294048 MPSADBW instruction not implemented

294055 regtest none/tests/shell failswhen localeisnot setto C

294185 INT 0x44 (and others) not supported on x86 guest, but used by Jikes RVM
294190 --vgdb-error=xxx can be out of sync with errors shown to the user
294191 amd64: fnsave/frstor and 0x66 size prefixes on FP instructions

294260 disinstr AMD64: disInstr miscalculated next %orip

294523 --partial-loads-ok=yes causes fal se negatives

294617 vex amd64->IR: 0x66 OxF 0x3A OxDF 0xD1 0x1 OXE8 0x6A

294736 vex amd64->IR: 0x48 OxF 0xD7 0xD6 0x48 0x83

294812 patch allowing to run (on x86 at least) helgrind/drd on tool.

295089 can not annotate source for both helgrind and drd

295221 POWER Processor decimal floating point instruction support missing
295427 building for i386 with clang on darwinll requires "-new_linker linker"
295428 coregrind/m_main.c has incorrect x86 assembly for darwin

295590 Helgrind: Assertion 'cvi->nWaiters > 0' failed

295617 ARM - Add some missing syscalls

295799 Missing \n with get_vbitsin gdbserver when lineis % 80...]

296229 Linux user input device ioctls missing wrappers

296318 ELF Debug info improvements (more than one rx/rw mapping)

296422 Add trandation chaining support

296457 vex amd64->IR: 0x66 OxF 0x3A 0xDF 0xD1 0x1 OxE8 0x6A (dup of AES)
296792 valgrind 3.7.0: add SIOCSHWTSTAMP (0x89B0) ioctl wrapper
296983 Fix build issues on x86_64/ppc64 without 32-hit toolchains

297078 gdbserver signal handling problems]..]

297147 drd false positives on newly allocated memory

297329 disalow decoding of IBM Power DFP insns on some machines

68

OLDER NEWS

297497 POWER Processor decimal floating point instruction support missing
297701 Another aliasfor strncasecmp_| in libc-2.13.s0

297911 'invalid write' not reported when using APIs for custom mem allocators.
297976 s390x: revisit EX implementation

297991 Valgrind interferes with mmap()+ftell()

297992 Support systems missing WIFCONTINUED (e.g. pre-2.6.10 Linux)
297993 Fix compilation of valgrind with gcc -g3.

298080 POWER Processor DFP support missing, part 3

298227 == 273475 (Add support for AV X instructions)

298335 == 273475 (Add support for AV X instructions)

298354 Unhandled ARM Thumb instruction OXEBOD 0x0585 (streq)

298394 s390x: Don't bail out on an unknown machine model. [..]

298421 acceptd() syscall (366) support is missing for ARM

298718 vex amd64->IR: OxF 0xB1 OxCB 0x9C Ox8F 0x45

298732 valgrind installation problem in ubuntu with kernel version 3.x

298862 POWER Processor DFP instruction support missing, part 4

298864 DWARF reader mis-parses DW_FORM _ref addr

298943 massif asserts with --pages-as-heap=yes when brk is changing [..]
299053 Support DWARF4 DW_AT high_pc constant form

299104 == 273475 (Add support for AV X instructions)

299316 Helgrind: hg _main.c:628 (map_threads lookup): Assertion 'thr' failed.
299629 dup3() syscall (358) support ismissing for ARM

299694 POWER Processor DFP instruction support missing, part 5

299756 Ignore --free-fill for MEMPOOL _FREE and FREEL IKE client requests
299803 == 273475 (Add support for AV X instructions)

299804 == 273475 (Add support for AV X instructions)

299805 == 273475 (Add support for AV X instructions)

300140 ARM - Missing (T1) SMMUL

300195 == 296318 (ELF Debug info improvements (more than one rx/rw mapping))
300389 Assertion “are valid_hwcaps(VexArchAMDG64, [..])' failed.

300414 FCOM and FCOMP unimplemented for amd64 guest

301204 infinite loop in canonicaliseSymtab with ifunc symbol

301229 == 203877 (increase to 16Mb maximum allowed alignment for memalign etc)
301265 add x86 support to Android build

301984 configure script doesn't detect certain versions of clang

302205 Fix compiler warnings for POWER VEX code and POWER test cases
302287 Unhandled movbe instruction on Atom processors

302370 PPC: fnmadd, fnmsub, fnmadds, fnmsubs insns always negate the result
302536 Fix for the POWER Valgrind regression test: memcheck-1SA2.0.
302578 Unrecognized isntruction 0xc5 0x32 0xc2 Oxca 0x09 vempngess
302656 == 273475 (Add support for AV X instructions)

302709 valgrind for ARM needs extratls support for android emulator [..]
302827 add wrapper for COROM_GET_CAPABILITY

302901 Valgrind crashes with dwz optimized debuginfo

302918 Enable testing of the vmaddfp and vnsubfp instructions in the testsuite
303116 Add support for the POWER instruction popcntb

303127 Power test suite fixes for frsgrte, vrefp, and vrsgrtefp instructions.
303250 Assertion “instrs_in->arr_used <= 10000’ failed w/ OpenSSL code
303466 == 273475 (Add support for AV X instructions)

303624 segmentation fault on Android 4.1 (e.g. on Galaxy Nexus OMAP)
303963 strstr() function produces wrong results under valgrind callgrind
304054 CALL_FN_xx macros need to enforce stack alignment

304561 tee system call not supported

715750 (MacOSX): Incorrect invalid-address errors near OXFFFFxxxx (mozbug#)
n-i-bz Add missing gdbserver xml files for shadow registers for ppc32

n-i-bz Bypass gcc4.4/4.5 code gen bugs causing out of memory or asserts
n-i-bz Fix assert in gdbserver for watchpoints watching the same address

n-i-bz Fix false positivein sys _clone on amd64 when optional args|..]

69

OLDER NEWS

n-i-bz s390x: Shadow registers can now be examined using vgdb

(3.8.0-TEST3: 9 August 2012, vex r2465, valgrind r12865)
(38.0: 10 August 2012, vex r2465, valgrind r12866)

Release 3.7.0 (5 November 2011)

3.7.0 isafeature release with many significant improvements and the
usual collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, ARM/Android, X86/Darwin and AMD64/Darwin.
Support for recent distros and toolchain components (glibc 2.14, gcc

4.6, MacOSX 10.7) has been added.

* PLATFORM CHANGES

* Support for IBM z/Architecture (s390x) running Linux. Valgrind can
analyse 64-bit programs running on z/Architecture. Most user space
instructions up to and including z10 are supported. Valgrind has
been tested extensively on z9, z10, and z196 machines running SLES
10/11, RedHat 5/6m, and Fedora. The Memcheck and Massif tools are
known to work well. Callgrind, Helgrind, and DRD work reasonably
well on z9 and later models. See README.s390 for more details.

* Preliminary support for MacOSX 10.7 and XCode 4. Both 32- and
64-hit processes are supported. Some complex threaded applications
(Firefox) are observed to hang when run as 32 bit applications,
whereas 64-bit versions run OK. The cause is unknown. Memcheck
will likely report some false errors. In general, expect some rough
spots. Thisrelease also supports MacOSX 10.6, but drops support
for 10.5.

* Preliminary support for Android (on ARM). Valgrind can now run
large applications (eg, Firefox) on (eg) a Samsung Nexus S. See
README.android for more details, plus instructions on how to get
started.

* Support for the IBM Power 1SA 2.06 (Power7 instructions)

* General correctness and performance improvements for ARM/Linux, and,
by extension, ARM/Android.

* Further solidification of support for SSE 4.2 in 64-bit mode. AVX
instruction set support is under development but is not availablein
this release.

* Support for AIX5 has been removed.

* TOOL CHANGES
* Memcheck: some incremental changes:
- reduction of memory use in some circumstances

- improved handling of freed memory, which in some circumstances

70

OLDER NEWS

can cause detection of use-after-free that would previously have
been missed

- fix of alongstanding bug that could cause fal se negatives (missed
errors) in programs doing vector saturated narrowing instructions.

* Helgrind: performance improvements and major memory use reductions,
particularly for large, long running applications which perform many
synchronisation (lock, unlock, etc) events. Plus many smaller
changes:

- display of locksets for both threads involved in arace
- general improvements in formatting/clarity of error messages

- addition of facilities and documentation regarding annotation
of thread safe reference counted C++ classes

- new flag --check-stack-refs=nolyes [yed], to disable race checking
on thread stacks (a performance hack)

- new flag --free-is-write=nolyes [no], to enable detection of races
where one thread accesses heap memory but another one freesiit,
without any coordinating synchronisation event

* DRD: enabled XML output; added support for delayed thread deletion
in order to detect races that occur close to the end of athread
(--join-list-vol); fixed amemory leak triggered by repeated client
memory allocatation and deallocation; improved Darwin support.

* exp-ptrcheck: thistool has been renamed to exp-sgcheck

* exp-sgcheck: thistool has been reduced in scope so asto improve
performance and remove checking that Memcheck does better.
Specifically, the ability to check for overruns for stack and global
arrays is unchanged, but the ability to check for overruns of heap
blocks has been removed. The tool has accordingly been renamed to
exp-sgcheck ("Stack and Global Array Checking").

* OTHER CHANGES

* GDB server: Vagrind now has an embedded GDB server. That meansit
is possible to control aValgrind run from GDB, doing al the usual
things that GDB can do (single stepping, breakpoints, examining
data, etc). Tool-specific functionality is also available. For
example, it is possible to query the definedness state of variables
or memory from within GDB when running Memcheck; arbitrarily large
memory watchpoints are supported, etc. To usethe GDB server, start
Valgrind with the flag --vgdb-error=0 and follow the on-screen
instructions.

* Improved support for unfriendly self-modifying code: anew option
--smc-check=dll-non-fileis available. This adds the relevant
consistency checks only to code that originates in non-file-backed
mappings. In effect this confines the consistency checking only to
code that is or might be JIT generated, and avoids checks on code
that must have been compiled ahead of time. This significantly
improves performance on applications that generate code at run time.

71

OLDER NEWS

* |t is now possible to build aworking Valgrind using Clang-2.9 on
Linux.

* new client requests VALGRIND _{DISABLE,ENABLE} ERROR_REPORTING.
These enable and disable error reporting on a per-thread, and
nestable, basis. Thisisuseful for hiding errorsin particularly
troublesome pieces of code. The MPI wrapper library (libmpiwrap.c)
now uses this facility.

* Added the --mod-funcname option to cg_diff.

* FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX
where XXXXXX isthe bug number as listed below.

79311 malloc silly arg warning does not give stack trace

210935 port valgrind.h (not valgrind) to win32 to support client requests
214223 vagrind SIGSEGV on startup gecc 4.4.1 ppc32 (G4) Ubuntu 9.10
243404 Port to zSeries

243935 Helgrind: incorrect handling of ANNOTATE_HAPPENS BEFORE()/AFTER()
247223 non-x86: Suppress warning: 'regparm'’ attribute directive ignored
250101 huge "free" memory usage due to m_mallocfree.c fragmentation
253206 Some fixesfor the faultstatus testcase

255223 capget testcase fails when running as root

256703 xlc_dbl_u32.c testcase broken

256726 Helgrind tests have broken inline asm

259977 == 214223 (Vagrind segfaultsdoing __builtin_longjmp)

264800 testcase compile failure on zseries

265762 make public VEX headers compilable by G++ 3.x

265771 assertion in jumps.c (r11523) fails with glibc-2.3

266753 configure script does not give the user the option to not use QtCore
266931 gen_insn_test.pl is broken

266961 |d-linux.s0.2 i?786-linux strlen issues

266990 setnsinstruction causes false positive

267020 Make directory for temporary files configurable at run-time.

267342 == 267997 (segmentation fault on Mac OS 10.6)

267383 Assertion 'vgPlain_strlen(dir) + vgPlain_strlen(file) + 1 < 256' failed
267413 Assertion 'DRD_(g_threadinfo)[tid].synchr_nesting >= 1' failed.
267488 regtest: darwin support for 64-bit build

267552 SIGSEGV (misaligned stack error) with DRD, but not with other tools
267630 Add support for IBM Power ISA 2.06 -- stage 1

267769 == 267997 (Darwin: memcheck triggers segmentation fault)
267819 Add client request for informing the core about reallocation

267925 laog data structure quadratic for a single sequence of lock

267968 drd: (vgDrd_thread_set_joinable): Assertion '0 <= (int)tid ..' failed
267997 MacOSX: 64-hit V segfaults on launch when built with X code 4.0.1
268513 missed optimizationsin fold Expr

268619 s390x: fpr - gpr transfer facility

72

OLDER NEWS

268620 s390x: reconsider "long displacement” requirement

268621 s390x: improve IR generation for XC

268715 s390x: FLOGR isnot universally available

268792 == 267997 (valgrind seg faults on startup when compiled with X code 4)
268930 s390x: MHY isnot universally available

269078 arm->IR: unhandled instruction SUB (SP minus immediate/register)
269079 Support ptrace system call on ARM

269144 missing "Bad option" error message

269209 conditional load and store facility (z196)

269354 Shift by zero on x86 can incorrectly clobber CC_NDEP

269641 == 267997 (valgrind segfaultsimmediately (segmentation fault))

269736 s390x: minor code generation tweaks

269778 == 272986 (vagrind.h: swap roles of VALGRIND_DO_CLIENT_REQUEST() ..)
269863 s390x: remove unused function parameters

269864 s390x: tweak s390_emit_load cc

269884 == 250101 (overhead for huge blocks exhausts space too soon)

270082 s390x: Make sure to point the PSW address to the next address on SIGILL
270115 s390x: rewrite some testcases

270309 == 267997 (valgrind crash on startup)

270320 add support for Linux FIOQSIZE ioctl() call

270326 segfault while trying to sanitize the environment passed to execle

270794 IBM POWERY support patch causes regression in none/tests

270851 IBM POWERY fcfidusinstruction causes memcheck to fail

270856 IBM POWER7 xsnmaddadp instruction causes memcheck to fail on 32bit app
270925 hyper-optimized strspn() in /lib64/libc-2.13.s0 needs fix

270959 s390x: invalid use of RO as base register

271042 VSX configure check fails when it should not

271043 Valgrind build fails with assembler error on ppc64 with binutils 2.21
271259 s390x: fix code confusion

271337 == 267997 (Vagrind segfaults on MacOS X)

271385 s390x: Implement Ist MBE

271501 s390x: misc cleanups

271504 s390x: promote likely and unlikely

271579 ppc: using wrong enum type

271615 unhandled instruction "popcnt” (arch=amd10h)

271730 Fix bug when checking ioctls: duplicate check

271776 s390x: provide STFLE instruction support

271779 s390x: provide clock instructions like STCK

271799 Darwin: ioctls without an arg report a memory error

271820 arm: fix type confusion

271917 pthread cond timedwait failure leads to not-locked false positive

272067 s390x: fix DISP20 macro

272615 A typo in debug output in mc_|leakcheck.c

272661 callgrind_annotate chokes when run from paths containing regex chars
272893 amd64->IR: 0x66 OxF 0x38 0x2B 0xC1 0x66 OxF Ox7F == (closed as dup)
272955 Unhandled syscall error for pwrite64 on ppc64 arch

272967 make documentation build-system more robust

272986 Fix gcc-4.6 warnings with valgrind.h

273318 amd64->IR: 0x66 OxF Ox3A 0x61 OxC1 0x38 (missing PCMPxSTRX case)
273318 unhandled PCMPxXSTRX case: vex amd64->IR: 0x66 OxF 0x3A 0x61 0xC1 0x38
273431 valgrind segfaults in eval CfiExpr (debuginfo.c;2039)

273465 Cadlgrind: jumps.c:164 (new_jcc): Assertion '(0 <=jmp) && ...

273536 Build error: multiple definition of “vgDrd_pthread_cond_initializer'
273640 ppc64-linux: unhandled syscalls setresuid(164) and setresgid(169)

273729 == 283000 (lllegal opcode for SSE2 "roundsd” instruction)

273778 exp-ptrcheck: unhandled sysno == 259

274089 exp-ptrcheck: unhandled sysno == 208

274378 s390x: Various dispatcher tweaks

73

OLDER NEWS

274447 WARNING: unhandled syscall: 340

274776 amd64->IR: 0x66 OxF 0x38 0x2B 0xC5 0x66

274784 == 267997 (valgrind Is -l resultsin Segmentation Fault)

274926 valgrind does not build against linux-3

275148 configure FAIL with glibc-2.14

275151 Fedora 15/ glibc-2.14 'make regtest' FAIL

275168 Make Valgrind work for MacOSX 10.7 Lion

275212 == 275284 (lots of false positivesfrom __memcpy_ssse3 back et a)
275278 valgrind does not build on Linux kernel 3.0.* dueto silly

275284 Valgrind memcpy/memmove redirection stopped working in glibc 2.14/x86_64
275308 Fix implementation for ppc64 fres instruc

275339 s390x: fix testcase compile warnings

275517 s390x: Provide support for CKSM instruction

275710 s390x: get rid of redundant address mode cal culation

275815 == 247894 (Vagrind doesn't know about Linux readahead(2) syscall)
275852 == 250101 (valgrind uses all swap space and is killed)

276784 Add support for IBM Power ISA 2.06 -- stage 3

276987 gdbsrv: fix tests following recent commits

277045 Valgrind crasheswith unhandled DW_OP_ opcode Ox2a

277199 Thetest isa 2 06 partl.c in none/tests/ppc64 should be a symlink
277471 Unhandled syscall: 340

277610 valgrind crashesin VG_(Iseek)(core fd, phdrg[idx].p_offset, ...)
277653 ARM: support Thumb2 PLD instruction

277663 ARM: NEON float VMUL by scalar incorrect

277689 ARM: tests for VSTn with register post-index are broken

277694 ARM: BLX LR instruction broken in ARM mode

277780 ARM: VMOV .F32 (immediate) instruction is broken

278057 fuse filesystem syscall deadlocks

278078 Unimplemented syscall 280 on ppc32

278349 F GETPIPE_SZ and F_SETPIPE_SZ Linux fentl commands
278454 VALGRIND_STACK_DEREGISTER has wrong output type
278502 == 275284 (Vagrind confuses memcpy() and memmove())
278892 gdbsrv: factorize gdb version handling, fix doc and typos

279027 Support for MVCL and CLCL instruction

279027 s390x: Provide support for CLCL and MV CL instructions

279062 Remove aredundant check in the insn selector for ppc.

279071 JDK creates PTEST with redundant REX.W prefix

279212 gdbsrv: add monitor cmd v.info scheduler.

279378 exp-ptrcheck: the 'impossible’ happened on mkfifo call

279698 memcheck discards valid-bits for packuswb

279795 memcheck reports uninitialised values for mincore on amd64
279994 Add support for IBM Power ISA 2.06 -- stage 3

280083 mempolicy syscall check errors

280290 vex amd64->IR: 0x66 OxF 0x38 0x28 0xC1 0x66 OxF Ox6F
280710 s390x: config filesfor nightly builds

280757 /tmp dir still used by valgrind even if TMPDIR is specified
280965 Valgrind breaks fentl locks when program does mmap

281138 WARNING: unhandled syscall: 340

281241 == 275168 (valgrind useless on Macos 10.7.1 Lion)

281304 == 275168 (Darwin: dyld "cannot load inserted library")

281305 == 275168 (unhandled syscall: unix:357 on Darwin 11.1)

281468 s390x: handle do_clone and gcc clonesin call traces

281488 ARM: VFP register corruption

281828 == 275284 (false memmove warning: " Source and destination overlap™)
281883 s390x: Fix system call wrapper for "clone".

282105 generalise 'reclamSuperBlock' to also reclaim splittable superblock
282112 Unhandled instruction bytes: 0OxDE 0xD9 0x9B OxDF (fcompp)
282238 SLES10: make check fails

74

OLDER NEWS

282979 strcasestr needs replacement with recent(>=2.12) glibc

283000 vex amd64->IR: 0x66 OxF 0x3A OxA 0xC0 0x9 OxF3 OxF

283243 Regression in ppc64 memcheck tests

283325 == 267997 (Darwin: V segfaults on startup when built with Xcode 4.0)

283427 re-connect epoll_pwait syscall on ARM linux

283600 gdbsrv: android: port vgdb.c

283709 none/tests/faultstatus needs to account for page size

284305 filter_gdb needs enhancement to work on ppc64

284384 clang 3.1 -Wunused-value warnings in valgrind.h, memcheck.h

284472 Thumb2 ROR.W encoding T2 not implemented

284621 XML-escape process command linein XML output

n-i-bz cachegrind/callgrind: handle CPUID information for CoreiX Intel CPUs
that have non-power-of-2 sizes (also AMDS)

n-i-bz don't be spooked by libraries mashed by elfhack

n-i-bz don't be spooked by libxul.so linked with gold

n-i-bz improved checking for VALGRIND _CHECK_MEM _|S DEFINED

(3.7.0-TEST1: 27 October 2011, vex r2228, valgrind r12245)

(3.7.0.RC1: 1 November 2011, vex r2231, valgrind r12257)
(3.7.0: 5 November 2011, vex r2231, valgrind r12258)

Release 3.6.1 (16 February 2011)

3.6.1isabug fix release. It adds support for some SSE4
instructions that were omitted in 3.6.0 due to lack of time. Initia
support for glibc-2.13 has been added. A number of bugs causing
crashing or assertion failures have been fixed.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got abugzillaentry. We encourage you to file bugsin
bugzilla (http://bugs.kde.org/enter_valgrind_bug.cgi) rather than
mailing the developers (or mailing lists) directly -- bugsthat are
not entered into bugzillatend to get forgotten about or ignored.

To see details of agiven bug, visit
https://bugs.kde.org/show_bug.cgiZid=XXXXXX
where XXXXXX isthe bug number as listed below.

188572 Valgrind on Mac should suppress setenv() mem leak

194402 vex amd64->IR: 0x48 OxF OXAE 0x4 (proper FX{ SAVE,RSTOR} support)
210481 vex amd64->IR: Assertion “sz == 2 || sz == 4' failed (REX.W POPQ)
246152 callgrind internal error after pthread _cancel on 32 Bit Linux

250038 ppcb4: Altivec LVSR and LV SL instructions fail their regtest

254420 memory pool tracking broken

254957 Test code failing to compile due to changes in memcheck.h

255009 helgrind/drd: crash on chmod with invalid parameter

255130 readdwarf3.c parse type DIE confused by GNAT Adatypes

255355 helgrind/drd: crash on threaded programs doing fork

255358 == 255355

255418 (SSE4.x) rint call compiled with ICC

255822 --gen-suppressions can create invalid files: "too many callers|...]"
255888 closing valgrindoutput tag outputted to log-stream on error

255963 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A 0x9 0xDB 0x0 (ROUNDPD)
255966 Slowness when using mempool annotations

256387 vex x86->IR: 0xD4 OxA 0x2 0x7 (AAD and AAM)

75

OLDER NEWS

256600 super-optimized strcasecmp() false positive

256669 vex amd64->IR: Unhandled LOOPNEL insn on amd64

256968 (SSE4.x) vex amd64->IR: 0x66 0xF 0x38 0x10 0xD3 0x66 (BLENDV Px)
257011 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A OxE OxFD O0xAO (PBLENDW)
257063 (SSE4.x) vex amd64->IR: 0x66 0xF 0x3A 0x8 0xCO 0x0 (ROUNDPS)
257276 Missing case in memcheck --track-origins=yes

258870 (SSE4.x) Add support for EXTRACTPS SSE 4.1 instruction

261966 (SSE4.x) support for CRC32B and CRC32Q islacking (also CRC32{W,L})
262985 VEX regression invalgrind 3.6.0 in handling PowerPC VM X

262995 (SSE4.x) crash when trying to valgrind gcc-snapshot (PCMPxSTRx $0)
263099 callgrind_annotate counts Ir improperly [...]

263877 undefined coprocessor instruction on ARMv7

265964 configure FAIL with glibc-2.13

n-i-bz Fix compile error w/ icc-12.x in guest_arm _tolR.c

n-i-bz Dacs: fix bogus descriptions for VALGRIND_CREATE BLOCK et a
n-i-bz Massif: don't assert on shmat() with --pages-as-heap=yes

n-i-bz Bug fixes and major speedups for the exp-DHAT space profiler

n-i-bz DRD: disable --free-is-write due to implementation difficulties

(3.6.1: 16 February 2011, vex r2103, valgrind r11561).

76

4. README

Release notes for Valgrind

If you are building abinary package of Valgrind for distribution,
please read README_PACKAGERS. It contains some important information.

If you are developing Valgrind, please reead README_DEVELOPERS. It contains
some useful information.

For instructions on how to build/install, see the end of thisfile.

If you have problems, consult the FAQ to seeif there are workarounds.

Executive Summary

Vagrind isaframework for building dynamic analysistools. There are
Valgrind tools that can automatically detect many memory management
and threading bugs, and profile your programsin detail. Y ou can also
use Valgrind to build new tools.

The Valgrind distribution currently includes seven production-quality
tools: amemory error detector, two thread error detectors, a cache
and branch-prediction profiler, a call-graph generating cache and
branch-prediction profiler, and two heap profilers. It also includes
one experimental tool: a SimPoint basic block vector generator.

Valgrind is closely tied to details of the CPU, operating system and to
alesser extent, compiler and basic C libraries. This makesit difficult
to make it portable. Nonetheless, it is available for the following
platforms:

- X86/Linux

- AMDG64/Linux

- PPC32/Linux

- PPC64/Linux

- ARM/Linux

- ARM64/Linux

- X86/macOS

- AMD64/macOS

- S390X/Linux

- MIPS32/Linux

- MIPS64/Linux

- nanoMIPS/Linux

- X86/Solaris

- AMDG64/Solaris

- X86/FreeBSD

- AMDG64/FreeBSD
- ARM64/FreeBSD

Note that AMDG64 is just another name for x86_64, and Valgrind runs fine
on Intel processors. Also note that the core of macOSis called
"Darwin" and this name is used sometimes.

Vagrind islicensed under the GNU General Public License, version 2.

README

Read the file COPYING in the source distribution for details.

However: if you contribute code, you need to make it available as GPL
version 2 or later, and not 2-only.

Documentation

A comprehensive user guideis supplied. Point your browser at
$PREFI X/share/doc/val grind/manual .html, where $PREFIX is whatever you
specified with --prefix= when building.

Building and installing it

Toinstall from the GIT repository:
0. Clone the code from GIT:
git clone https://sourceware.org/git/valgrind.git
There are further instructions at
http://www.val grind.org/downl oads/repository.html.
1. cd into the source directory.

2. Run ./autogen.sh to setup the environment (you need the standard
autoconf tools to do so).

3. Continue with the following instructions...
Toinstall from atar.bz2 distribution:

4. Run ./configure, with some optionsif you wish. The only interesting
one isthe usua --prefix=/where/you/want/it/installed.

5. Run "make".

6. Run "make install", possibly as root if the destination permissions
require that.

7. Seeif itworks. Try "valgrind Is-I". Either thisworks, or it
bombs out with some complaint. In that case, please let us know
(see http://valgrind.org/support/bug_reports.html).

Important! Do not move the valgrind installation into a place
different from that specified by --prefix at build time. Thiswill

cause things to break in subtle ways, mostly when Valgrind handles
fork/exec cals.

The Valgrind Devel opers

78

5. README_MISSING_SYSCALL_OR_IOCTL

Dealing with missing system call or ioctl wrappersin Valgrind

Y ou're probably reading this because Valgrind bombed out whilst
running your program, and advised you to read thisfile. The good
news isthat, in general, it's easy to write the missing syscall or

ioctl wrappers you need, so that you can continue your debugging. If
you send the resulting patches to me, then you'll be doing afavour to
all future Valgrind users too.

Note that an "ioctl" isjust aspecial kind of system call, realy; so
there's not alot of need to distinguish them (at least conceptually)
in the discussion that follows.

All thismachinery isin coregrind/m_syswrap.

What are syscall/ioctl wrappers? What do they do?

Valgrind does what it does, in part, by keeping track of everything your
program does. When a system call happens, for example arequest to read
part of afile, control passesto the Linux kernel, which fulfils the

request, and returns control to your program. The problem is that the
kernel will often change the status of some part of your program's memory
as aresult, and tools (instrumentation plug-ins) may need to know about
this.

Syscall and ioctl wrappers have two jobs:
1. Tell atool what's about to happen, before the syscall takes place. A
tool could perform checks beforehand, eg. if memory about to be written
isactually writable. This part is useful, but not strictly
essential.
2. Tell atool what just happened, after a syscall takes place. Thisis
so it can update its view of the program's state, eg. that memory has
just been writtento. This step is essential.
The "happenings' mostly involve reading/writing of memory.
So, let'slook at an example of awrapper for asystem call which

should be familiar to many Unix programmers.

The syscall wrapper for time()

The wrapper for the time system call looks like this:

PRE(sys _time)

{
[* time_t time(time_t *t); */
PRINT("sys_time (%p)", ARG1);
PRE_REG_READI1(long, "time", int *, t);
if ARG1!=0){

79

README_MISSING_SYSCALL_OR_|OCTL

PRE_MEM_WRITE("time(t)", ARGL, sizeof(vki_time t));
}
}

POST(sys_time)

if (ARG1!=0) {
POST_MEM_WRITE(ARG1, sizeof(vki_time t));
}
}

The first thing we do happens before the syscall occurs, in the PRE() function.
The PRE() function typically starts with invoking to the PRINT() macro. This
PRINT() macro implements support for the --trace-syscalls command line option.
Next, the tool istold the return type of the syscall, that the syscall has

one argument, the type of the syscall argument and that the argument is being
read from aregister:

PRE_REG_READI1(long, "time", int *, t);

Next, if anon-NULL buffer is passed in as the argument, tell the tool that the
buffer is about to be written to:

if (ARG1!=0) {
PRE_MEM_WRITE("time", ARG, sizeof(vki_time_t));
}

Finally, the really important bit, after the syscall occurs, in the POST()
function: if, and only if, the system call was successful, tell the tool that
the memory was written:

if (ARG1!=0) {
POST_MEM_WRITE(ARG1, sizeof(vki_time t));
}

The POST() function won't be called if the syscall failed, so you
don't need to worry about checking that in the POST () function.
(Note: thisis sometimes a bug; some syscalls do return results when
they "fail" - for example, nanosleep returns the amount of unslept
timeif interrupted. TODO: add another per-syscall flag for this
case.)

Note that we use the type 'vki_time t'. Thisisacopy of the kernel

type, with 'vki_' prefixed. Our copies of such types are kept in the
appropriate vki*.h file(s). We don't include kernel headers or glibc headers
directly.

Writing your own syscall wrappers (see below for ioctl wrappers)

If Valgrind tells you that system call NNN is unimplemented, do the
following:

1. Find out the name of the system call:
grep NNN /usr/include/asm/unistd*.h

This should tell you something like — NR_mysyscallname.

80

README_MISSING_SYSCALL_OR_|OCTL

Copy this entry to include/vki/vki-scnums-$(VG_PLATFORM).h.

If you can't find the system call in /usr/include, try looking in the
strace source code (https://github.com/strace/strace). Some syscalls/ioctls
are not defined explicitly, but strace may have aready figured it out.

. Do 'man 2 mysyscallname' to get some idea of what the syscall
does. Note that the actual kernel interface can differ from this,
so you might also want to check aversion of the Linux kernel
source.

NOTE: any syscall which has something to do with signals or
threads is probably "special”, and needs more careful handling.
Post something to valgrind-developers if you aren't sure.

. Add a case to the already-huge collection of wrappersin
the coregrind/m_syswrap/syswrap-*.c files.
For each in-memory parameter which isread or written by
the syscall, do one of

PRE_MEM_READ(...)
PRE_MEM_RASCIIZ(...)
PRE_MEM_WRITE(...)

for that parameter. Then do the syscall. Then, if the syscall
succeeds, issue suitable POST MEM_WRITE(...) cals.
(There's no need for POST_MEM_READ calls)

Also, add it to the syscall_tabl€e[] array; use one of GENX_, GENXY
LINX_, LINXY, PLAX_, PLAXY.

GEN* for generic syscalls (in syswrap-generic.c), LIN* for linux
specific ones (in syswrap-linux.c) and PLA* for the platform
dependent ones (in syswrap-$(PLATFORM)-linux.c).

The*XY variant if it requires a PRE() and POST() function, and
the*X _variant if it only requires a PRE()

function.

If you find this difficult, read the wrappers for other syscalls
for ideas. A good tip isto look for the wrapper for a syscall
which has a similar behaviour to yours, and useit asa
starting point.

If you need structure definitions and/or constants for your syscall,

copy them from the kernel headers into include/vki.h and co., with
the appropriate vki_*/VKI_* name mangling. Don't #include any

kernel headers. And certainly don't #include any glibc headers.

Test it.

Note that acommon error isto call POST MEM_WRITE(...)
with 0 (NULL) asthefirst (address) argument. This usually means
your logicis dlightly inadequate. It's a sufficiently common bug
that there's a built-in check for it, and you'll get a"probably

sanity check failure" for the syscall wrapper you just made, if this
isthe case.

81

README_MISSING_SYSCALL_OR_|OCTL

4. Once happy, send us the patch. Pretty please.

Writing your own ioctl wrappers

I's pretty much the same as writing syscall wrappers, except that all
the action happens within PRE(ioctl) and POST (ioctl).

There's adefault case, sometimes it isn't correct and you have to write a
more specific case to get the right behaviour.

As above, please create a bug report and attach the patch as described
on http://www.valgrind.org.

Writing your own door call wrappers (Solaris only)

Unlike syscalls or ioctls, door calls transfer data between two userspace
programs, albeit through a kernel interface. Programs may use completely
proprietary semantics in the data buffers passed between them.

Therefore it may not be possible to capture these semantics within
aValgrind door call or door return wrapper.

Nevertheless, for system or well-known door services it would be beneficial
to have a door call and adoor return wrapper. Writing such wrapper is pretty
much the same as writing ioctl wrappers. Please take a few moments to study
the following picture depicting how a door client and a door server interact
through the kernel interface in atypical scenario:

door client thread kernel door server thread
invokes door_call() invokes door_return()

<---- PRE(sys_door, DOOR_RETURN)
PRE(sys door, DOOR_CALL) --->
----> POST(sys door, DOOR_RETURN)
----> server_procedure()
P
<---- PRE(sys_door, DOOR_RETURN)
POST(sys _door, DOOR_CALL) <---

Thefirst PRE(sys _door, DOOR_RETURN) isinvoked with data_ptr=NULL
and data_size=0. That's because it has not received any datafrom
adoor cal, yet.

Semantics are described by the following functions
in coregring/m_syswrap/syswrap-solaris.c module;
o For adoor call wrapper the following attributes of 'params’ argument;
- data_ptr (and associated data size) asinput buffer (request);
described in door_call_pre_mem_params_data()
- rbuf (and associated rsize) as output buffer (response);
described in door_call_post_ mem_params_rbuf()
o For adoor return wrapper the following parameters:

82

README_MISSING_SYSCALL_OR_|OCTL

- data_ptr (and associated data size) asinput buffer (request);
described in door_return_post_mem_data()

- data_ptr (and associated data size) as output buffer (response);
described in door_return_pre_mem_data()

There's adefault case which may not be correct and you have to write a
more specific case to get the right behaviour. Unless Valgrind's option
'--sim-hints=lax-doors' is specified, the default case also spits awarning.

As above, please create a bug report and attach the patch as described
on http://www.valgrind.org.

83

6. README_DEVELOPERS

Building and installing it

To build/install from the GIT repository or from adistribution
tarball, refer to the section with the same namein README.

Building Valgrind requires autoconf, GNU make and a suitable C
compiler.

Building and not installing it

To run Valgrind without having to install it, run coregrind/valgrind

with the VALGRIND_LIB environment variable set, where <dir> is the root

of the source tree (and must be an absolute path). Eg:
VALGRIND_LIB=~/grind/head4/.in_place ~/grind/head4/coregrind/valgrind

This allows you to compile and run with "make" instead of "make install",
saving you time.

Or, you can use the 'vg-in-place’ script which does that for you.
| recommend compiling with "make --quiet” to further reduce the amount of

output spewed out during compilation, letting you actually see any errors,
warnings, etc.

Building adistribution tarball

To build adistribution tarball from the valgrind sources:
make dist

In addition to compiling, linking and packaging everything up, the command
will also attempt to build the documentation.

If you only want to test whether the generated tarball is complete and runs
regression tests successfully, building documentation is not needed.

make dist BUILD_ALL_DOCS=no

If you insist on building documentation some embarrassing instructions
can be found in docs’README.

Running the regression tests

Running the regression tests requires GNU sed, python 3.9 or later, gdb,
and a suitable C++ compiler

To build and run all the regression tests, run "make [--quiet] regtest”.

To run asubset of the regression tests, execute:

README_DEVELOPERS

perl tests'vg_regtest <name>

where <name> is adirectory (al tests within will be run) or asingle
.vgtest test file, or the name of a program which has alike-named .vgtest
file. Eg:

perl tests'vg_regtest memcheck
perl testsivg_regtest memcheck/tests/badfree.vgtest
perl tests'vg_regtest memcheck/tests/badfree

The details of each vgtest run are logged to individual "vgtest.log"
files. These arelisted, and non-passing tests detailed, in the
test-suite-overall.log file. (Token *.trs and test-suite.log files

are also created, for emulating automake-style testsuites, as expected
by tools such as bunsen.)

Platform-specific setup for regression tests

On some platforms some setup is required otherwise some of the tests
will fail.

Inherited inctifier file descriptors

Seen on openSUSE amd64 KDE, all processes seem to inherit an inotify
file descriptor which interferes with some of the fdleak testsin the
none directory. Here is an example

Isof | grep inotify | grep bash
bash 13128 paulf 31r a inode 0,14 0 46 inctify

| don't know how to turn this off completely. Y ou can close the
file descriptor for the current shell by using

MY _INOTIFIER=$(Isof 2>& 1 | grep $$ | grep inotify | awk ‘{print $4} ' | sed 's/r//")
if [-n${MY_INOTIFIER}] ; then

exec {MY_INOTIFIER} <&-
fi

FreeBSD kernel modules and stack guard page

The sctp and mqueuefs kernel modules need to be loaded. Asroot
kldload sctp mqueuefs

Additionally FreeBSD has strange belt and braces thread stack protection
with both the kernel and the allocated thread stack providing guard pages.
This interferes with the memcheck descr_belowsp test. The extra kernel
guard page can be turned off with the following command run as root

sysctl security.bsd.stack_guard page=0

Running the performance tests

85

README_DEVELOPERS

To build and run all the performance tests, run "make [--quiet] perf".
To run asubset of the performance suite, execute:

perl perf/vg_perf <name>
where <name> is adirectory (al tests within will be run) or asingle
.vgperf test file, or the name of a program which has a like-named .vgperf
file. Eg:

perl perfivg_perf perf/

perl perfivg_perf perf/bz2.vgperf

perl perfivg_perf perf/bz2
To compare multiple versions of Valgrind, use the --vg= option multiple
times. For example, if you have two Valgrinds next to each other, onein
trunk1/ and one in trunk2/, from within either trunkl/ or trunk2/ do thisto
compare them on al the performance tests:

perl perfivg_perf --vg=../trunk1 --vg=../trunk2 perf/

Writing regression tests

Each tool has atests directory containing regression tests. Thereis also
the gdbserver_tests directory at the top level. Test directories may have
architecture, OS and and architecture-OS sub-directories for tests that are
specific to one architecture, OS or both.

Once you have written a C or C++ executable that performs the required

tests you will have to modify and create severd files. The new files that

will need adding are

(a) a.vgtest file, which controls the test

(b) a.stderr.exp file, which is the golden reference for any Valgrind output
Note that even if Vagrind doesn't produce any output you will need to
create an empty .stderr.exp file.

(c) [optional] a.stdout.exp file, the golden reference for any output from the
test executable

(d) [optional] filter files (see the test directories for examples).

Quite often the output will depend on the platform the test is run on.
Getting the tests to be 'portable’ can require filtering or adding multiple
stderr.exp referencefiles.

If the test only runs under certain conditions like the availability of functions

in libc or C++ standard versions you will need to modify configure.ac in the

top level directory. See AC_CHECK_FUNCS and the various blocks starting with
AC_MSG_CHECKING.

In the test directory, modify Makefile.am. Add to EXTRA_DIST the .vgtest,
.stderr.exp and .stderr.out files. Add any filtersto dist_noinst. SCRIPTS.

Add the test executable name to check PROGRAMS. Try to respect the

formatting and alphabetical ordering of the Makefile.am. For smple C filesthat is
sufficient. If you needed to add a feature test to configure.ac then you should

use the same condition to add the executable name to check PROGRAMS. If the
executable uses C++ you need to add exename_SOURCES. If the executable needs
special compilation or link options, use exename CFLAGS, exename CXXFLAGS,
exename LDFLAGS or exename LDADD. Finally in Makefile.am it's nice not to

86

README_DEVELOPERS

have any warnings, even if they were done on purpose. See configure.ac
and various Makefile.am files for examples of using FLAG W _*.

The vgtest file contains the instructions for running the test. Typically

it will contain (with examplesin quotes)

(a) the name of thetest executable: "prog: exename"

(b) arguments for the test executable: "args: hello world"

(c) argumentsfor the Valgrind tool: "vgopts: -q"

(d) [optional] acheck for prerequisites; "prereq: ! ../../tests/os_test darwin”
(e) [optional] afilter: "stderr_filter: filter_fdleak"

See tests/vg_regtest for afull description of al possible vgtest directives.

The easiest way to generate the expected filesis to run the test. Create empty
files with touch (otherwise the test won't run) then run the test from the
top directory using perl and vg_regtest script (as in the "Running the
regression tests' section. Then copy "tool/tests/newtest.stderr.out" to
"tool/testsnewtest.stderr.exp”. It is better to generate the .stdout.exp
file directly from the testcase. Y ou can do that by redirecting stdout to
the expected file, for instance (in the test directory)

Jnewtest argl arg2 > newtest.stdout.exp
Thisis not always possible - sometimes there are tests that depend on the use
of client requests or have imperfect emulation of opcodes.
Make sure that the test runs and passes.

Thelast fileto changeis .gitignore in the top directory. Add a new entry,
for example "/tool/tests/newtest".

Check for mistakes in Makefile.am. In the top directory run
make post-regtest-checks

Y ou should only see

...checking makefile consistency

...checking header files and include directives
and no messages related to EXTRA_DIST.

Commit access and try branches

To get commit access to the valgrind git repository on sourceware
you will have to ask an existing developer and fill in the following
form: https://sourceware.org/cgi-bin/pdw/ps_form.cgi

Every developer with commit access can use try branches. If you want to try a
branch before pushing you can push to a special named try branch as follows:

git push origin $BRANCH:users/SUSERNAME/try-$BRANCH
Where $BRANCH is the branch name and $USERNAME is your user name.

Y ou can see the status of the builders here:
https://builder.sourceware.org/buil dbot/#/buil ders?tags=valgrind-try

The buildbot will also sent the patch author multiple success/failure emails.
Afterwards you can delete the branch again:

git push origin :users$USERNAME/try-$BRANCH

87

README_DEVELOPERS

Debugging Valgrind with GDB

To debug the valgrind launcher program (<prefix>/bin/valgrind) just
run it under gdb in the normal way.

Debugging the main body of the valgrind code (and/or the code for

a particular tool) requires abit more trickery but can be achieved

without too much problem by following these steps:

(1) Set VALGRIND_LAUNCHER to point to the valgrind executable. Eg:
export VALGRIND_LAUNCHER=/ust/loca/bin/valgrind

or for an uninstalled version in a source directory $DIR:

export VALGRIND_LAUNCHER=$DIR/coregrind/vagrind
export VALGRIND_LIB=$DIR/.in_place

VALGRIND_LIB iswhere the default.supp and vgpreload_ libraries
are found (which is under /usr/libexec/valgrind for an installed
version).
(2) Run gdb on the tool executable. Eg:
gdb /usr/local/lib/valgrind/lackey-ppc32-linux
or

gdb $DIR/.in_place/memcheck-x86-linux

(3) Do "handle SIGSEGV SIGILL nostop noprint" in GDB to prevent GDB from
stopping on a SIGSEGV or SIGILL:

(gdb) handle SIGILL SIGSEGV nostop noprint
If you are using lldb, then the equivalent command is
(lldb) pro hand -p true -sfalse -n false SIGILL SIGSEGV
(4) Set any breakpoints you want and proceed as normal for gdb. The
macro VG_(FUNC) is expanded to vgPlain_FUNC, so If you want to set
abreakpoint VG_(do_exec_inner), you could do like thisin GDB:
(gdb) b vgPlain_do_exec_inner
Note: Thisisjust an example, for various reasons internal
function names might be renamed or optimized out

(for example when building with --enable-Ito).

(5) Run the tool with required options (the --tool option is required
for correct setup), e.g.

(gdb) run --tool=lackey pwd

Steps (1)--(3) can be put in a.gdbinit file, but any directory names must
be fully expanded (ie. not an environment variable).

88

README_DEVELOPERS

A different and possibly easier way is as follows:;

(1) Run Valgrind as normal, but add the flag --wait-for-gdb=yes. This
puts the tool executable into await loop soon after it gains
control. Thisdelays startup for afew seconds.

(2) In adifferent shell, do "gdb /proc/<pid>/exe <pid>", where
<pid> you read from the output printed by (1). This attaches
GDB to the tool executable, which should be in the above mentioned
wait loop.

(3) Do "cont" to continue. After the loop finishes spinning, startup
will continue as normal. Note that comment (3) above re passing
signals applies here too.

The default build of Valgrind uses"-g -O2". Thisis OK most of the
time, but with sophisticated optimization it can be difficult to

see the contents of variables. A quick way to get to see function
variablesisto temporarily add " attribute _ ((optnone))" before

the function definition and rebuild. Alternatively modify
Makefile.all.am and remove -O2 from AM_CFLAGS BASE. That will
require you to reconfigure and rebuild Valgrind.

Self-hosting
This section explains:
(A) How to configure Valgrind to run under Valgrind.
Such a setup is called self hosting, or outer/inner setup.
(B) How to run Valgrind regression tests in a 'self-hosting' mode,
e.g. to verify Valgrind has no bugs such as memory leaks.
(C) How to run Valgrind performance tests in a 'self-hosting' mode,
to analyse and optimise the performance of Valgrind and its tools.

(A) How to configure Valgrind to run under Valgrind:

(1) Check out 2 trees, "Inner" and "Outer". Inner runs the app
directly. Outer runs Inner.

(2) Configure Inner with --enable-inner and build as usual.

(3) Configure Outer normally and build+install as usual.
Note: You must use a"make install"-ed valgrind.
Do *not* use vg-in-place for the Outer valgrind.

(4) Choose avery simple program (date) and try

outer/.../bin/valgrind --sim-hints=enabl e-outer --trace-children=yes \
--smc-check=all-non-file\
--run-libc-freeres=no --tool=cachegrind -v \
inner/.../vg-in-place --vgdb-prefix=./inner --tool=none -v prog

If you omit the --trace-children=yes, you'll only monitor Inner's launcher

program, not its stage2. Outer needs --run-libc-freeres=no, as otherwise

it will try tofind and run __libc_freeresin the inner, while libc is not

used by the inner. Inner needs --vgdb-prefix=./inner to avoid inner

gdbserver colliding with outer gdbserver.

Currently, inner does * not* use the client request
VALGRIND_DISCARD_TRANSLATIONS for the JITted code or the code patched for

89

README_DEVELOPERS

trand ation chaining. So the outer needs --smc-check=all-non-file to
detect the modified code.

Debugging the whole thing might imply to use up to 3 GDB:
* a GDB attached to the Outer valgrind, allowing
to examine the state of Outer.
* aGDB using Outer gdbserver, alowing to
examine the state of Inner.
* aGDB using Inner gdbserver, allowing to
examine the state of prog.

The whole thing is fragile, confusing and slow, but it does work well enough
for you to get some useful performance data. Inner has most of

its output (ie. those lines beginning with "==<pid>==") prefixed with a">',
which helps alot. However, when running regression tests in an Outer/Inner
setup, this prefix causes the reg test diff to fail. Give
--sim-hints=no-inner-prefix to the Inner to disable the production

of the prefix in the stdout/stderr output of Inner.

The alocatorsin coregrind/m_mallocfree.c and VEX/priv/main_util.h are
annotated with client requests so Memcheck can be used to find leaks
and use after freein an Inner Valgrind.

The Valgrind "big lock" is annotated with helgrind client requests
so Helgrind and DRD can be used to find race conditionsin an Inner
Valgrind.

All this has not been tested much, so don't be surprised if you hit problems.

When using self-hosting with an outer Callgrind tool, use '--pop-on-jump’
(on the outer). Otherwise, Callgrind has much higher memory requirements.

(B) Regression tests in an outer/inner setup:

To run all the regression tests with an outer memcheck, do :
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
-l

To run a specific regression tests with an outer memcheck, do:
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
none/tests/args.vgtest

To run regression tests with another outer tool:
perl tests/vg_regtest --outer-valgrind=../outer/.../bin/valgrind \
--outer-tool=helgrind --all

--outer-args allows to give specific arguments to the outer tool,
replacing the default one provided by vg_regtest.

Note: --outer-valgrind must be a"make install"-ed valgrind.
Do *not* use vg-in-place.

When an outer valgrind runs an inner valgrind, aregression test
produces one additional file <testname>.outer.log which contains the
errors detected by the outer valgrind. E.g. for an outer memcheck, it
contains the leaks found in the inner, for an outer helgrind or drd,

it contains the detected race conditions.

90

README_DEVELOPERS

Thefile tests/outer_inner.supp contains suppressions for
theirrelevant or benign errorsfound in the inner.

A regression test running in the inner (e.g. memcheck/tests/badrw) will
cause the inner to report an error, which is expected and checked
as usual when running the regtests in an outer/inner setup.
However, the outer will often also observe an error, e.g. ajump
using uninitialised data, or a read/write outside the bounds of a heap
block. When the outer reports such an error, it will output the
inner host stacktrace. To this stacktrace, it will append the
stacktrace of the inner guest program. For example, thisis an error
reported by the outer when the inner runs the badrw regtest:
==8119==Invalid read of size 2
==8119== at OX7F2EFD7AF. ???
==8119== by Ox7F2C82EAF: ???
==8119== by Ox7F180867F:; 7??
==8119== by 0x40051D: main (badrw.c:5)
==8119== by Ox7F180867F:; 7??
==8119== by Ox1BFF: ???
==8119== by 0x3803B7FO:
==8119== by 0x40055C: main (badrw.c:22)
==8119== Address 0x55cd03c is 4 bytes before a block of size 16 alloc'd
==8119== at 0x2804E26D: vgPlain_arena_malloc (m_mallocfree.c:1914)
==8119== by 0x2800BAB4: vgMemCheck new_block (mc_malloc_wrappers.c:368)
==8119== by 0x2800BC87: vgMemCheck_malloc (mc_malloc_wrappers.c:403)
==8119== by O0x28097EAE: do_client_request (scheduler.c:1861)
==8119== by O0x28097EAE: vgPlain_scheduler (scheduler.c:1425)
==8119== by 0x280A7237: thread wrapper (syswrap-linux.c:103)
==8119== by 0x280A7237: run_a thread NORETURN (syswrap-linux.c:156)

==8119== by Ox3803B7FO: VVVVVVVV_appended_inner_guest_stack_VVVVVVVV

==8119== by 0x4C294C4: malloc (vg_replace _malloc.c:298)
==8119== by 0x40051D: main (badrw.c:5)
In the above, the first stacktrace starts with the inner host stacktrace,
whichin this caseis some JI Tted code. Such code sometimes contains | Ps
that pointsin the inner guest code (0x40051D: main (badrw.c:5)).
After the separator, we have the inner guest stacktrace.
The second stacktrace gives the stacktrace where the heap block that was
overrun was allocated. We see it was allocated by the inner valgrind
in the client arena (first part of the stacktrace). The second part is
the guest stacktrace that did the allocation.

(C) Performance tests in an outer/inner setup:

To run all the performance tests with an outer cachegrind, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind perf

To run aspecific perf test (e.g. bz2) in this setup, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind perf/bz2

To run al the performance tests with an outer callgrind, do :
perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind \
--outer-tool=callgrind perf

Note: --outer-valgrind must be a"make install”-ed valgrind.
Do *not* use vg-in-place.

To compare the performance of multiple Valgrind versions, do :

VVVVVVVV_appended inner_guest stack VVVVVVVV

(m_execontext.c:33:

(m_execontext.c:33:

91

README_DEVELOPERS

perl perf/ivg_perf --outer-valgrind=../outer/.../bin/valgrind \

--outer-tool=callgrind \

--vg=../inner_xxxx --vg=../inner_yyyy perf
(whereinner_xxxx and inner_yyyy are the toplevel directories of
the versions to compare).

Cachegrind and cg_diff are particularly handy to obtain a delta
between the two versions.

When the outer tool is callgrind or cachegrind, the following
output fileswill be created for each test:
<outertoolname>.out.<inner_valgrind_dir>.<tt>.<perftestname>.<pid>
<outertoolname>.outer.log.<inner_valgrind_dir>.<tt>.<perftestname>.<pid>
(where tt is the two |etters abbreviation for the inner tool(s) run).

For example, the command
perl perfivg_perf\
--outer-valgrind=../outer_trunk/install/bin/valgrind \
--outer-tool=callgrind \
--vg=../inner_tchain --vg=../inner_trunk perf/many-loss-records

produces the files
callgrind.out.inner_tchain.no.many-loss-records.18465
callgrind.outer.log.inner_tchain.no.many-loss-records.18465
callgrind.out.inner_tchain.me.many-loss-records.21899
callgrind.outer.log.inner_tchain.me.many-loss-records.21899
callgrind.out.inner_trunk.no.many-loss-records.21224
callgrind.outer.log.inner_trunk.no.many-loss-records.21224
callgrind.out.inner_trunk.me.many-loss-records.22916
callgrind.outer.log.inner_trunk.me.many-loss-records.22916

Printing out problematic blocks

If you want to print out a disassembly of a particular block that
causes a crash, do the following.

Try running with "--vex-guest-chase=no --trace-flags=10000000
--trace-notbel ow=999999". This should print one line for each block
trandated, and that includes the address.

Then re-run with 999999 changed to the highest bb number shown.

Thiswill print the one line per block, and also will print a
disassembly of the block in which the fault occurred.

Formatting the code with clang-format

clang-format is atool to format C/C++/... code. The root directory of the
Vagrind tree contains file .clang-format which is a configuration for this tool
and specifiesa style for Valgrind. This gives you an option to use
clang-format to easily format Valgrind code which you are modifying.

The Valgrind codebase is not globally formatted with clang-format. It means
that you should not use the tool to format a complete file after making changes
in it because that would lead to creating unrelated modifications.

Theright approach isto format only updated or new code. By using an
integration with atext editor, it is possible to reformat arbitrary blocks

92

README_DEVELOPERS

of code with asingle keystroke. Refer to the upstream documentation which
describes integration with various editors and I DEs:
https://clang.llvm.org/docs/ClangFormat.html.

Updating zstd

Similar to libiberty, we have to import a copy of zstd rather than linking
with alibrary. Thereisn't (yet) ascript to automate this, so it hasto be
done manually.

The version currently in use can be seen in coregrind/m_debuginfo/zstd.h.
Look for ZSTD_VERSION_MAJOR ZSTD_VERSION_MINOR and ZSTD_VERSION_RELEASE.

- Get the source of zstd from
https://github.com/facebook/zstd
- Checkout the latest release tag (should be YMAJMIN.REL)
- Copy { zstd git repo}/lib/zstd.h to coregrind/m_debuginfo/zstd.h
- cdto {zstd git repo} /build/single file libsand run ./create single file decoder.sh
- You cannot simply copy and use the generated zstddeclib.c!
All callsto libc functionsin this file need replacing with VG_ versions.

Merge the newly generated zstddeclib.c with coregrind/m_debuginfo/zstddeclib.c.
Make sure to keep the copy of the BSD licensein the Cfile.

93

/. README_PACKAGERS

Greetings, packaging person! Thisinformation isaimed at people
building binary distributions of Valgrind.

Thanks for taking the time and effort to make a binary distribution of
Vagrind. The following notes may save you some trouble.

-- If your toolchain (compiler, linker) support Ito, using the configure
option --enable-Ito=yes will produce a smaller/faster valgrind
(up to 10%).

-- Do not ship your Linux distro with a completely stripped
/lib/ld.so. At least |eave the debugging symbol names on -- line
number info isn't necessary. If you don't want to leave symbols on
Id.so, alternatively you can have your distro install 1d.so's
debuginfo package by default, or make Id.so.debuginfo be a
requirement of your Vagrind RPM/DEB/whatever.

Reason for thisisthat Valgrind's Memcheck tool needs to intercept
callsto, and provide replacements for, some symbolsin Id.so at
startup (most importantly strlen). If it cannot do that, Memcheck
shows alarge number of false positives due to the highly optimised
strlen (etc) routinesin ld.so. This has caused sometroublein

the past. Asof version 3.3.0, on some targets (ppc32-linux,
ppc64-linux), Memcheck will simply stop at startup (and print an
error message) if such symbols are not present, becauseit is
infeasible to continue.

It's not like thisis going to cost you much space. We only need
the symbolsfor Id.so (afew K at most). Not the debug info and
not any debuginfo or extra symbols for any other libraries.

-- (Unfortunate but true) When you configure to build with the
--prefix=/foolbar/xyzzy option, the prefix /foo/bar/xyzzy gets
baked into valgrind. The consequenceisthat you must_install
valgrind at the location specified in the prefix. If you don't,
it may appear to work, but will break doing some obscure things,
particularly doing fork() and exec().

So you can't build arelocatable RPM / whatever from Valgrind.

-- Don't strip the debug info off lib/valgrind/$platform/vgprel oad* .so
intheinstallation tree. Either Vagrind won't work at all, or it
will still work if you do, but will generate less helpful error
messages. Here's an example:

Mismatched free() / delete/ delete[]
at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp:149)
by 0x4C261C41: PptDoc::~PptDoc(void) (include/gmemarray.h:60)
by 0x4C261FO0E: PptXml::~PptXml(void) (pptxml.cc:44)
Address 0x4BB292A8 is 0 bytesinside a block of size 64 alloc'd

README_PACKAGERS

at 0x4004318C: __ builtin_vec_new (vg_clientfuncs.c:152)

by 0x4C21BC15: KLaola::readSBStream(int) const (klaola.cc:314)

by 0x4C21C155: KLaola::stream(K Laola::OLENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert(QCString const &) (ol efilter.cc:272)

Thistells you that some memory allocated with new[] was freed with
free().

Mismatched free() / delete / delete[]
at 0x40043249: (inside vgpreload memcheck.so)
by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp:149)
by 0x4C261C41: PptDoc::~PptDoc(void) (include/gmemarray.h:60)
by 0x4C261FO0E: PptXml::~PptXml(void) (pptxml.cc:44)
Address 0x4BB292A8 is 0 bytesinside a block of size 64 alloc'd
at 0x4004318C: (inside vgpreload memcheck.so)
by 0x4C21BC15: KLaola::readSBStream(int) const (klaola.cc:314)
by 0x4C21C155: KLaola::stream(K Laola::OLENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert(QCString const &) (ol efilter.cc:272)

Thisisn't so helpful. Although you can tell there is a mismatch,

the names of the allocating and deall ocating functions are no longer
visible. The same kind of thing occursin various other messages
from valgrind.

-- Don't strip symbols from libexec/valgrind/* in the installation tree.
Doing so will likely cause problems. Removing the line number info is
probably OK (at least for some of the filesin that directory), although
that has not been tested by the Valgrind developers.

One consequence of stripping these binariesisthat if Valgrind crashes
it won't be able to print out a useful callstack. Here is an example
posted on Stack Overflow

valgrind: the 'impossible’ happened: Killed by fatal signal

host stacktrace:

==7732== at 0x38091C12: ??? (in /usr/lib/val grind/memcheck-amd64-linux)
==7732==hy 0x38050E84: ??? (in /ust/lib/valgrind/memcheck-amd64-linux)
==7732==hy 0x380510A9: ??? (in /usr/lib/val grind/memcheck-amd64-linux)
==7732==hy 0x380D4F7B: ??? (in /usr/lib/val grind/memcheck-amd64-linux)
==7732==hy 0x380E3946: ??? (in /ust/lib/valgrind/memcheck-amd64-linux)

Bug reportslike this are less likely to be resolved.
-- Please test the final installation works by running it on something
huge. | suggest checking that it can start and exit successfully
both Firefox and OpenOffice.org. | use these astest programs, and |
know they fairly thoroughly exercise Valgrind. The command linesto use
are
valgrind -v --trace-children=yes firefox
valgrind -v --trace-children=yes soffice

If you find any more hints/tips for packaging, please report
it as a bugreport. See http://www.valgrind.org for details.

95

README_PACKAGERS

96

8. README.S390

Requirements

- You need GCC 3.4 or later to compile the s390 port.

- To run valgrind a z10 machine or any later model is recommended.
Older machine models down to and including z990 may work but have
not been tested extensively.

Limitations

- 31-hit client programs are not supported.

- Hexadecimal floating point is not supported.

- Transactional memory is not supported. The transactional-execution
facility is masked off from HWCAP.

- A full list of unimplemented instructions can be retrieved from
“docs/internal §/s390-opcodes.csv', by grepping for "not implemented".

- FP signalling is not accurate. E.g., the "compare and signal”
instructions behave like their non-signalling counterparts.

- On machine models predating z10, cachegrind will assume a z10 cache
architecture. Otherwise, cachegrind will query the hosts cache system
and use those parameters.

- Some gcc versions use mvc to copy 4/8 byte values. Thiswill affect
certain debug messages. For example, memcheck will complain about
4 one-byte reads/writes instead of just a single read/write.

Hardware facilities

Valgrind does not require that the host machine has the same hardware
facilities as the machine for which the client program was compiled.
Thisis convenient. If possible, the J' T compiler will translate the
client instructions according to the facilities available on the host.

This means, though, that probing for hardware facilities by issuing
instructions from that facility and observing whether SIGILL isthrown
may not work. As a consequence, programs that attempt to do so may
behave differently. It is believed that thisis arare use case.

Reading Materia

(1) ELF ABI s390x Supplement
https://github.com/I BM/s390x-abi/rel eases

(2) z/Architecture Principles of Operation
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

(3) Collection of z/Architecture publications
https://linux.mainframe.bl og/zarchitecture-principles-of -operation/

97

9. README.android

How to cross-compile and run on Android. Please read to the end,
since there are important details further down regarding crash
avoidance and GPU support.

These notes were last updated on 4 Nov 2014, for Valgrind SVN
revision 14689/2987.

These instructions are known to work, or have worked at sometimein
the past, for:

arm:
Android 4.0.3 running on a (rooted, AOSP build) Nexus S.
Android 4.0.3 running on Motorola X oom.
Android 4.0.3 running on android arm emulator.
Android 4.1 running on android emulator.
Android 2.3.4 on Nexus S worked at some time in the past.

x86:
Android 4.0.3 running on android x86 emulator.

mips32:
Android 4.1.2 running on android mips emulator.
Android 4.2.2 running on android mips emulator.
Android 4.3 running on android mips emulator.
Android 4.0.4 running on BROADCOM bcm7425

armo4:
Android 4.5 (?) running on ARM Juno

On android-arm, GDBserver might insert breaks at wrong addresses.
Feedback on this welcome.

Other configurations and toolchains might work, but haven't been tested.

Feedback is welcome.
Toolchain:

For arm32, x86 and mips32 you need the android-ndk-r6 native
development kit. r6b and r7 give a non-completely-working build;
see http://code.google.com/p/android/issues/detail 71d=23203
For the android emulator, the versions needed and how to install
them are described in README.android_emulator.

Y ou can get android-ndk-r6 from
http://dl.google.com/android/ndk/android-ndk-r6-linux-x86.tar.bz2

For arm64 (aarch64) you need the android-ndk-r10c NDK, from
http://dl.google.com/android/ndk/androi d-ndk-r10c-linux-x86_64.bin

Install the NDK somewhere. Doesn't matter where. Then:

Modify this (obviously). Note, this"export" command is only done

98

README.android

s0 as to reduce the amount of typing required. None of the commands
below read it as part of their operation.

#

export NDKROOT=/path/to/android-ndk-r<version>

Then cd to the root of your Valgrind source tree.
#
cd /path/to/valgrind/source/tree

After this point, you don't need to modify anything. Just copy and
paste the commands below.

Set up toolchain paths.

#

For ARM

export AR=$NDKROOT/tool chains/arm-linux-androi deabi-4.4.3/prebuilt/li nux-x86/bin/arm-linux-androi deabi-ar
export LD=$NDKROQT/tool chaing/arm-linux-androi deabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-Id
export CC=$NDKROQT/tool chaing/arm-linux-androideabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-gcc

For x86

export AR=$NDKROOT/tool chains/x86-4.4.3/prebuilt/li nux-x86/bin/i686-android-linux-ar
export LD=$NDKROQT/tool chains/x86-4.4.3/prebuilt/linux-x86/bin/i686-android-linux-Id
export CC=3$NDKROQT/tool chaing/x86-4.4.3/prebuilt/linux-x86/bin/i 686-android-linux-gcc

For MIPS32

export AR=$NDKROOT/tool chains/mi psel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-ar
export LD=$NDKROQT/tool chaing/mipsel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-Id
export CC=3$NDKROQT/tool chaing/mipsel-linux-android-4.8/prebuilt/linux-x86_64/bin/mipsel-linux-android-gcc

For ARM64 (AArch64)

export AR=$NDKROOT/tool chai ns/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-1inux-android-ar
export LD=$NDKROQT/tool chaing/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-linux-android-ld
export CC=$NDKROQT/tool chaing/aarch64-linux-android-4.9/prebuilt/linux-x86_64/bin/aarch64-linux-android-gcc

Do configuration stuff. Don't mess with the --prefix in the
configure command below, even if you think it's wrong.

Y ou may need to set the --with-tmpdir path to something
different if /sdcard doesn't work on the device -- thisis

aknown cause of difficulties.

The below re-generates configure, Makefiles, ...
Thisisnot needed if you start from arelease tarball.
Jautogen.sh

#for ARM
CPPFLAGS="--sysroot=$NDKROOT/platforms/android-3/arch-arm" \
CFLAGS="--sysroot=3NDKROQT/platformsg/android-3/arch-arm" \
Jconfigure --prefix=/data/local/Inst \
--host=armv7-unknown-linux --target=armv7-unknown-linux \
--with-tmpdir=/sdcard
note: on android emulator, android-14 platform was also tested and works.
It is not clear what this platform nr redly is.

for x86

99

README.android

CPPFLAGS="--sysroot=$NDKROOT/platforms/android-9/arch-x86" \
CFLAGS="--sysroot=3NDK ROOT/platforms/androi d-9/arch-x86 -fno-pic" \
Jconfigure --prefix=/data/local/Inst \

--host=i1686-android-linux --target=i686-android-linux \
--with-tmpdir=/sdcard

#for MIPS32

CPPFLAGS="--sysroot=$NDKROOT/platforms/android- 18/arch-mips" \
CFLAGS="--sysroot=3NDKROQT/platforms/android-18/arch-mips" \
Jconfigure --prefix=/data/local/Inst \
--host=mipsel -linux-android --target=mipsel-linux-android \
--with-tmpdir=/sdcard

#for ARM64 (AArch64)
CPPFLAGS="--sysroot=$NDKROOT/platforms/android-21/arch-arm64" \
CFLAGS="--sysroot=3NDKROOT/platforms/android-21/arch-arm64" \
Jconfigure --prefix=/data/local/Inst \
--host=aarch64-unknown-linux --target=aarch64-unknown-linux \
--with-tmpdir=/sdcard

At the end of the configure run, afew lines of details

are printed. Make sure that you see these two lines:

#

For ARM:

Platform variant: android

Primary -DVGPV string: -DVGPV_arm_linux_android=1

#

For x86:

Platform variant: android

Primary -DVGPV string: -DVGPV_x86_linux_android=1

#

For mips32:

Platform variant: android

Primary -DVGPV string: -DVGPV_mips32_linux_android=1
#

For ARM64 (AArch64):

Platform variant: android

Primary -DVGPV string: -DVGPV_arm64_linux_android=1
#

If you see anything else at this point, something iswrong, and
either the build will fail, or will succeed but you'll get something
which won't work.

Build, and park the install tree in “pwd’/Inst
#

make -j4

make -j4 install DESTDIR="pwd'/Inst

To get the install tree onto the device:

(1 don't know why it's not "adb push Inst /data/local”, but this
formulation does appear to put the result in /data/local/Inst.)
#

adb push Inst /

100

README.android

To run (on the device). There are two things you need to consider:
#
(1) if you are running on the Android emulator, Valgrind may crash
at startup. Thisis because the emulator (for ARM) may not be
simulating a hardware TLS register. To get around this, run
Valgrind with:

--kernel-variant=android-no-hw-tls

(2) if you arerunning areal device, you need to tell Valgrind
what GPU it has, so Valgrind knows how to handle custom GPU
ioctls. You can choose one of the following:
--kernel-variant=android-gpu-sgx5xx # PowerVR SGX 5XX series
--kernel-variant=android-gpu-adreno3xx # Qualcomm Adreno 3XX series
If you don't choose one, the program will still run, but Memcheck
may report false errors after the program performs GPU-specific ioctls.

HHHHHHHHHHF R

Anyway: to run on the device:
#
/datallocal/Inst/bin/valgrind [kernel variant args] [the usual args etc]

Once you're up and running, a handy modify-V -rebuild-reinstall

command line (on the host, of course) is

#

mg -j2 && mq -j2 install DESTDIR="pwd'/Inst && adb push Inst /
#

where'mq' isan alias for 'make --quiet'.

One common cause of runs failing at startup is the inability of
Valgrind to find a suitable temporary directory. On the device,
there doesn't seem to be any one location which we always have
permission to write to. The instructions above use /sdcard. If

that doesn't work for you, and you're Valgrinding one specific
application which is already installed, you could try using its

temporary directory, in /data/data, for example

/data/data/org.mozilla.firefox_beta.

#

Using /system/bin/logcat on the deviceis helpful for diagnosing
these kinds of problems.

101

10. README.android _emulator

How to install and run an android emulator.

mkdir android # or any other place you prefer
cd android

download java JDK

http://www.oracl e.com/technetwork/javaljavase/downl oads/index.html
download android SDK

http://devel oper.android.com/sdk/index.html

download android NDK

http://devel oper.android.com/sdk/ndk/index.html

versions | used:

jdk-7ud-linux-i586.tar.gz

android-ndk-r8-linux-x86.tar.bz2
android-sdk_r18-linux.tgz

#install jdk
tar xzf jdk-7u4-linux-i586.tar.gz

#install sdk
tar xzf android-sdk_r18-linux.tgz

#install ndk
tar xjf android-ndk-r8-linux-x86.tar.bz2

setup PATH to use the installed software:

export SDKROOT=$HOM E/android/android-sdk-linux

export PATH=3$PATH:$SDKROOQOT/tools:$SDK ROOT/platform-tools
export NDKROOT=$HOM E/android/android-ndk-r8

#install android platforms you want by starting:
android
(from $SDKROQT/tools)

select the platforms you need

#1 selected and installed:

Android 4.0.3 (API 15)

Upgraded then to the newer version available:
Android sdk 20

Android platform tools 12

then define avirtual device:
Tools-> Manage AVDs...

| define an AVD Name with 64 Mb SD Card, (4.0.3, api 15)
#rest is default

compile and make install Valgrind, following README.android

Start your android emulator (it takes some time).

102

README.android_emulator

Y ou can use adb shell to get a shell on the device
and see it isworking. Note that | usually get

one or two time out from adb shell before it works
adb shell

Once the emulator isready, push your Valgrind to the emulator:
adb push Inst /

IMPORTANT: when running Valgrind, you may need give it the flag
#

--kernel-variant=android-no-hw-tls

#

since otherwise it may crash at startup.

See README.android for details.

#if you need to debug:

Y ou have on the android side a gdbserver
on the device side:

gdbserver :1234 your_exe

on the host side:

adb forward tcp:1234 tcp:1234

$HOM E/android/androi d-ndk-r8/tool chai ns/arm-linux-androi deabi-4.4.3/prebuil t/linux-x86/bin/arm-linux-androi deabi-gdb your_e
target remote :1234

103

11. README.mips

Supported platforms

- MIPS32 and M1PS64 platforms are currently supported.
- Both little-endian and big-endian cores are supported.

- MIPS DSP ASE on MIPS32 platforms is supported.

Building V for MIPS

- Native build isavailable for al supported platforms. The build system

expects that native GCC is configured correctly and optimized for the platform.
Y et, this may not be the case with some Debian distributions which configure
GCC to compileto "mipsl" by default. Depending on atarget platform, using
CFLAGS="-mips32r2", CFLAGS="-mips32" or CFLAGS="-mips64" or
CFLAGS="-mips64 -mabi=64" will do the trick and compile Valgrind correctly.

- Use of cross-toolchain is supported as well.
- Example of configure line and additional configure options:

$./configure --host=mi psel-linux-gnu --prefix=<path_to_install_directory>

* --host=mips-linux-gnu is necessary only if Valgrind is built on platform
other then MIPS, tools for building MIPS application have to be in PATH.

* --host=mips-linux-gnu is necessary if you compile it with cross toolchain
compiler for big endian platform.

* --host=mipsel-linux-musl is necessary if you compile it with cross toolchain
compiler for little endian platform.

* --host=nanomipseb-linux-gnu is necessary if you compile it with cross toolchain
compiler for nanoMIPS big endian platform.

* --host=nanomips-linux-gnu is necessary if you compile it with cross toolchain
compiler for nanoMIPS little endian platform.

* --build=mips-linux is needed if you want to build it for MIPS32 on 64-bit
MIPS system.

* |f you are compiling Valgrind for mips32 with gcc version older then
gcc (GCC) 4.5.1, you must specify CFLAGS="-mips32r2 -mplt", e.g.

Jconfigure --prefix=<path_to_install_directory>
CFLAGS="-mips32r2 -mplt"

Limitations
- Some gdb tests will fail when gdb (GDB) older than 7.5isused and gdb is
not compiled with '--with-expat=yes.
- You can not compile tests for DSP ASE if you are using gcc (GCC) older
then 4.6.1 due to a bug in the toolchain.
- Older GCC may have issues with some inline assembly blocks. Get atoolchain

104

README.mips

based on newer GCC versions, if possible.

- Systems with a mips64 cpu having only 032 libraries will misconfigure in case
no appropriate architecture flag is specified during configure time.
Be sure to set either mips32 or mips32r2 as the target architecture in that
case.

- Some tests can not be compiled for nanoMIPS due to limitationsin
preliminary GCC for nanoMIPS. Y ou can use '-i' switch for building tests.

105

12. README.riscv64

The RISC-V port targets the 64-bit RISC-V architecture and the Linux operating
system. The port has been tested to work on real hardware and under QEMU.

The following ISA base and extensions are currently supported:

| Name | Description | #lnstrs | Notes |

| | | | |

| RV64l | Base instruction set | 52/52| |

| RvV64M | Integer multiplication & division| 12/13|(1) |
| RV64A | Atomic | 22/221(2) |

| RV64F | Single-precision floating-point | 30/30|(3) |
| Rv64D | Double-precision floating-point | 32/32 | |

Rv64Zicsr	Control & status register	3/6](4),(5)]	
Rv64Zzifencei	Instruction-fetch fence	o016	
Rv64C	Compressed	37/37	
Notes:

(1) MULHSU is not recognized.

(2) LR and SC usethe VEX "falback" method which suffers from the ABA problem.
(3) Operations do not check if the input operands are correctly NaN-boxed.

(4) CSRRWI, CSRRSI and CSRRCI are not recognized.

(5) Only registers fflags, frm and fcsr are accepted.

(6) FENCE.I is not recognized.

Implementation tidying-up/TODO notes

* Implement a proper "non-fallback” method for LR and SC instructions.

* Add a check for correct NaN-boxing of 32-bit floating-point operands.

* Optimize instruction selection, in particular make more use of <instr>i
variants.

* Optimize handling of floating-point exceptions. Avoid helpers and calculate
exception flags using the same instruction which produced an actual result.

* Review register usage by the codegen.

* Avoid re-use of Intel-constants CFIC_IA_SPREL and CFIC_IA_BPREL. Generaize
them for all architectures or introduce same CFIC_RISCV64_ variants.

* Get rid of the typedef of vki_modify_Idt_t ininclude/vki/vki-riscv64-linux.h.

* Review if setup_client_stack() should expose AT_SY SINFO_EHDR to clients.

* Make sure that the final exit sequencein run_a thread NORETURNY() is not racy
in regards to accessing the thread state.

106

13. README.solaris

Requirements

- You need arecent Solaris-like OS to compile this port. Solaris 11 or
any illumos-based distribution should work, Solaris 10 is not supported.
Running “uname -r* hasto print '5.11".

- Recent GCC tools are required, GCC 3 will probably not work. GCC version
4.5 (or higher) is recommended.

- On lllumos you can install the 'build-essentia' metapackage which
includes GCC and many other devel oper tools.

- Solaris|d hasto be thefirst linker in the PATH. GNU Id cannot be used.
Thereis currently no linker check in the configure script but the linking
phase failsif GNU Id is used. Recent Solaris/illumos distributions are ok.

- A working combination of autotoolsis required: aclocal, autoheader,
automake and autoconf have to be found in the PATH. Y ou should be able to
install pkg:/devel oper/build/automake and pkg:/devel oper/buil d/autoconf
packages to fulfil this requirement.

- System header files are required. On Solaris, these can be installed with:

pkg install system/header

- GNU makeisalso required. On Solaris, this can be quickly achieved with:;

$ PATH=/usr/gnu/bin:$PATH; export PATH

- For remote debugging support, working GDB is required (see below).

- For running regression tests, GNU sed, grep, awk, diff are required.

This can be quickly achieved on Solaris by prepending /usr/gnu/bin to PATH.

Compilation
Please follow the generic instructions in the README file,
in the section 'Building and installing it'.

The configure script detects a canonical host to determine which version of
Valgrind should be built. If the system compiler by default produces 32-bit
binaries then only a 32-bit version of Valgrind will be built. To enable
compilation of both 64-bit and 32-bit versions on such a system, issue the
configure script as follows:

Jconfigure CC='gcc -m64' CXX="g++ -m64'

Oracle Solaris and illumos support

One of the main goal of this port isto support both Oracle Solaris and
illumos kernels. Thisisavery hard task because Solaris kernel traditionally
does not provide a stable syscall interface and because Valgrind contains
several partsthat are closely tied to the underlying kernel. For these
reasons, the port needs to detect which syscall interfaces are present. This
detection cannot be done easily at run time and is currently implemented as
aset of configure tests. This means that a binary version of this port can be
executed only on akernel that is compatible with a kernel that was used
during the configure and compilation time.

Main currently-known incompatibilities:

- Solaris 11 (released in November 2011) removed alarge set of syscalls where
*at variant of the syscall was also present, for example, open() versus
openat(AT_FDCWD) [1]

107

README.solaris

- syscall number for unlinkat() is 76 on Solaris 11, but 65 on illumos[2]

- illumos (in April 2013) changed interface of the accept() and pipe()
syscals[3]

- posix_spawn() functionality is backed up by true spawn() syscall on Solaris 11.4
whereas illumos and Solaris 11.3 leverage vfork()

- illumos and older Solaris use utimesys() syscall whereas newer Solaris
uses utimensat()

[1] http://docs.oracle.com/cd/E26502_01/html/E28556/gkzIf.html#gkzip
[2] https.//www.illumos.org/issues/521
[3] https://github.com/illumos/illumos-gate/commit/5dbfd19ad5f cc2b779f 40f 80f a05¢1bd28f dObde

Limitations

- The port is Work-In-Progress, many things may not work or they can be subtly
broken.

- Coredumps produced by Valgrind do not contain all information available,
especially microstate accounting and processor bindings.

- Accessing contents of /proc/self/psinfo is not thread-safe. That is because
Valgrind emulates this file on behalf of the client programs. Entire
open() - read() - close() sequence on this file needs to be performed
atomically.

- Fork limitations: vfork() istransated to fork(), forkall() is not
supported.

- Valgrind does not track definedness of some eflags (OF, SF, ZF, AF, CF, PF)
individually for each flag. After a syscal isfinished, when a carry flag
is set and defined, all other mentioned flags will be also defined even
though they might be undefined before making the syscall.

- System call "execve" with afile descriptor which points to a hardlink
is currently not supported. That is because from the opened file descriptor
itself it is not possible to reverse map the intended pathname.

Examples are fexecve(3C) and isaexec(3C).

- Program headers PT_SUNW_SYSSTAT and PT_SUNW_SYSSTAT_ZONE are not supported.
That is, programs linked with mapfile directive RESERVE_SEGMENT and attribute
TYPE equal to SYSSTAT or SYSSTAT_ZONE will cause Valgrind exit. It is not
possible for Valgrind to arrange mapping of akernel shared page at the
address specified in the mapfile for the guest application. Thereis currently
no such mechanism in Solaris. Hacky workarounds are possible, though.

- When athread has no stack then all system callswill result in Valgrind
crash, even though such system calls use just parameters passed in registers.

This should happen only in pathological situations when athread is created
with custom mmap'ed stack and this stack is then unmap'ed during thread
execution.

Remote debugging support

Solaris port of GDB has amagjor flaw which prevents remote debugging from
working correctly. Fortunately this flaw has an easy fix [4]. Unfortunately
it is not present in the current GDB 7.6.2. This boils down to several
options:
- Use GDB shipped with Solaris 11.2 which has this flaw fixed.
- Wait until GDB 7.7 becomes available (there won't be other 7.6.x releases).
- Build GDB 7.6.2 with the fix by yourself using the following steps:
pkg install developer/gnu-binutils
$ wget http://ftp.gnu.org/gnu/gdb/gdb-7.6.2.tar.gz
$ gzip -dc gdb-7.6.2.tar.gz | tar xf -

108

README.solaris

$cd gdb-7.6.2

$ patch -p1 -i /path/to/val grind-sol aris/sol aris/gdb-sol -thread. patch

$ export LIBS="-Incurses"

$ export CC="gcc -m64"

$./configure --with-x=no --with-curses --with-libexpat-prefix=/ust/lib
$ gmake & & gmake install

[4] https.//sourceware.org/ml/gdb-patches/2013-12/msg00573.html

TODO list

- Fix few remaining failing tests.

- Add more Solaris-specific tests (especially for the door and spawn
syscalls).

- Provide better error reporting for various subsyscalls.

- Implement storing of extraregister statein signal frame.

- Performance comparison against other platforms.

- Prevent SIGPIPE when writing to a socket (coregrind/m_libcfile.c).

- Implement ticket locking for fair scheduling (--fair-sched=yes).

- Implement support in DRD and Helgrind tools for thr_join() with thread == 0.

- Add support for accessing thread-local variables via gdb (auxprogs/getoff.c).
Requires research oninternal libc TL S representation.

- VEX supports AV X, BMI and AV X2. Investigate if they can be enabled on
Solarig/illumos.

- Investigate support for more flagsin AT_SUN_AUXFLAGS.

- Fix Valgrind crash when athread has no stack and syswrap-main.c accesses
all possible syscall parameters. Enable helgrind/tests/stackteardown.c
to seethisin effect. Would require awareness of syscall parameter semantics.

- Correctly print arguments of DW_CFA_ORCL _arg_loc in show_CF _instruction() when
it isimplemented in libdwarf.

- Handle a situation when guest program sets SC_ CANCEL_FL G in schedctl and
Valgrind needs to invoke a syscall on its own.

Summary of Solaris 11 Kernel Interfaces Used

Valgrind uses directly the following kernel interfaces (not exhaustive list).
Then, of course, it has very intimate knowledge of all syscalls, many ioctls
and some door calls because it has wrappers around them.
- Syscdlls:

. clock_gettime

. close

. connect

. execve

. exit

. faccessat

. fentl

. forksys

. fstatat

. getcwd

. getdents

. geteuid

. getgid

. getgroups

. getpeername

. getpid

. getrlimit

109

README.solaris

. getsockname

. getsockopt

. gettimeofday

kil

. Iseek

. lwp_create

. lwp_exit

. lwp_sdlf

. lwp_sigqueue

. mknodat

. mmap

. mprotect

. munmap

. openat

. pipe

. pollsys

. pread

- prgpsys

. pwrite

. read

. readlinkat

. renameat

. rt_sigprocmask

. send

. setrlimit

. setsockopt

. sigaction

. sigreturn

. sigtimedwait

. S0_socket

. spawn

. uname

. unlinkat

. waitsys

. write
- Signal frames. Valgrind decomposes and synthetizes signal frames.
- Flag sc_sigblock flag in the schedctl structure by replacing

function block_all_signals() from libc. The replacement emulates lwp_sigmask

syscall. More details in coregrind/vg_preloaded.c.
- Initial stack layout for the main thread is synthetized.
- procfs agent thread and other procfs commands for manipulating the process.
- mmapobj syscall is emulated because it gets in the way of the address space

manager's control.

Contacts

Please send bug reports and any questions about the port to:
Ivo Raisr <ivosh@ivosh.net>
Petr Pavlu <setup@dagobah.cz>

110

14. README.freebsd

Installing from ports or via pkg

You caninstall Valgrind using either

pkg install devel/valgrind

or aternatively from ports (if installed)

cd /usr/ports/devel/valgrind & & make install clean

devel/valgrind is updated with official releases of Valgrind, normally

in April and October each year. There is an alternative port,
devel/valgrind-devel which occasionally gets updated from the latest
Vagrind source. If you want to have the latest port, check on
https://www.freshports.org/ to see which is the most recent. If you

want to have the very latest version, you will need to build a copy

from source. See README for instructions on getting the source with git.

Building Valgrind

Install ports for autotools, gmake and python.

$ sh autogen.sh

$./configure --prefix=/where/ever
$ gmake

$ gmake install

If you are using ajail for building, make sure that it is configured so that
"uname -r" returns a string that matches the pattern "X X.Y -*" where XX isthe
major version (12, 13, 14 ...) and Y isthe minor version (0, 1, 2, 3).

Known Limitations (June 2022)

0. Be aware that if you use awrapper script and run Valgrind on the wrapper
script Valgrind may hit restrictions if the wrapper script runs any
Capsicum enabled applications. Examples of Capsicum enabled applications
are echo, basename, tee, uniq and wc. It is recommended that you either
avoid these applications or that you run Valgrind directly on your test
application.

1. There are some limitations when running Valgrind on code that was compiled
with clang. Theseissues are not present with code compiled with GCC.
a) There may be missing source information concerning variables due

to DWARF extensions used by GCC.

b) Code that uses OpenM P will generate spurious errors.

2. vgdb invoker, which uses ptrace, may cause system callsto be
interrupted. As an example, if the debuggee seemsto have be
stuck and you press Ctrl-C in gdb the debuggee may execute
one more statement before stopping and returning control to
gdb.

Notes for Developers

111

README .freebsd

See README_DEVELOPERS, README_MISSING_SYSCALL_OR_IOCTL and docs/*
for more general information for developers.

0. Adding syscalls.

When adding syscalls, you need to look at the manpage and also syscalls.master
(online at

https://github.com/freebsd/freebsd/bl ob/master/sys/kern/syscalls.master

and for 32bit

https://github.com/freebsd/freebsd/bl ob/master/sys/compat/freebsd32/syscalls.master

and if you installed the src package there should also be

lusr/src/sys/kern/syscalls.master
and
Jusr/src/sys/compat/freebsd32/syscalls.master)

syscalls.master is particularly useful for seeing quickly whether parameters
are inputs or outputs.

The syscall wrappers can vary from trivial to difficult. Fortunately, many are
either trivial (no arguments) or easy (Valgrind just needs to know what memory
isbeing read or written). Some syscalls, such as those involving process

creation and termination, signals and memory mapping require deeper interaction
with Valgrind.

When you add syscalls you will need to modify severa files

a) include/vki/vki-scnums-freebsd.h
Thisfile contains one #define for each syscall. The_ NR_ prefix (Linux
style) is used rather than SYS_for compatibility with the rest of the
Valgrind source.

b) coregrind/m_syswrap/priv_syswrap-freebsd.h
This usesthe DECL_TEMPLATE macro to generate declarations for the syscall
before and after wrappers.

c) coregrind/m_syswrap/syswrap-freebsd.c
Thisiswhere the bulk of the code resides. Toward the end of thefile
the BSDX_/BSDXY macros are used to generate entries in the table of
syscalls. BSDX _isused for wrappers that only have a'before’, BSDXY
if both wrappers are required. In general, syscalls that have no arguments
or only input arguments just need aBSDX__ macro (before only). Syscalls
with output arguments need a BSDXY macro (before and after).

d) If the syscall uses 64bit arguments (long long) then instead of putting
the wrapper definitions in syswrap-freebsd.c there will be two kinds of
definition. A 32bit version with split 64bit arguments for x86 in
syswrap-x86-freebsd.c and 64bit versions without any splitting for amdé4
and arm64 in syswrap-amd64-freebsd.c/syswrap-arm64-freebsd.c.

Each long long needs to be split into two ARGs in the x86 version.

The PRE (before) wrapper

Each PRE wrapper always contains the following two macro calls

PRINT. This outputs the syscall name and argument values when Valgrind is
executed with
--trace-syscalls=yes

112

README .freebsd

PRE_READ_REGX. This macro lets Valgrind know about the number and types of the
syscall arguments which allows Valgrind to check that they are initialized.

X isthe number of arguments. It is best that the argument names match

the man page, but they must match the types and number of argumentsin
syscalls.master. Occasionally there are differences between the two.

If the syscall takes pointers to memory there will be one of the following for
each pointer argument.

PRE_MEM_RASCIIZ for NULL terminated ascii strings.
PRE_MEM_READ for pointers to structures or arrays that are read.
PRE_MEM_WRITE for pointersto structures or arrays that are written.
Asarule, the definitions of structures are copied into vki-freebsd.h
with the vki- prefix. [vki - Valgrind kernel interface; this was done
historically to protect against discrepancies between user include

structure definitions and kernel definitions on Linux].

The POST (after) wrapper

These are much easier.
They just contain aPOST_MEM_WRITE macro for each output argument.

1. Frequent causes of problems

- New _umtx_op codes. Valgrind will print "WARNING: _umtx_op unsupported value".

See syswrap-freebsd.c and add new cases for the new codes.

- Additions to auxv. Depending on the entry it may need to be ssimply copied
from the host to the guest, it may need to be modified for the guest or
it may need to be ignored. Seeinitimg-freebsd.c.

- Versioned ioctls. ioctls such as CAMIOCOMMAND are versioned (with
CAM_VERSION). When the version number isincreased the result is a new
ioctl ID. That means that the ioctl checking code no longer gets called.

New versions require updates to the version number and the structs that
are used. (Backwards compatibility is maintained by adding fixed macros
like CAM_VERSION_0x19, but these are not currently supported in Valgrind).

- ELF PT_LOAD mappings. Either Valgrind will assert or there will be no source
information in error reports. See VG_(di_notify_mmap) in debuginfo.c

- Because they contain many deliberate errors the regression tests are prone
to change with changes of compiler. Liberal use of 'volatile' and
'-Wno-warning-flag' can help - see configure.ac

2. Running regression tests

In order to run all of the regression tests you will need to install
the following packages

gdb

gsed

In addition to running "gmake" you will need to run
"gmake check" to build the regression test exectutables
and "gmake regtest”. Again, more details can be seenin
README_DEVELOPERS.

113

README .freebsd

If you want to run the 'nightly’ script (see nightly/README.txt)
you will need to install coreutils (for GNU cp) and modify the
nightly/conf/freebsd.* files. The default configuration

sends an e-mail to the valgrind-testresults mailing list.

3. Version specific code

For its own use of syscalls and memory layout Valgrind sometimes needs

to detect which version of FreeBSD it isbeing built on. Historically

that was done using 'uname' at configure time. It can also be achieved
usingthe FreeBSD_version macro (in osreldate.h and sys/param.h).

The former header just defines that macro. To see what changes are associated
with different values of the macro you can search the FreeBSD source and

git history. You can also look at

https://docs.freebsd.org/en/books/porters-handbook/versions/

If you find any problems please create a bugzilla report at
https://bugs.kde.org using the Valgrind product.

Alternatively you can use the FreeBSD bugzilla
https://bugs.freebsd.org

Credits

Valgrind was originally ported to FreeBSD by Doug Rabson
in 2004.

Paul Floyd (that's me), started looking at this project in late 2018,
took along pause and then continued in earnest in January 2020.

A big thanks to Nick Briggs for helping with the x86 version.

Kyle Evans and Ed Maste for contributing patches and helping with the
integration with FreeBSD ports.

Prior to 2018 many others have also contributed.

Dimitry Andric
Simon Barner
Roman Bogorodskiy
Rebecca Cran

Bryan Drewery
Brian Fundakowski Feldman
Denis Generalov
Mikolg Golub
Eugene Kilachkoff
XinLl

Phil Longstaff

Pav Lucistnik
Conrad Meyer
Julien Nadeau

114

README .freebsd

Frerich Raabe
Doug Rabson
Craig Rodrigues
Tom Russo
Stephen Sanders
Stanislav Sedov
Andrei V. Shetuhin
Niklas Sorensson
Ryan Stone
Jerry Toung

Y uri

115

GNU Licenses

GNU Licenses

Table of Contents

1. The GNU GeNEral PUBDIIC LICENSE . ..veieie i ettt et et e e e et et e e e eeeaas 1
2. The GNU Free DoCUMENTAION LICENSEttt ettt et e et e et e e e e e et e e et e e e e e eneenss 7

cxXvii

1. The GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenseisintended to guarantee your freedom to share and change free
software--to make sure the software isfree for al itsusers. This
General Public License appliesto most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public Licenseinstead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions trand ate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for afee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for thisfree
software. If the software is modified by someone €lse and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The GNU General Public License

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
anotice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program”
means either the Program or any derivative work under copyright law:
that isto say, awork containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, trandlation isincluded without limitation in
the term "modification".) Each licenseeis addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program
is covered only if its contents constitute awork based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

Y ou may charge afee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for afee.

2. Y ou may modify your copy or copies of the Program or any portion
of it, thus forming awork based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet al of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) Y ou must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

¢) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
awarranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception:; if the Program itself isinteractive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

The GNU General Public License

These requirements apply to the modified work asawhole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate worksin
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of awhole which is awork based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wroteit.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with awork based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or awork based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with awritten offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received asto the offer
to distribute corresponding source code. (Thisalternativeis
alowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for awork means the preferred form of the work for
making modificationstoit. For an executable work, complete source
code means al the source code for all modulesit contains, plus any
associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, asa
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

The GNU General Public License

4. Y ou may not copy, modify, sublicense, or distribute the Program
except as expressy provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
partiesremain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all itsterms and conditions for copying, distributing or modifying
the Program or works based onit.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives alicense from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. Y ou may not impose any further
restrictions on the recipients' exercise of the rights granted herein.

Y ou are not responsible for enforcing compliance by third partiesto
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consegquence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copiesdirectly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section isintended to
apply and the section as awholeis intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or sheiswilling

to distribute software through any other system and a licensee cannot
impose that choice.

This section isintended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

The GNU General Public License

8. If the distribution and/or use of the Program isrestricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation asif written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from timeto time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies aversion number of this License which appliesto it and "any

later version™, you have the option of following the terms and conditions
either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HASBEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Termsto Your New Programs
If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve thisisto make it
free software which everyone can redistribute and change under these terms.

The GNU General Public License

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at |east
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’'s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Seethe
GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it startsin an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY: ; for details type “show w'.
Thisis free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show ¢' should show the appropriate
parts of the General Public License. Of course, the commands you use may

be called something other than “show w' and “show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

Y ou should also get your employer (if you work as a programmer) or your
schoal, if any, to sign a"copyright disclaimer” for the program, if
necessary. Hereisasample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If thisiswhat you want to do, use the GNU Lesser General

Public License instead of this License.

2. The GNU Free Documentation
License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License isto make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercialy.
Secondarily, this License preserves for the author and publisher away
to get credit for their work, while not being considered responsible

for modifications made by others.

This Licenseisakind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU Genera Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: afree
program should come with manuals providing the same freedoms that the
software does. But this Licenseis not limited to software manuals;

it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purposeisinstruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such anotice grantsa
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document”, below,
refersto any such manual or work. Any member of the publicisa
licensee, and is addressed as "you". Y ou accept the license if you
copy, modify or distribute the work in away requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or trandated into another language.

A "Secondary Section" is anamed appendix or afront-matter section of

The GNU Free Documentation License

the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document isin part a

textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or palitical position regarding

them.

The "Invariant Sections' are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice

that says that the Document is released under this License. If a

section does not fit the above definition of Secondary theniit is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The"Cover Texts' are certain short passages of text that are listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document isreleased under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy,
represented in aformat whose specification is available to the

genera public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readersis not Transparent.
Animage format is not Transparent if used for any substantial amount
of text. A copy that isnot "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copiesinclude plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using apublicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For worksin
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose
title either is precisely XY Z or contains XY Z in parentheses following
text that translates XY Z in another language. (Here XY Z stands for a
specific section name mentioned below, such as "Acknowledgements”,

The GNU Free Documentation License

"Dedications’, "Endorsements”, or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License appliesto the Document. These Warranty
Disclaimers are considered to be included by referencein this

License, but only as regards disclaiming warranties; any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of thisLicense. Y ou may not use
technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute alarge enough
number of copies you must also follow the conditions in section 3.

Y ou may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copiesin coversthat carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Textson
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and

visible. You may add other material on the coversin addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminousto fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opague copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opague copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
acomplete Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opague copies in quantity, to ensure

that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an

The GNU Free Documentation License

Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy
of it. Inaddition, you must do these thingsin the Modified Version:

A. Useinthe Title Page (and on the covers, if any) atitle distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, alicense notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preservein that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserveits Title, and add
toit anitem stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating thetitle, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

Y ou may omit anetwork location for awork that was published at
least four years before the Document itself, or if the original
publisher of the version it refersto gives permission.

K. For any section Entitled "Acknowledgements' or "Dedications”,
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve dl the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers

10

The GNU Free Documentation License

or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements®. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections asinvariant. To do this, add their titlesto the

list of Invariant Sectionsin the Modified Version's license notice.

These titles must be distinct from any other section titles.

Y ou may add a section Entitled "Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of thelist

of Cover Textsin the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work inits

license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with asingle
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or €lse a unique number.
Make the same adjustment to the section titles in the list of

Invariant Sectionsin the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements”,
and any sections Entitled "Dedications’. You must delete all sections
Entitled "Endorsements’.

11

The GNU Free Documentation License

6. COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this

License in the various documents with a single copy that isincluded in

the collection, provided that you follow the rules of this License for

verbatim copying of each of the documentsin all other respects.

Y ou may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this Licensein all

other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on avolume of a storage or
distribution medium, is called an "aggregate” if the copyright

resulting from the compilation is not used to limit the legal rights

of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of coversif the Document isin electronic form.
Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Trandation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
trandations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
trandlation of this License, and all the license noticesin the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the trandation and the original version of this License or anotice

or disclaimer, the original version will prevail.

If asection in the Document is Entitled "Acknowledgements”,
"Dedications’, or "History", the requirement (section 4) to Preserve

its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

12

The GNU Free Documentation License

Y ou may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to

copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such
partiesremain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from timeto time. Such new
versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this
License "or any later version” appliesto it, you have the option of
following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify aversion
number of this License, you may choose any version ever published (not
as adraft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To usethis License in adocument you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of thelicenseisincluded in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

13

	Valgrind Documentation
	Table of Contents
	The Valgrind Quick Start Guide
	The Valgrind Quick Start Guide
	1. Introduction
	2. Preparing your program
	3. Running your program under Memcheck
	4. Interpreting Memcheck's output
	5. Caveats
	6. More information

	Valgrind User Manual
	1. Introduction
	1.1. An Overview of Valgrind
	1.2. How to navigate this manual

	2. Using and understanding the Valgrind core
	2.1. What Valgrind does with your program
	2.2. Getting started
	2.3. The Commentary
	2.4. Reporting of errors
	2.5. Suppressing errors
	2.6. Debuginfod
	2.7. Core Command-line Options
	2.7.1. Tool-selection Option
	2.7.2. Basic Options
	2.7.3. Error-related Options
	2.7.4. malloc-related Options
	2.7.5. Uncommon Options
	2.7.6. Debugging Options
	2.7.7. Setting Default Options
	2.7.8. Dynamically Changing Options

	2.8. Support for Threads
	2.8.1. Scheduling and Multi-Thread Performance

	2.9. Handling of Signals
	2.10. Execution Trees
	2.11. Building and Installing Valgrind
	2.12. If You Have Problems
	2.13. Limitations
	2.14. An Example Run
	2.15. Warning Messages You Might See

	3. Using and understanding the Valgrind core: Advanced Topics
	3.1. The Client Request mechanism
	3.2. Debugging your program using Valgrind gdbserver and GDB
	3.2.1. Quick Start: debugging in 3 steps
	3.2.2. Valgrind gdbserver overall organisation
	3.2.3. Connecting GDB to a Valgrind gdbserver
	3.2.4. Connecting to an Android gdbserver
	3.2.5. Monitor command handling by the Valgrind gdbserver
	3.2.6. GDB front end commands for Valgrind gdbserver monitor commands
	3.2.7. Valgrind gdbserver thread information
	3.2.8. Examining and modifying Valgrind shadow registers
	3.2.9. Limitations of the Valgrind gdbserver
	3.2.10. vgdb command line options
	3.2.11. Valgrind monitor commands

	3.3. Function wrapping
	3.3.1. A Simple Example
	3.3.2. Wrapping Specifications
	3.3.3. Wrapping Semantics
	3.3.4. Debugging
	3.3.5. Limitations - control flow
	3.3.6. Limitations - original function signatures
	3.3.7. Examples

	4. Memcheck: a memory error detector
	4.1. Overview
	4.2. Explanation of error messages from Memcheck
	4.2.1. Illegal read / Illegal write errors
	4.2.2. Use of uninitialised values
	4.2.3. Use of uninitialised or unaddressable values in system calls
	4.2.4. Illegal frees
	4.2.5. When a heap block is freed with an inappropriate deallocation function
	4.2.6. Overlapping source and destination blocks
	4.2.7. Fishy argument values
	4.2.8. Realloc size zero
	4.2.9. Alignment Errors
	4.2.10. Memory leak detection

	4.3. Memcheck Command-Line Options
	4.4. Writing suppression files
	4.5. Details of Memcheck's checking machinery
	4.5.1. Valid-value (V) bits
	4.5.2. Valid-address (A) bits
	4.5.3. Putting it all together

	4.6. Memcheck Monitor Commands
	4.7. Client Requests
	4.8. Memory Pools: describing and working with custom allocators
	4.9. Debugging MPI Parallel Programs with Valgrind
	4.9.1. Building and installing the wrappers
	4.9.2. Getting started
	4.9.3. Controlling the wrapper library
	4.9.4. Functions
	4.9.5. Types
	4.9.6. Writing new wrappers
	4.9.7. What to expect when using the wrappers

	5. Cachegrind: a high-precision tracing profiler
	5.1. Overview
	5.2. Using Cachegrind and cg_annotate
	5.2.1. Running Cachegrind
	5.2.2. Output File
	5.2.3. Running cg_annotate
	5.2.4. The Metadata Section
	5.2.5. Global, File, and Function-level Counts
	5.2.6. Per-line Counts
	5.2.7. Forking Programs
	5.2.8. cg_annotate Warnings
	5.2.9. Merging Cachegrind Output Files
	5.2.10. Differencing Cachegrind output files
	5.2.11. Cache and Branch Simulation

	5.3. Cachegrind Command-line Options
	5.4. cg_annotate Command-line Options
	5.5. cg_merge Command-line Options
	5.6. cg_diff Command-line Options
	5.7. Cachegrind Client Requests
	5.8. Simulation Details
	5.8.1. Cache Simulation Specifics
	5.8.2. Branch Simulation Specifics
	5.8.3. Accuracy

	5.9. Implementation Details
	5.9.1. How Cachegrind Works
	5.9.2. Cachegrind Output File Format

	6. Callgrind: a call-graph generating cache and branch prediction profiler
	6.1. Overview
	6.1.1. Functionality
	6.1.2. Basic Usage

	6.2. Advanced Usage
	6.2.1. Multiple profiling dumps from one program run
	6.2.2. Limiting the range of collected events
	6.2.3. Counting global bus events
	6.2.4. Avoiding cycles
	6.2.5. Forking Programs

	6.3. Callgrind Command-line Options
	6.3.1. Dump creation options
	6.3.2. Activity options
	6.3.3. Data collection options
	6.3.4. Cost entity separation options
	6.3.5. Simulation options
	6.3.6. Cache simulation options

	6.4. Callgrind Monitor Commands
	6.5. Callgrind specific client requests
	6.6. callgrind_annotate Command-line Options
	6.7. callgrind_control Command-line Options

	7. Helgrind: a thread error detector
	7.1. Overview
	7.2. Detected errors: Misuses of the POSIX pthreads API
	7.3. Detected errors: Inconsistent Lock Orderings
	7.4. Detected errors: Data Races
	7.4.1. A Simple Data Race
	7.4.2. Helgrind's Race Detection Algorithm
	7.4.3. Interpreting Race Error Messages

	7.5. Hints and Tips for Effective Use of Helgrind
	7.6. Helgrind Command-line Options
	7.7. Helgrind Monitor Commands
	7.8. Helgrind Client Requests
	7.9. A To-Do List for Helgrind

	8. DRD: a thread error detector
	8.1. Overview
	8.1.1. Multithreaded Programming Paradigms
	8.1.2. POSIX Threads Programming Model
	8.1.3. Multithreaded Programming Problems
	8.1.4. Data Race Detection

	8.2. Using DRD
	8.2.1. DRD Command-line Options
	8.2.2. Detected Errors: Data Races
	8.2.3. Detected Errors: Lock Contention
	8.2.4. Detected Errors: Misuse of the POSIX threads API
	8.2.5. Client Requests
	8.2.6. Debugging C++11 Programs
	8.2.7. Debugging GNOME Programs
	8.2.8. Debugging Boost.Thread Programs
	8.2.9. Debugging OpenMP Programs
	8.2.10. DRD and Custom Memory Allocators
	8.2.11. DRD Versus Memcheck
	8.2.12. Resource Requirements
	8.2.13. Hints and Tips for Effective Use of DRD

	8.3. Using the POSIX Threads API Effectively
	8.3.1. Mutex types
	8.3.2. Condition variables
	8.3.3. pthread_cond_timedwait and timeouts

	8.4. Limitations
	8.5. Feedback

	9. Massif: a heap profiler
	9.1. Overview
	9.2. Using Massif and ms_print
	9.2.1. An Example Program
	9.2.2. Running Massif
	9.2.3. Running ms_print
	9.2.4. The Output Preamble
	9.2.5. The Output Graph
	9.2.6. The Snapshot Details
	9.2.7. Forking Programs
	9.2.8. Measuring All Memory in a Process
	9.2.9. Acting on Massif's Information

	9.3. Using massif-visualizer
	9.4. Massif Command-line Options
	9.5. Massif Monitor Commands
	9.6. Massif Client Requests
	9.7. ms_print Command-line Options
	9.8. Massif's Output File Format

	10. DHAT: a dynamic heap analysis tool
	10.1. Overview
	10.2. Using DHAT
	10.2.1. Running DHAT
	10.2.2. Output File

	10.3. DHAT's Viewer
	10.3.1. The Output Header
	10.3.2. The PP Tree
	10.3.2.1. Structure
	10.3.2.2. The Root Node
	10.3.2.3. Interior Nodes
	10.3.2.4. Leaf Nodes
	10.3.2.5. Access Counts
	10.3.2.6. Aggregate Nodes

	10.3.3. The Output Footer
	10.3.4. Sort Metrics

	10.4. Treatment of realloc
	10.5. Copy profiling
	10.6. Ad hoc profiling
	10.7. DHAT Command-line Options

	11. Lackey: an example tool
	11.1. Overview
	11.2. Lackey Command-line Options

	12. Nulgrind: the minimal Valgrind tool
	12.1. Overview

	13. BBV: an experimental basic block vector generation tool
	13.1. Overview
	13.2. Using Basic Block Vectors to create SimPoints
	13.3. BBV Command-line Options
	13.4. Basic Block Vector File Format
	13.5. Implementation
	13.6. Threaded Executable Support
	13.7. Validation
	13.8. Performance

	Valgrind FAQ
	Valgrind Frequently Asked Questions

	Valgrind Technical Documentation
	1. The Design and Implementation of Valgrind
	2. Writing a New Valgrind Tool
	2.1. Introduction
	2.2. Basics
	2.2.1. How tools work
	2.2.2. Getting the code
	2.2.3. Getting started
	2.2.4. Writing the code
	2.2.5. Initialisation
	2.2.6. Instrumentation
	2.2.7. Finalisation
	2.2.8. Other Important Information

	2.3. Advanced Topics
	2.3.1. Debugging Tips
	2.3.2. Suppressions
	2.3.3. Documentation
	2.3.4. Regression Tests
	2.3.5. Profiling
	2.3.6. Other Makefile Hackery
	2.3.7. The Core/tool Interface

	2.4. Final Words

	3. Callgrind Format Specification
	3.1. Overview
	3.1.1. Basic Structure
	3.1.2. Simple Example
	3.1.3. Associations
	3.1.4. Extended Example
	3.1.5. Name Compression
	3.1.6. Subposition Compression
	3.1.7. Miscellaneous
	3.1.7.1. Cost Summary Information
	3.1.7.2. Long Names for Event Types and inherited Types

	3.2. Reference
	3.2.1. Grammar
	3.2.2. Description of Header Lines
	3.2.3. Description of Body Lines

	Valgrind Distribution Documents
	1. AUTHORS
	2. NEWS
	3. OLDER NEWS
	4. README
	5. README_MISSING_SYSCALL_OR_IOCTL
	6. README_DEVELOPERS
	7. README_PACKAGERS
	8. README.S390
	9. README.android
	10. README.android_emulator
	11. README.mips
	12. README.riscv64
	13. README.solaris
	14. README.freebsd

	GNU Licenses
	1. The GNU General Public License
	2. The GNU Free Documentation License

